code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A( self): __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : List[Any] = (3_2, 3_2) __UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase__) return image @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def A( self): torch.manual_seed(0) __UpperCAmelCase : str = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(lowercase__) @property def A( self): def extract(*lowercase__ , **lowercase__): class lowerCamelCase : def __init__( self): __UpperCAmelCase : Optional[Any] = torch.ones([0]) def A( self , lowercase__): self.pixel_values.to(lowercase__) return self return Out() return extract def A( self): __UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : int = self.dummy_cond_unet __UpperCAmelCase : Tuple = PNDMScheduler(skip_prk_steps=lowercase__) __UpperCAmelCase : List[str] = self.dummy_vae __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') __UpperCAmelCase : Tuple = 7_7 __UpperCAmelCase : List[Any] = self.dummy_image.to(lowercase__) __UpperCAmelCase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCAmelCase : int = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) __UpperCAmelCase : Optional[Any] = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : Any = torch.Generator(device=lowercase__).manual_seed(0) __UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : str = torch.Generator(device=lowercase__).manual_seed(0) __UpperCAmelCase : Optional[Any] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , return_dict=lowercase__ , )[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : Optional[int] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def A( self): __UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet __UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase__) __UpperCAmelCase : Tuple = self.dummy_vae __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') __UpperCAmelCase : Optional[Any] = 7_7 __UpperCAmelCase : str = self.dummy_image.to(lowercase__) # put models in fp16 __UpperCAmelCase : Optional[Any] = unet.half() __UpperCAmelCase : str = vae.half() __UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : List[Any] = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) __UpperCAmelCase : Dict = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : List[Any] = torch.manual_seed(0) __UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def A( self): __UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase : Dict = init_image.resize((7_6_0, 5_0_4)) __UpperCAmelCase : List[str] = '''BAAI/AltDiffusion''' __UpperCAmelCase : Dict = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() __UpperCAmelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : int = torch.manual_seed(0) __UpperCAmelCase : str = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : str = output.images[0] __UpperCAmelCase : Tuple = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) __UpperCAmelCase : Any = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2)) __UpperCAmelCase : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') __UpperCAmelCase : int = '''BAAI/AltDiffusion''' __UpperCAmelCase : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() __UpperCAmelCase : str = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : List[str] = torch.manual_seed(0) __UpperCAmelCase : Optional[int] = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
from math import pi def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase = Lock() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : Optional[int] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : Tuple = min(lowercase_ , lowercase_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : List[Any] = max(lowercase_ , lowercase_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : int = Pipe() __UpperCAmelCase : Dict = Pipe() process_array_.append( Process( target=lowercase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase : Union[str, Any] = temp_rs __UpperCAmelCase : List[str] = temp_rr for i in range(1 , len(lowercase_ ) - 1 ): __UpperCAmelCase : Union[str, Any] = Pipe() __UpperCAmelCase : List[Any] = Pipe() process_array_.append( Process( target=lowercase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase : List[str] = temp_rs __UpperCAmelCase : List[str] = temp_rr process_array_.append( Process( target=lowercase_ , args=( len(lowercase_ ) - 1, arr[len(lowercase_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase_ ) ): __UpperCAmelCase : Dict = result_pipe[p][0].recv() process_array_[p].join() return arr def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : int = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*lowercase_ ) __UpperCAmelCase : Any = odd_even_transposition(lowercase_ ) print('''Sorted List\n''' ) print(*lowercase_ ) if __name__ == "__main__": main()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 50000000 ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : int = int((limit - 24) ** (1 / 2) ) __UpperCAmelCase : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase_ ) ) ) for primea in primes: __UpperCAmelCase : List[Any] = primea * primea for primea in primes: __UpperCAmelCase : List[str] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __UpperCAmelCase : Dict = primea * primea * primea * primea __UpperCAmelCase : Optional[Any] = square + cube + tetr if total >= limit: break ret.add(lowercase_ ) return len(lowercase_ ) if __name__ == "__main__": print(F'{solution() = }')
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = RoCBertTokenizer _lowerCAmelCase : Any = None _lowerCAmelCase : int = False _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = filter_non_english def A( self): super().setUp() __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] __UpperCAmelCase : List[str] = {} __UpperCAmelCase : Union[str, Any] = {} for i, value in enumerate(lowercase__): __UpperCAmelCase : Dict = i __UpperCAmelCase : Dict = i __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file''']) __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.word_shape_file , '''w''' , encoding='''utf-8''') as word_shape_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''') as word_pronunciation_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __UpperCAmelCase : Tuple = tokenizer.tokenize('''你好[SEP]你是谁''') self.assertListEqual(lowercase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) def A( self): __UpperCAmelCase : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') , ['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''h\u00E9llo''']) def A( self): __UpperCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : Any = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : str = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : Any = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__ , never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def A( self): __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase : Dict = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : List[Any] = i __UpperCAmelCase : Optional[Any] = RoCBertWordpieceTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''unwanted running''') , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') , ['''[UNK]''', '''runn''', '''##ing''']) def A( self): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def A( self): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def A( self): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def A( self): __UpperCAmelCase : Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase__) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) if self.test_rust_tokenizer: __UpperCAmelCase : Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowercase__) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) def A( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __UpperCAmelCase : int = tokenizer_r.encode_plus( lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ , ) __UpperCAmelCase : Dict = tokenizer_r.do_lower_case if hasattr(lowercase__ , '''do_lower_case''') else False __UpperCAmelCase : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping''']) def A( self): __UpperCAmelCase : Tuple = ['''的''', '''人''', '''有'''] __UpperCAmelCase : List[Any] = ''''''.join(lowercase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : int = True __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : int = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(lowercase__) __UpperCAmelCase : List[Any] = tokenizer_p.convert_ids_to_tokens(lowercase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) __UpperCAmelCase : int = False __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Tuple = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(lowercase__) __UpperCAmelCase : str = tokenizer_p.convert_ids_to_tokens(lowercase__) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase : Any = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(lowercase__) ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __UpperCAmelCase : Any = tokenizer.encode('''你好''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''你是谁''' , add_special_tokens=lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A( self): __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=lowercase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __UpperCAmelCase : int = '''你好,你是谁''' __UpperCAmelCase : List[str] = tokenizer.tokenize(lowercase__) __UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : str = tokenizer.convert_tokens_to_shape_ids(lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_pronunciation_ids(lowercase__) __UpperCAmelCase : Any = tokenizer.prepare_for_model( lowercase__ , lowercase__ , lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[str] = tokenizer.encode_plus(lowercase__ , add_special_tokens=lowercase__) self.assertEqual(lowercase__ , lowercase__)
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = cn.convert_to_negative(lowercase_ ) # assert negative_img array for at least one True assert negative_img.any() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCAmelCase : Optional[Any] = canny.canny(lowercase_ ) # assert canny array for at least one True assert canny_array.any() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' assert gg.gaussian_filter(lowercase_ , 5 , sigma=0.9 ).all() def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) __UpperCAmelCase : Optional[Any] = conv.img_convolve(lowercase_ , lowercase_ ).astype(lowercase_ ) assert res.any() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' assert med.median_filter(lowercase_ , 3 ).any() def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = sob.sobel_filter(lowercase_ ) assert grad.any() and theta.any() def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = sp.make_sepia(lowercase_ , 20 ) assert sepia.all() def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = bs.Burkes(imread(lowercase_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __UpperCAmelCase : Any = imread(lowercase_ , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[Any] = image[x_coordinate][y_coordinate] __UpperCAmelCase : str = lbp.get_neighbors_pixel( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCAmelCase : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCAmelCase : Union[str, Any] = lbp.local_binary_value(lowercase_ , lowercase_ , lowercase_ ) assert lbp_image.any()
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowerCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowerCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowerCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowerCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Dict = FLAX_MODEL_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModel) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Tuple = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : int = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Dict = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Any = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Dict = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Any = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : List[str] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class lowerCamelCase ( _BaseAutoModelClass ): _lowerCAmelCase : Any = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase = get_logger(__name__) class lowerCamelCase : _lowerCAmelCase : Tuple = '''dummy_data''' _lowerCAmelCase : int = '''datasets''' _lowerCAmelCase : int = False def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = True , lowercase__ = None , ): __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[Any] = dataset_name __UpperCAmelCase : Optional[Any] = cache_dir __UpperCAmelCase : Union[str, Any] = use_local_dummy_data __UpperCAmelCase : str = config # download_callbacks take a single url as input __UpperCAmelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __UpperCAmelCase : List[str] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __UpperCAmelCase : int = str(lowercase__) # to be downloaded __UpperCAmelCase : List[Any] = None __UpperCAmelCase : str = None @property def A( self): if self._dummy_file is None: __UpperCAmelCase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def A( self): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name) @property def A( self): return os.path.join(self.dummy_data_folder , '''dummy_data.zip''') def A( self): __UpperCAmelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __UpperCAmelCase : Any = cached_path( lowercase__ , cache_dir=self.cache_dir , extract_compressed_file=lowercase__ , force_extract=lowercase__) return os.path.join(lowercase__ , self.dummy_file_name) @property def A( self): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def A( self): if self._bucket_url is None: __UpperCAmelCase : Tuple = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''')) return self._bucket_url @property def A( self): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''').split('''/''')[:-1]) def A( self , lowercase__ , *lowercase__): if self.load_existing_dummy_data: # dummy data is downloaded and tested __UpperCAmelCase : Any = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __UpperCAmelCase : Tuple = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase__ , lowercase__): return self.create_dummy_data_dict(lowercase__ , lowercase__) elif isinstance(lowercase__ , (list, tuple)): return self.create_dummy_data_list(lowercase__ , lowercase__) else: return self.create_dummy_data_single(lowercase__ , lowercase__) def A( self , lowercase__ , *lowercase__): return self.download_and_extract(lowercase__) def A( self , lowercase__ , lowercase__): return self.download_and_extract(lowercase__) def A( self , lowercase__ , *lowercase__ , **lowercase__): return path def A( self): return {} def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase__ , lowercase__): for single_url in single_urls: download_callback(lowercase__) else: __UpperCAmelCase : Union[str, Any] = single_urls download_callback(lowercase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = [os.path.join(lowercase__ , urllib.parse.quote_plus(Path(lowercase__).name)) for x in single_urls] else: __UpperCAmelCase : str = single_urls __UpperCAmelCase : Optional[Any] = os.path.join(lowercase__ , urllib.parse.quote_plus(Path(lowercase__).name)) __UpperCAmelCase : Optional[int] = value # make sure that values are unique if all(isinstance(lowercase__ , lowercase__) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique __UpperCAmelCase : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __UpperCAmelCase : List[str] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , lowercase__)) for url in data_url) __UpperCAmelCase : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''') for url in data_url) if data_url and (is_tf_records or is_pubmed_records): __UpperCAmelCase : Union[str, Any] = [data_url[0]] * len(lowercase__) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __UpperCAmelCase : Any = os.path.join(lowercase__ , urllib.parse.quote_plus(single_url.split('''/''')[-1])) dummy_data_list.append(lowercase__) return dummy_data_list def A( self , lowercase__ , lowercase__): for download_callback in self.download_callbacks: download_callback(lowercase__) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __UpperCAmelCase : Any = os.path.join(lowercase__ , urllib.parse.quote_plus(data_url.split('''/''')[-1])) if os.path.exists(lowercase__) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A( self): pass def A( self): pass def A( self , lowercase__): def _iter_archive_members(lowercase__): # this preserves the order of the members inside the ZIP archive __UpperCAmelCase : Dict = Path(self.dummy_file).parent __UpperCAmelCase : Union[str, Any] = path.relative_to(lowercase__) with ZipFile(self.local_path_to_dummy_data) as zip_file: __UpperCAmelCase : int = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(lowercase__) __UpperCAmelCase : Union[str, Any] = Path(lowercase__) __UpperCAmelCase : List[Any] = _iter_archive_members(lowercase__) if self.use_local_dummy_data else path.rglob('''*''') for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''')): yield file_path.relative_to(lowercase__).as_posix(), file_path.open('''rb''') def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = [paths] for path in paths: if os.path.isfile(lowercase__): if os.path.basename(lowercase__).startswith(('''.''', '''__''')): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase__): if os.path.basename(lowercase__).startswith(('''.''', '''__''')): continue dirnames.sort() for filename in sorted(lowercase__): if filename.startswith(('''.''', '''__''')): continue yield os.path.join(lowercase__ , lowercase__)
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), f"{len(SCREAMING_SNAKE_CASE_ )} != {len(SCREAMING_SNAKE_CASE_ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowerCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowerCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' try: __UpperCAmelCase : List[str] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" f" {n_student}" ) return list(range(SCREAMING_SNAKE_CASE_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(SCREAMING_SNAKE_CASE_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = "student" , lowercase_ = None , lowercase_ = None , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' __UpperCAmelCase : Tuple = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ).save_pretrained(SCREAMING_SNAKE_CASE_ ) # purely for convenience __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() else: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), f"teacher must be a model or string got type {type(SCREAMING_SNAKE_CASE_ )}" __UpperCAmelCase : str = teacher.config.to_diff_dict() try: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __UpperCAmelCase : str = teacher_e if d is None: __UpperCAmelCase : str = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): __UpperCAmelCase , __UpperCAmelCase : Dict = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __UpperCAmelCase : Optional[int] = teacher_e if d is None: __UpperCAmelCase : int = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(SCREAMING_SNAKE_CASE_ ) # Copy weights __UpperCAmelCase : List[str] = teacher.config_class(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __UpperCAmelCase : Union[str, Any] = student.load_state_dict(teacher.state_dict() , strict=SCREAMING_SNAKE_CASE_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = list(range(SCREAMING_SNAKE_CASE_ ) ), list(range(SCREAMING_SNAKE_CASE_ ) ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" f" {save_path}" ) student.save_pretrained(SCREAMING_SNAKE_CASE_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __UpperCAmelCase : Union[str, Any] = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if d_layers_to_copy is None: __UpperCAmelCase : Optional[Any] = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) try: if hasattr( SCREAMING_SNAKE_CASE_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , SCREAMING_SNAKE_CASE_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , SCREAMING_SNAKE_CASE_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.decoder.block , student.decoder.block , SCREAMING_SNAKE_CASE_ ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) __UpperCAmelCase : Optional[int] = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase = datasets.utils.logging.get_logger(__name__) lowerCAmelCase = ["""names""", """prefix"""] lowerCAmelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] lowerCAmelCase = ["""encoding_errors""", """on_bad_lines"""] lowerCAmelCase = ["""date_format"""] @dataclass class lowerCamelCase ( datasets.BuilderConfig ): _lowerCAmelCase : str = ''',''' _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = '''infer''' _lowerCAmelCase : str = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : str = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = True _lowerCAmelCase : Dict = False _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = '''.''' _lowerCAmelCase : str = None _lowerCAmelCase : Union[str, Any] = '''"''' _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : str = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = 1_0_0_0_0 _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = '''strict''' _lowerCAmelCase : List[Any] = '''error''' _lowerCAmelCase : Optional[Any] = None def A( self): if self.delimiter is not None: __UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: __UpperCAmelCase : Union[str, Any] = self.column_names @property def A( self): __UpperCAmelCase : Any = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase ( datasets.ArrowBasedBuilder ): _lowerCAmelCase : List[str] = CsvConfig def A( self): return datasets.DatasetInfo(features=self.config.features) def A( self , lowercase__): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") __UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase__ , (str, list, tuple)): __UpperCAmelCase : Optional[Any] = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __UpperCAmelCase : Dict = [files] __UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] __UpperCAmelCase : List[str] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __UpperCAmelCase : Tuple = [files] __UpperCAmelCase : List[str] = [dl_manager.iter_files(lowerCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={'''files''': files})) return splits def A( self , lowercase__): if self.config.features is not None: __UpperCAmelCase : int = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__) for feature in self.config.features.values()): # cheaper cast __UpperCAmelCase : Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCAmelCase : Union[str, Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__) return pa_table def A( self , lowercase__): __UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCAmelCase : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__)): __UpperCAmelCase : Dict = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase__): __UpperCAmelCase : int = pa.Table.from_pandas(lowerCAmelCase__) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(lowerCAmelCase__)}: {e}") raise
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = False if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase = parser.parse_args() lowerCAmelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCAmelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCAmelCase = '' if has_file(args.repo_path, """config.json""") else 'unet' with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: lowerCAmelCase = reader.read() lowerCAmelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): lowerCAmelCase = UNetaDModel(**config) else: lowerCAmelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCAmelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase = config[key] del config[key] lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config['down_block_types']] lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config['up_block_types']] if do_only_weights: lowerCAmelCase = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) lowerCAmelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue lowerCAmelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: lowerCAmelCase = param_value lowerCAmelCase = True if not has_changed: lowerCAmelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : str = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''') __UpperCAmelCase : Tuple = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''') model.to(A_) from datasets import load_dataset __UpperCAmelCase : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''') __UpperCAmelCase : int = dataset['''train'''][0]['''image'''].convert('''RGB''') __UpperCAmelCase : Tuple = image_processor(A_ , return_tensors='''pt''').to(A_) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**A_) __UpperCAmelCase : Tuple = outputs.logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 1_6)) self.assertEqual(logits.shape , A_) __UpperCAmelCase : List[str] = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4))
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
import os def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = len(grid[0] ) __UpperCAmelCase : List[str] = len(_A ) __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_A ): for j in range(n_rows - 3 ): __UpperCAmelCase : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __UpperCAmelCase : Optional[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __UpperCAmelCase : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __UpperCAmelCase : Union[str, Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __UpperCAmelCase : List[Any] = max( _A , _A , _A , _A ) if max_product > largest: __UpperCAmelCase : Union[str, Any] = max_product return largest def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = [] with open(os.path.dirname(_A ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __UpperCAmelCase : Any = [[int(_A ) for i in grid[j]] for j in range(len(_A ) )] return largest_product(_A ) if __name__ == "__main__": print(solution())
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase ( __lowerCamelCase ): _lowerCAmelCase : Dict = '''marian''' _lowerCAmelCase : List[Any] = ['''past_key_values'''] _lowerCAmelCase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase__=5_8_1_0_1 , lowercase__=None , lowercase__=1_0_2_4 , lowercase__=1_2 , lowercase__=4_0_9_6 , lowercase__=1_6 , lowercase__=1_2 , lowercase__=4_0_9_6 , lowercase__=1_6 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_0_2_4 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=5_8_1_0_0 , lowercase__=False , lowercase__=5_8_1_0_0 , lowercase__=0 , lowercase__=0 , lowercase__=True , **lowercase__ , ): __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : str = decoder_vocab_size or vocab_size __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Optional[int] = encoder_ffn_dim __UpperCAmelCase : Optional[Any] = encoder_layers __UpperCAmelCase : Union[str, Any] = encoder_attention_heads __UpperCAmelCase : Optional[int] = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : Optional[int] = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : str = attention_dropout __UpperCAmelCase : Tuple = activation_dropout __UpperCAmelCase : Optional[int] = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : Optional[Any] = encoder_layerdrop __UpperCAmelCase : int = decoder_layerdrop __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : Tuple = encoder_layers __UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class lowerCamelCase ( __lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A( self): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCAmelCase : Optional[int] = {0: 'batch'} __UpperCAmelCase : List[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __UpperCAmelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} __UpperCAmelCase : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='''inputs''') elif self.task == "causal-lm": # TODO: figure this case out. __UpperCAmelCase : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCAmelCase : Any = self.num_layers for i in range(UpperCAmelCase_): __UpperCAmelCase : str = {0: 'batch', 2: 'past_sequence + sequence'} __UpperCAmelCase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} else: __UpperCAmelCase : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A( self): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : int = super().outputs else: __UpperCAmelCase : Optional[Any] = super(UpperCAmelCase_ , self).outputs if self.use_past: __UpperCAmelCase : List[str] = self.num_layers for i in range(UpperCAmelCase_): __UpperCAmelCase : str = {0: 'batch', 2: 'past_sequence + sequence'} __UpperCAmelCase : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Generate decoder inputs __UpperCAmelCase : Tuple = seq_length if not self.use_past else 1 __UpperCAmelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) __UpperCAmelCase : Optional[int] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __UpperCAmelCase : int = dict(**UpperCAmelCase_ , **UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase : List[str] = common_inputs['input_ids'].shape __UpperCAmelCase : Optional[Any] = common_inputs['decoder_input_ids'].shape[1] __UpperCAmelCase : List[str] = self.num_attention_heads __UpperCAmelCase : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : Any = decoder_seq_length + 3 __UpperCAmelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCAmelCase : int = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCAmelCase_ , UpperCAmelCase_)] , dim=1) __UpperCAmelCase : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCAmelCase : Union[str, Any] = self.num_layers __UpperCAmelCase : Optional[Any] = min(UpperCAmelCase_ , UpperCAmelCase_) __UpperCAmelCase : Optional[int] = max(UpperCAmelCase_ , UpperCAmelCase_) - min_num_layers __UpperCAmelCase : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), )) # TODO: test this. __UpperCAmelCase : Union[str, Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_))) return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCAmelCase : str = seqlen + 2 __UpperCAmelCase : Optional[Any] = self.num_layers __UpperCAmelCase : Optional[Any] = self.num_attention_heads __UpperCAmelCase : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : str = common_inputs['attention_mask'].dtype __UpperCAmelCase : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) __UpperCAmelCase : Optional[int] = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(UpperCAmelCase_) ] return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase : Any = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add(UpperCAmelCase_) __UpperCAmelCase : List[str] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase : Tuple = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size __UpperCAmelCase : int = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) else: __UpperCAmelCase : int = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) return common_inputs def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Any = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) else: __UpperCAmelCase : List[str] = super(UpperCAmelCase_ , self)._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) @property def A( self): return 1e-4
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCAmelCase : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Union[str, Any] = datasets.map( __A , batched=__A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : str = 8 else: __UpperCAmelCase : Optional[Any] = None return tokenizer.pad( __A , padding='''longest''' , max_length=__A , pad_to_multiple_of=__A , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCAmelCase : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__A , collate_fn=__A , batch_size=__A ) __UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __A ) == "1": __UpperCAmelCase : Union[str, Any] = 2 # Initialize accelerator __UpperCAmelCase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Dict = config['''lr'''] __UpperCAmelCase : Tuple = int(config['''num_epochs'''] ) __UpperCAmelCase : List[Any] = int(config['''seed'''] ) __UpperCAmelCase : Tuple = int(config['''batch_size'''] ) __UpperCAmelCase : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__A ) def inner_training_loop(lowercase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Any = AdamW(params=model.parameters() , lr=__A ) __UpperCAmelCase : Tuple = get_dataloaders(__A , __A ) # Instantiate scheduler __UpperCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase : List[Any] = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[str] = model(**__A ) __UpperCAmelCase : int = outputs.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**__A ) __UpperCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__A , references=__A , ) __UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , __A ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__A , default=__A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __UpperCAmelCase : Tuple = parser.parse_args() __UpperCAmelCase : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__A , __A ) if __name__ == "__main__": main()
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError('''String lengths must match!''' ) __UpperCAmelCase : int = 0 for chara, chara in zip(__lowerCAmelCase , __lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCamelCase__ )[-10:] if __name__ == "__main__": print(solution())
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return [ord(_lowerCAmelCase ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _lowerCAmelCase ) print('''Decoded:''' , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __SCREAMING_SNAKE_CASE ( lowercase_ = "isbn/0140328726" ) -> dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __UpperCAmelCase : Optional[int] = f"{olid} is not a valid Open Library olid" raise ValueError(__lowerCAmelCase ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> dict: '''simple docstring''' __UpperCAmelCase : Any = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } __UpperCAmelCase : Optional[int] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __UpperCAmelCase : Optional[Any] = [ get_openlibrary_data(author['''key'''] )["""name"""] for author in data["""Authors"""] ] __UpperCAmelCase : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCAmelCase : Union[str, Any] = """, """.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: lowerCAmelCase = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print("""\n""".join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _snake_case ): _lowerCAmelCase : Any = ['input_values', 'padding_mask'] def __init__( self , lowercase__ = 1 , lowercase__ = 2_4_0_0_0 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) __UpperCAmelCase : Optional[int] = chunk_length_s __UpperCAmelCase : List[Any] = overlap @property def A( self): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def A( self): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''') elif padding is None: # by default let's pad the inputs __UpperCAmelCase : int = True __UpperCAmelCase : List[str] = bool( isinstance(lowercase__ , (list, tuple)) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list)))) if is_batched: __UpperCAmelCase : Tuple = [np.asarray(lowercase__ , dtype=np.floataa).T for audio in raw_audio] elif not is_batched and not isinstance(lowercase__ , np.ndarray): __UpperCAmelCase : Tuple = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and raw_audio.dtype is np.dtype(np.floataa): __UpperCAmelCase : int = raw_audio.astype(np.floataa) # always return batch if not is_batched: __UpperCAmelCase : str = [np.asarray(lowercase__).T] # verify inputs are valid for idx, example in enumerate(lowercase__): if example.ndim > 2: raise ValueError(F"Expected input shape (channels, length) but got shape {example.shape}") if self.feature_size == 1 and example.ndim != 1: raise ValueError(F"Expected mono audio but example has {example.shape[-1]} channels") if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F"Expected stereo audio but example has {example.shape[-1]} channels") __UpperCAmelCase : int = None __UpperCAmelCase : Optional[int] = BatchFeature({'''input_values''': raw_audio}) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __UpperCAmelCase : Optional[int] = min(array.shape[0] for array in raw_audio) __UpperCAmelCase : List[Any] = int(np.floor(max_length / self.chunk_stride)) __UpperCAmelCase : List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __UpperCAmelCase : int = max(array.shape[0] for array in raw_audio) __UpperCAmelCase : List[Any] = int(np.ceil(max_length / self.chunk_stride)) __UpperCAmelCase : int = (nb_step - 1) * self.chunk_stride + self.chunk_length __UpperCAmelCase : List[str] = '''max_length''' else: __UpperCAmelCase : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: __UpperCAmelCase : Dict = self.pad( lowercase__ , max_length=lowercase__ , truncation=lowercase__ , padding=lowercase__ , return_attention_mask=lowercase__ , ) if padding: __UpperCAmelCase : Optional[int] = padded_inputs.pop('''attention_mask''') __UpperCAmelCase : str = [] for example in padded_inputs.pop('''input_values'''): if self.feature_size == 1: __UpperCAmelCase : str = example[..., None] input_values.append(example.T) __UpperCAmelCase : Dict = input_values if return_tensors is not None: __UpperCAmelCase : str = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[Any] = 3.0 class lowerCamelCase ( unittest.TestCase ): def A( self): self.assertDictEqual(MockClass().to_kwargs() , {}) self.assertDictEqual(MockClass(a=2).to_kwargs() , {'''a''': 2}) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase).to_kwargs() , {'''a''': 2, '''b''': True}) self.assertDictEqual(MockClass(a=2 , c=2.2_5).to_kwargs() , {'''a''': 2, '''c''': 2.2_5}) @require_cuda def A( self): __UpperCAmelCase : Any = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2) AcceleratorState._reset_state() __UpperCAmelCase : Union[str, Any] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler]) print(accelerator.use_fpaa) __UpperCAmelCase : Dict = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_0_2_4.0) self.assertEqual(scaler._growth_factor , 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5) self.assertEqual(scaler._growth_interval , 2_0_0_0) self.assertEqual(scaler._enabled , _UpperCAmelCase) @require_multi_gpu def A( self): __UpperCAmelCase : Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": lowerCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase = torch.nn.Linear(100, 200) lowerCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase = """""" lowerCAmelCase = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import os import sys lowerCAmelCase = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return AutoConfig.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModel.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Tuple: '''simple docstring''' return AutoModel.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location='''cpu''' ) if "model" in sd.keys(): __UpperCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location='''cpu''' )['model'] # pop unnecessary weights __UpperCAmelCase : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) __UpperCAmelCase : Any = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __UpperCAmelCase : Tuple = sd.pop(_lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __UpperCAmelCase : int = sd[key] # We split QKV in separate Q,K,V __UpperCAmelCase : List[Any] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __UpperCAmelCase : Optional[int] = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __UpperCAmelCase : Any = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __UpperCAmelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __UpperCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) __UpperCAmelCase : int = q __UpperCAmelCase : List[Any] = k __UpperCAmelCase : Optional[int] = v del sd[key] return sd @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = load_checkpoint(_lowerCamelCase ) if config is not None: __UpperCAmelCase : str = OPTConfig.from_pretrained(_lowerCamelCase ) else: __UpperCAmelCase : Tuple = OPTConfig() __UpperCAmelCase : Dict = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowerCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class lowerCamelCase ( _A ): _lowerCAmelCase : Tuple = '''git_vision_model''' def __init__( self , lowercase__=7_6_8 , lowercase__=3_0_7_2 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3 , lowercase__=2_2_4 , lowercase__=1_6 , lowercase__="quick_gelu" , lowercase__=1e-5 , lowercase__=0.0 , lowercase__=0.0_2 , **lowercase__ , ): super().__init__(**__lowerCamelCase) __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : List[Any] = hidden_act @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(__lowerCamelCase) __UpperCAmelCase : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": __UpperCAmelCase : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__lowerCamelCase , **__lowerCamelCase) class lowerCamelCase ( _A ): _lowerCAmelCase : Tuple = '''git''' def __init__( self , lowercase__=None , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=6 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0_2_4 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=False , lowercase__=1_0_1 , lowercase__=1_0_2 , lowercase__=None , **lowercase__ , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , pad_token_id=__lowerCamelCase , **__lowerCamelCase) if vision_config is None: __UpperCAmelCase : Tuple = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') __UpperCAmelCase : List[Any] = GitVisionConfig(**__lowerCamelCase) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : List[Any] = position_embedding_type __UpperCAmelCase : str = use_cache __UpperCAmelCase : Any = tie_word_embeddings __UpperCAmelCase : Union[str, Any] = num_image_with_embedding __UpperCAmelCase : List[str] = bos_token_id __UpperCAmelCase : Dict = eos_token_id def A( self): __UpperCAmelCase : Any = copy.deepcopy(self.__dict__) __UpperCAmelCase : Dict = self.vision_config.to_dict() __UpperCAmelCase : Dict = self.__class__.model_type return output
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> list[float]: '''simple docstring''' __UpperCAmelCase : int = coefficient_matrix.shape __UpperCAmelCase : str = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(a_ ) if colsa != 1: __UpperCAmelCase : Optional[int] = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(a_ ) if rowsa != rowsa: __UpperCAmelCase : List[Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(a_ ) if len(a_ ) != rowsa: __UpperCAmelCase : List[str] = ( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(a_ )} and {rowsa}" ) raise ValueError(a_ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase : List[Any] = table.shape strictly_diagonally_dominant(a_ ) # Iterates the whole matrix for given number of times for _ in range(a_ ): __UpperCAmelCase : List[Any] = [] for row in range(a_ ): __UpperCAmelCase : Optional[int] = 0 for col in range(a_ ): if col == row: __UpperCAmelCase : List[str] = table[row][col] elif col == cols - 1: __UpperCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : Optional[Any] = (temp + val) / denom new_val.append(a_ ) __UpperCAmelCase : List[Any] = new_val return [float(a_ ) for i in new_val] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : Tuple = table.shape __UpperCAmelCase : Any = True for i in range(0 , a_ ): __UpperCAmelCase : Dict = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , **lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(_A , **_A ) __UpperCAmelCase : str = AutoModelForSeqaSeqLM.from_config(_A ) model.save_pretrained(_A ) AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
from __future__ import annotations lowerCAmelCase = """#""" class lowerCamelCase : def __init__( self): __UpperCAmelCase : List[str] = {} def A( self , lowercase__): __UpperCAmelCase : Tuple = self._trie for char in text: if char not in trie: __UpperCAmelCase : str = {} __UpperCAmelCase : Union[str, Any] = trie[char] __UpperCAmelCase : str = True def A( self , lowercase__): __UpperCAmelCase : int = self._trie for char in prefix: if char in trie: __UpperCAmelCase : Any = trie[char] else: return [] return self._elements(snake_case_) def A( self , lowercase__): __UpperCAmelCase : str = [] for c, v in d.items(): __UpperCAmelCase : Tuple = [''' '''] if c == END else [(c + s) for s in self._elements(snake_case_)] result.extend(snake_case_) return tuple(snake_case_) lowerCAmelCase = Trie() lowerCAmelCase = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = trie.find_word(lowercase_ ) return tuple(string + word for word in suffixes ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_lowercase).to(_lowercase) __UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCAmelCase : Dict = tokenizer('''Hello there''' , return_tensors='''pt''').input_ids __UpperCAmelCase : str = tokenizer('''Hi I am''' , return_tensors='''pt''').input_ids __UpperCAmelCase : int = model(input_ids.to(_lowercase) , labels=labels.to(_lowercase)).loss __UpperCAmelCase : Union[str, Any] = -(labels.shape[-1] * loss.item()) __UpperCAmelCase : List[Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = 0 ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = right or len(snake_case__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case__ , snake_case__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : List[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), f"{len(__SCREAMING_SNAKE_CASE )} != {len(__SCREAMING_SNAKE_CASE )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowerCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowerCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' try: __UpperCAmelCase : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" f" {n_student}" ) return list(range(__SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(__SCREAMING_SNAKE_CASE ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = "student" , lowercase_ = None , lowercase_ = None , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' __UpperCAmelCase : Dict = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ).save_pretrained(__SCREAMING_SNAKE_CASE ) # purely for convenience __UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).eval() else: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), f"teacher must be a model or string got type {type(__SCREAMING_SNAKE_CASE )}" __UpperCAmelCase : Optional[int] = teacher.config.to_diff_dict() try: __UpperCAmelCase , __UpperCAmelCase : List[str] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __UpperCAmelCase : str = teacher_e if d is None: __UpperCAmelCase : int = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __UpperCAmelCase , __UpperCAmelCase : Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __UpperCAmelCase : Optional[int] = teacher_e if d is None: __UpperCAmelCase : Union[str, Any] = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__SCREAMING_SNAKE_CASE ) # Copy weights __UpperCAmelCase : List[Any] = teacher.config_class(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = AutoModelForSeqaSeqLM.from_config(__SCREAMING_SNAKE_CASE ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=__SCREAMING_SNAKE_CASE ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __UpperCAmelCase , __UpperCAmelCase : Tuple = list(range(__SCREAMING_SNAKE_CASE ) ), list(range(__SCREAMING_SNAKE_CASE ) ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" f" {save_path}" ) student.save_pretrained(__SCREAMING_SNAKE_CASE ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __UpperCAmelCase : Optional[int] = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if d_layers_to_copy is None: __UpperCAmelCase : str = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: if hasattr( __SCREAMING_SNAKE_CASE , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __SCREAMING_SNAKE_CASE ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __SCREAMING_SNAKE_CASE ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.decoder.block , student.decoder.block , __SCREAMING_SNAKE_CASE ) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) __UpperCAmelCase : str = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(__SCREAMING_SNAKE_CASE ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCamelCase : def __init__( self , lowercase__ = "cpu" , lowercase__ = "openai/clip-vit-large-patch14"): __UpperCAmelCase : Union[str, Any] = device __UpperCAmelCase : Optional[Any] = CLIPTokenizerFast.from_pretrained(lowercase__) __UpperCAmelCase : str = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __UpperCAmelCase : Any = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __UpperCAmelCase : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std) __UpperCAmelCase : Tuple = torchvision.transforms.Resize(2_2_4) __UpperCAmelCase : Union[str, Any] = torchvision.transforms.CenterCrop(2_2_4) def A( self , lowercase__): __UpperCAmelCase : Any = self.resize(lowercase__) __UpperCAmelCase : Optional[int] = self.center_crop(lowercase__) __UpperCAmelCase : List[str] = self.normalize(lowercase__) return images def __call__( self , lowercase__=None , lowercase__=None , **lowercase__): __UpperCAmelCase : Optional[int] = self.tokenizer(text=lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = self.preprocess_img(lowercase__) __UpperCAmelCase : List[Any] = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__=1_0 , lowercase__=0.0_1 , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=True , lowercase__="image" , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , ): super().__init__() __UpperCAmelCase : Dict = None __UpperCAmelCase : int = device if device else get_device() if vqgan: __UpperCAmelCase : Optional[Any] = vqgan else: __UpperCAmelCase : Union[str, Any] = load_vqgan(self.device , conf_path=lowercase__ , ckpt_path=lowercase__) self.vqgan.eval() if clip: __UpperCAmelCase : Any = clip else: __UpperCAmelCase : Optional[int] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''') self.clip.to(self.device) __UpperCAmelCase : Any = ProcessorGradientFlow(device=self.device) __UpperCAmelCase : Tuple = iterations __UpperCAmelCase : List[Any] = lr __UpperCAmelCase : Optional[int] = log __UpperCAmelCase : Any = make_grid __UpperCAmelCase : Tuple = return_val __UpperCAmelCase : Union[str, Any] = quantize __UpperCAmelCase : int = self.vqgan.decoder.z_shape def A( self , lowercase__=None , lowercase__=None , lowercase__=5 , lowercase__=True): __UpperCAmelCase : Optional[Any] = [] if output_path is None: __UpperCAmelCase : List[str] = '''./animation.gif''' if input_path is None: __UpperCAmelCase : Union[str, Any] = self.save_path __UpperCAmelCase : Any = sorted(glob(input_path + '''/*''')) if not len(lowercase__): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''') if len(lowercase__) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''') __UpperCAmelCase : str = total_duration / len(lowercase__) __UpperCAmelCase : Any = [frame_duration] * len(lowercase__) if extend_frames: __UpperCAmelCase : Optional[int] = 1.5 __UpperCAmelCase : Dict = 3 for file_name in paths: if file_name.endswith('''.png'''): images.append(imageio.imread(lowercase__)) imageio.mimsave(lowercase__ , lowercase__ , duration=lowercase__) print(F"gif saved to {output_path}") def A( self , lowercase__=None , lowercase__=None): if not (path or img): raise ValueError('''Input either path or tensor''') if img is not None: raise NotImplementedError __UpperCAmelCase : Union[str, Any] = preprocess(Image.open(lowercase__) , target_image_size=2_5_6).to(self.device) __UpperCAmelCase : Dict = preprocess_vqgan(lowercase__) __UpperCAmelCase , *__UpperCAmelCase : List[Any] = self.vqgan.encode(lowercase__) return z def A( self , lowercase__): __UpperCAmelCase : Dict = self.latent.detach().requires_grad_() __UpperCAmelCase : str = base_latent + transform_vector if self.quantize: __UpperCAmelCase , *__UpperCAmelCase : int = self.vqgan.quantize(lowercase__) else: __UpperCAmelCase : List[Any] = trans_latent return self.vqgan.decode(lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__=None): __UpperCAmelCase : List[Any] = self.clip_preprocessor(text=lowercase__ , images=lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : int = self.clip(**lowercase__) __UpperCAmelCase : Optional[int] = clip_outputs.logits_per_image if weights is not None: __UpperCAmelCase : Any = similarity_logits * weights return similarity_logits.sum() def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : str = self._get_clip_similarity(pos_prompts['''prompts'''] , lowercase__ , weights=(1 / pos_prompts['''weights'''])) if neg_prompts: __UpperCAmelCase : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''] , lowercase__ , weights=neg_prompts['''weights''']) else: __UpperCAmelCase : List[str] = torch.tensor([1] , device=self.device) __UpperCAmelCase : Tuple = -torch.log(lowercase__) + torch.log(lowercase__) return loss def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = torch.randn_like(self.latent , requires_grad=lowercase__ , device=self.device) __UpperCAmelCase : List[str] = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() __UpperCAmelCase : Tuple = self._add_vector(lowercase__) __UpperCAmelCase : Optional[int] = loop_post_process(lowercase__) __UpperCAmelCase : Union[str, Any] = self._get_CLIP_loss(lowercase__ , lowercase__ , lowercase__) print('''CLIP loss''' , lowercase__) if self.log: wandb.log({'''CLIP Loss''': clip_loss}) clip_loss.backward(retain_graph=lowercase__) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def A( self , lowercase__ , lowercase__ , lowercase__): wandb.init(reinit=lowercase__ , project='''face-editor''') wandb.config.update({'''Positive Prompts''': positive_prompts}) wandb.config.update({'''Negative Prompts''': negative_prompts}) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations}) if image_path: __UpperCAmelCase : Any = Image.open(lowercase__) __UpperCAmelCase : str = image.resize((2_5_6, 2_5_6)) wandb.log('''Original Image''' , wandb.Image(lowercase__)) def A( self , lowercase__): if not prompts: return [] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Any = [] if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = [prompt.strip() for prompt in prompts.split('''|''')] for prompt in prompts: if isinstance(lowercase__ , (tuple, list)): __UpperCAmelCase : Any = prompt[0] __UpperCAmelCase : List[str] = float(prompt[1]) elif ":" in prompt: __UpperCAmelCase , __UpperCAmelCase : int = prompt.split(''':''') __UpperCAmelCase : List[str] = float(lowercase__) else: __UpperCAmelCase : Union[str, Any] = prompt __UpperCAmelCase : Dict = 1.0 processed_prompts.append(lowercase__) weights.append(lowercase__) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase__ , device=self.device), } def A( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=None , ): if image_path: __UpperCAmelCase : Union[str, Any] = self._get_latent(lowercase__) else: __UpperCAmelCase : Any = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(lowercase__ , lowercase__ , lowercase__) assert pos_prompts, "You must provide at least one positive prompt." __UpperCAmelCase : List[Any] = self.process_prompts(lowercase__) __UpperCAmelCase : Any = self.process_prompts(lowercase__) if save_final and save_path is None: __UpperCAmelCase : Optional[int] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''])) if not os.path.exists(lowercase__): os.makedirs(lowercase__) else: __UpperCAmelCase : Optional[int] = save_path + '''_''' + get_timestamp() os.makedirs(lowercase__) __UpperCAmelCase : Tuple = save_path __UpperCAmelCase : str = self.vqgan.decode(self.latent)[0] if show_intermediate: print('''Original Image''') show_pil(custom_to_pil(lowercase__)) __UpperCAmelCase : List[str] = loop_post_process(lowercase__) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ , lowercase__ , lowercase__)): if show_intermediate: show_pil(lowercase__) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png")) if self.log: wandb.log({'''Image''': wandb.Image(lowercase__)}) if show_final: show_pil(lowercase__) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png"))
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__( features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) __UpperCAmelCase : Tuple = Generator( cache_dir=__A , features=__A , generator=__A , gen_kwargs=__A , **__A , ) def A( self): # Build iterable dataset if self.streaming: __UpperCAmelCase : Optional[int] = self.builder.as_streaming_dataset(split='''train''') # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) __UpperCAmelCase : Optional[Any] = self.builder.as_dataset( split='''train''' , verification_mode=__A , in_memory=self.keep_in_memory) return dataset
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __SCREAMING_SNAKE_CASE ( lowercase_="" ) -> int: '''simple docstring''' __UpperCAmelCase : int = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa) - 0.5 __UpperCAmelCase : Union[str, Any] = AgentAudio(lowercase__) __UpperCAmelCase : Any = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase__ , agent_type.to_raw() , atol=1e-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase__)) # Ensure that the file contains the same value as the original tensor __UpperCAmelCase : Any = sf.read(lowercase__) self.assertTrue(torch.allclose(lowercase__ , torch.tensor(lowercase__) , atol=1e-4)) def A( self): __UpperCAmelCase : str = torch.rand(1_2 , dtype=torch.floataa) - 0.5 __UpperCAmelCase : int = get_new_path(suffix='''.wav''') sf.write(lowercase__ , lowercase__ , 1_6_0_0_0) __UpperCAmelCase : Tuple = AgentAudio(lowercase__) self.assertTrue(torch.allclose(lowercase__ , agent_type.to_raw() , atol=1e-4)) self.assertEqual(agent_type.to_string() , lowercase__) @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Union[str, Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3)) __UpperCAmelCase : List[str] = AgentImage(lowercase__) __UpperCAmelCase : int = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase__ , agent_type._tensor , atol=1e-4)) self.assertIsInstance(agent_type.to_raw() , Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase__)) def A( self): __UpperCAmelCase : Optional[Any] = Path(get_tests_dir('''fixtures/tests_samples/COCO''')) / "000000039769.png" __UpperCAmelCase : str = Image.open(lowercase__) __UpperCAmelCase : List[str] = AgentImage(lowercase__) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase__)) def A( self): __UpperCAmelCase : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''')) / "000000039769.png" __UpperCAmelCase : Optional[int] = Image.open(lowercase__) __UpperCAmelCase : Any = AgentImage(lowercase__) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase__)) class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = "Hey!" __UpperCAmelCase : List[str] = AgentText(lowercase__) self.assertEqual(lowercase__ , agent_type.to_string()) self.assertEqual(lowercase__ , agent_type.to_raw()) self.assertEqual(lowercase__ , lowercase__)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[int] = 2 while i * i <= n: __UpperCAmelCase : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 500 ) if __name__ == "__main__": print(solution())
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( __a ): def __init__( self , lowercase__): super().__init__() __UpperCAmelCase : Tuple = nn.ModuleList(a_) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = True , ): for i, (image, scale, controlnet) in enumerate(zip(a_ , a_ , self.nets)): __UpperCAmelCase : List[str] = controlnet( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) # merge samples if i == 0: __UpperCAmelCase : List[Any] = down_samples, mid_sample else: __UpperCAmelCase : Tuple = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a_ , a_) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A( self , lowercase__ , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( a_ , is_main_process=a_ , save_function=a_ , safe_serialization=a_ , variant=a_ , ) idx += 1 __UpperCAmelCase : Tuple = model_path_to_save + F"_{idx}" @classmethod def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __UpperCAmelCase : int = pretrained_model_path while os.path.isdir(a_): __UpperCAmelCase : List[str] = ControlNetModel.from_pretrained(a_ , **a_) controlnets.append(a_) idx += 1 __UpperCAmelCase : str = pretrained_model_path + F"_{idx}" logger.info(F"{len(a_)} controlnets loaded from {pretrained_model_path}.") if len(a_) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(a_)}. Expected at least {pretrained_model_path + '_0'}.") return cls(a_)
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
from __future__ import annotations from typing import Any class lowerCamelCase : def __init__( self , lowercase__ = 6): __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.create_linked_list(__lowerCAmelCase) def A( self , lowercase__): __UpperCAmelCase : Tuple = Node() __UpperCAmelCase : Optional[int] = current_node __UpperCAmelCase : Dict = current_node __UpperCAmelCase : str = current_node for _ in range(1 , __lowerCAmelCase): __UpperCAmelCase : Optional[int] = Node() __UpperCAmelCase : str = current_node __UpperCAmelCase : Any = previous_node __UpperCAmelCase : Any = current_node __UpperCAmelCase : Dict = self.front __UpperCAmelCase : str = previous_node def A( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A( self): self.check_can_perform_operation() return self.front.data if self.front else None def A( self , lowercase__): if self.rear is None: return self.check_is_full() if not self.is_empty(): __UpperCAmelCase : List[str] = self.rear.next if self.rear: __UpperCAmelCase : Tuple = data def A( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __UpperCAmelCase : List[str] = self.front.data __UpperCAmelCase : str = None return data __UpperCAmelCase : Dict = self.front __UpperCAmelCase : Optional[Any] = old_front.next __UpperCAmelCase : Tuple = old_front.data __UpperCAmelCase : Optional[Any] = None return data def A( self): if self.is_empty(): raise Exception('''Empty Queue''') def A( self): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''') class lowerCamelCase : def __init__( self): __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowerCamelCase ( _UpperCAmelCase ): _lowerCAmelCase : Tuple = '''glpn''' def __init__( self , lowercase__=3 , lowercase__=4 , lowercase__=[2, 2, 2, 2] , lowercase__=[8, 4, 2, 1] , lowercase__=[3_2, 6_4, 1_6_0, 2_5_6] , lowercase__=[7, 3, 3, 3] , lowercase__=[4, 2, 2, 2] , lowercase__=[1, 2, 5, 8] , lowercase__=[4, 4, 4, 4] , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=0.1 , lowercase__=1e-6 , lowercase__=6_4 , lowercase__=1_0 , lowercase__=-1 , **lowercase__ , ): super().__init__(**lowercase_) __UpperCAmelCase : int = num_channels __UpperCAmelCase : int = num_encoder_blocks __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : List[Any] = sr_ratios __UpperCAmelCase : List[Any] = hidden_sizes __UpperCAmelCase : Any = patch_sizes __UpperCAmelCase : Union[str, Any] = strides __UpperCAmelCase : List[Any] = mlp_ratios __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Tuple = drop_path_rate __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[Any] = decoder_hidden_size __UpperCAmelCase : Union[str, Any] = max_depth __UpperCAmelCase : Dict = head_in_index
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' import sys lowerCAmelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 1 for digit in s: product *= int(_lowercase ) return product def __SCREAMING_SNAKE_CASE ( lowercase_ = N ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = -sys.maxsize - 1 __UpperCAmelCase : Dict = n[:13] __UpperCAmelCase : int = 13 while cur_index < len(_lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __UpperCAmelCase : Any = substr[1:] + n[cur_index] cur_index += 1 else: __UpperCAmelCase : List[str] = max(_lowercase , str_eval(_lowercase ) ) __UpperCAmelCase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'{solution() = }')
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase : def __init__( self , lowercase__ = None): if components is None: __UpperCAmelCase : str = [] __UpperCAmelCase : List[str] = list(__lowerCAmelCase) def __len__( self): return len(self.__components) def __str__( self): return "(" + ",".join(map(__lowerCAmelCase , self.__components)) + ")" def __add__( self , lowercase__): __UpperCAmelCase : List[Any] = len(self) if size == len(__lowerCAmelCase): __UpperCAmelCase : List[Any] = [self.__components[i] + other.component(__lowerCAmelCase) for i in range(__lowerCAmelCase)] return Vector(__lowerCAmelCase) else: raise Exception('''must have the same size''') def __sub__( self , lowercase__): __UpperCAmelCase : Union[str, Any] = len(self) if size == len(__lowerCAmelCase): __UpperCAmelCase : str = [self.__components[i] - other.component(__lowerCAmelCase) for i in range(__lowerCAmelCase)] return Vector(__lowerCAmelCase) else: # error case raise Exception('''must have the same size''') @overload def __mul__( self , lowercase__): ... @overload def __mul__( self , lowercase__): ... def __mul__( self , lowercase__): if isinstance(__lowerCAmelCase , (float, int)): __UpperCAmelCase : int = [c * other for c in self.__components] return Vector(__lowerCAmelCase) elif isinstance(__lowerCAmelCase , __lowerCAmelCase) and len(self) == len(__lowerCAmelCase): __UpperCAmelCase : Dict = len(self) __UpperCAmelCase : Optional[int] = [self.__components[i] * other.component(__lowerCAmelCase) for i in range(__lowerCAmelCase)] return sum(__lowerCAmelCase) else: # error case raise Exception('''invalid operand!''') def A( self): return Vector(self.__components) def A( self , lowercase__): if isinstance(__lowerCAmelCase , __lowerCAmelCase) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception('''index out of range''') def A( self , lowercase__ , lowercase__): assert -len(self.__components) <= pos < len(self.__components) __UpperCAmelCase : Dict = value def A( self): if len(self.__components) == 0: raise Exception('''Vector is empty''') __UpperCAmelCase : str = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCAmelCase)) def A( self , lowercase__ , lowercase__ = False): __UpperCAmelCase : List[Any] = self * other __UpperCAmelCase : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) return Vector([0] * dimension ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__ , UpperCAmelCase__ )) __UpperCAmelCase : str = [0] * dimension __UpperCAmelCase : Union[str, Any] = 1 return Vector(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__ , (int, float) )) ) return x * scalar + y def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' random.seed(UpperCAmelCase__ ) __UpperCAmelCase : Tuple = [random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] return Vector(UpperCAmelCase__ ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = matrix __UpperCAmelCase : str = w __UpperCAmelCase : Any = h def __str__( self): __UpperCAmelCase : Tuple = '''''' for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , lowercase__): if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase : Optional[int] = [] for i in range(self.__height): __UpperCAmelCase : List[str] = [ self.__matrix[i][j] + other.component(__lowerCAmelCase , __lowerCAmelCase) for j in range(self.__width) ] matrix.append(__lowerCAmelCase) return Matrix(__lowerCAmelCase , self.__width , self.__height) else: raise Exception('''matrix must have the same dimension!''') def __sub__( self , lowercase__): if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase : Optional[Any] = [] for i in range(self.__height): __UpperCAmelCase : Dict = [ self.__matrix[i][j] - other.component(__lowerCAmelCase , __lowerCAmelCase) for j in range(self.__width) ] matrix.append(__lowerCAmelCase) return Matrix(__lowerCAmelCase , self.__width , self.__height) else: raise Exception('''matrices must have the same dimension!''') @overload def __mul__( self , lowercase__): ... @overload def __mul__( self , lowercase__): ... def __mul__( self , lowercase__): if isinstance(__lowerCAmelCase , __lowerCAmelCase): # matrix-vector if len(__lowerCAmelCase) == self.__width: __UpperCAmelCase : Optional[Any] = zero_vector(self.__height) for i in range(self.__height): __UpperCAmelCase : int = [ self.__matrix[i][j] * other.component(__lowerCAmelCase) for j in range(self.__width) ] ans.change_component(__lowerCAmelCase , sum(__lowerCAmelCase)) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''') elif isinstance(__lowerCAmelCase , (int, float)): # matrix-scalar __UpperCAmelCase : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(__lowerCAmelCase , self.__width , self.__height) return None def A( self): return self.__height def A( self): return self.__width def A( self , lowercase__ , lowercase__): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''') def A( self , lowercase__ , lowercase__ , lowercase__): if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCAmelCase : Union[str, Any] = value else: raise Exception('''change_component: indices out of bounds''') def A( self , lowercase__ , lowercase__): if self.__height != self.__width: raise Exception('''Matrix is not square''') __UpperCAmelCase : List[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCAmelCase)): __UpperCAmelCase : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCAmelCase , self.__width - 1 , self.__height - 1).determinant() def A( self , lowercase__ , lowercase__): if self.__height != self.__width: raise Exception('''Matrix is not square''') if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCAmelCase , __lowerCAmelCase) else: raise Exception('''Indices out of bounds''') def A( self): if self.__height != self.__width: raise Exception('''Matrix is not square''') if self.__height < 1: raise Exception('''Matrix has no element''') elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCAmelCase : Any = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCAmelCase) for y in range(self.__width) ] return sum(__lowerCAmelCase) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Any = [[0] * n for _ in range(UpperCAmelCase__ )] return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' random.seed(UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = [ [random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ ) ] return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
from typing import Union import fire import torch from tqdm import tqdm def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = "cpu" , lowercase_ = None ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = torch.load(_lowercase , map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) __UpperCAmelCase : Any = v.half() if save_path is None: # overwrite src_path __UpperCAmelCase : str = src_path torch.save(_lowercase , _lowercase ) if __name__ == "__main__": fire.Fire(convert)
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCAmelCase = True except ImportError: lowerCAmelCase = False try: from torch.hub import _get_torch_home lowerCAmelCase = _get_torch_home() except ImportError: lowerCAmelCase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCAmelCase = os.path.join(torch_cache_home, """transformers""") lowerCAmelCase = """https://cdn.huggingface.co""" lowerCAmelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCAmelCase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCAmelCase = os.path.join(PATH, """config.yaml""") lowerCAmelCase = os.path.join(PATH, """attributes.txt""") lowerCAmelCase = os.path.join(PATH, """objects.txt""") lowerCAmelCase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCAmelCase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCAmelCase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCAmelCase = """pytorch_model.bin""" lowerCAmelCase = """config.yaml""" def __SCREAMING_SNAKE_CASE ( lowercase_=OBJECTS , lowercase_=ATTRIBUTES ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __UpperCAmelCase : Optional[int] = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = OrderedDict() with open(lowercase_ , '''rb''' ) as f: __UpperCAmelCase : Any = pkl.load(lowercase_ )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): __UpperCAmelCase : Optional[int] = ckp.pop(lowercase_ ) if isinstance(lowercase_ , np.ndarray ): __UpperCAmelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ , torch.tensor ), type(lowercase_ ) __UpperCAmelCase : str = v return r class lowerCamelCase : _lowerCAmelCase : Dict = {} def __init__( self , lowercase__ , lowercase__ = "root" , lowercase__=0): __UpperCAmelCase : Dict = name __UpperCAmelCase : Optional[Any] = level __UpperCAmelCase : Dict = {} for k, v in dictionary.items(): if v is None: raise ValueError() __UpperCAmelCase : List[Any] = copy.deepcopy(lowercase__) __UpperCAmelCase : List[str] = copy.deepcopy(lowercase__) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = Config(lowercase__ , name=lowercase__ , level=level + 1) __UpperCAmelCase : Union[str, Any] = v setattr(self , lowercase__ , lowercase__) __UpperCAmelCase : int = d def __repr__( self): return str(list((self._pointer.keys()))) def __setattr__( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = val __UpperCAmelCase : str = val __UpperCAmelCase : Optional[int] = key.split('''.''') __UpperCAmelCase : List[str] = len(lowercase__) - 1 __UpperCAmelCase : Tuple = self._pointer if len(lowercase__) > 1: for i, l in enumerate(lowercase__): if hasattr(self , lowercase__) and isinstance(getattr(self , lowercase__) , lowercase__): setattr(getattr(self , lowercase__) , '''.'''.join(levels[i:]) , lowercase__) if l == last_level: __UpperCAmelCase : Optional[Any] = val else: __UpperCAmelCase : Tuple = pointer[l] def A( self): return self._pointer def A( self , lowercase__ , lowercase__): with open(F"{file_name}" , '''w''') as stream: dump(lowercase__ , lowercase__) def A( self , lowercase__ , lowercase__): with open(F"{file_name}" , '''w''') as stream: json.dump(lowercase__ , lowercase__) @staticmethod def A( lowercase__): with open(lowercase__) as stream: __UpperCAmelCase : Any = load(lowercase__ , Loader=lowercase__) return data def __str__( self): __UpperCAmelCase : Any = """ """ if self._name != "root": __UpperCAmelCase : Dict = F"{t * (self._level-1)}{self._name}:\n" else: __UpperCAmelCase : Dict = """""" __UpperCAmelCase : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowercase__ , lowercase__): r += F"{t * (self._level)}{v}\n" self._level += 1 else: r += F"{t * (self._level)}{k}: {v} ({type(lowercase__).__name__})\n" __UpperCAmelCase : Any = level return r[:-1] @classmethod def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = cls.get_config_dict(lowercase__ , **lowercase__) return cls(lowercase__) @classmethod def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : Optional[Any] = kwargs.pop('''cache_dir''' , lowercase__) __UpperCAmelCase : int = kwargs.pop('''force_download''' , lowercase__) __UpperCAmelCase : Optional[Any] = kwargs.pop('''resume_download''' , lowercase__) __UpperCAmelCase : str = kwargs.pop('''proxies''' , lowercase__) __UpperCAmelCase : int = kwargs.pop('''local_files_only''' , lowercase__) if os.path.isdir(lowercase__): __UpperCAmelCase : int = os.path.join(lowercase__ , lowercase__) elif os.path.isfile(lowercase__) or is_remote_url(lowercase__): __UpperCAmelCase : int = pretrained_model_name_or_path else: __UpperCAmelCase : List[str] = hf_bucket_url(lowercase__ , filename=lowercase__ , use_cdn=lowercase__) try: # Load from URL or cache if already cached __UpperCAmelCase : str = cached_path( lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , proxies=lowercase__ , resume_download=lowercase__ , local_files_only=lowercase__ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __UpperCAmelCase : Tuple = Config.load_yaml(lowercase__) except EnvironmentError: __UpperCAmelCase : Any = """Can't load config for""" raise EnvironmentError(lowercase__) if resolved_config_file == config_file: print('''loading configuration file from path''') else: print('''loading configuration file cache''') return Config.load_yaml(lowercase__), kwargs def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = torch.load('''dump.pt''' , map_location=in_tensor.device ) __UpperCAmelCase : Optional[int] = in_tensor.numpy() __UpperCAmelCase : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowercase_ , lowercase_ , rtol=0.0_1 , atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowercase_ , lowercase_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=True ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __UpperCAmelCase : Optional[Any] = """/""" not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=0 , lowercase_=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ , lowercase_ ): ua += "; " + "; ".join('''{}/{}'''.format(lowercase_ , lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ , lowercase_ ): ua += "; " + user_agent __UpperCAmelCase : Any = {"""user-agent""": ua} if resume_size > 0: __UpperCAmelCase : List[str] = """bytes=%d-""" % (resume_size,) __UpperCAmelCase : int = requests.get(lowercase_ , stream=lowercase_ , proxies=lowercase_ , headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return __UpperCAmelCase : Optional[Any] = response.headers.get('''Content-Length''' ) __UpperCAmelCase : int = resume_size + int(lowercase_ ) if content_length is not None else None __UpperCAmelCase : List[Any] = tqdm( unit='''B''' , unit_scale=lowercase_ , total=lowercase_ , initial=lowercase_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=10 , lowercase_=False , lowercase_=None , lowercase_=False , ) -> int: '''simple docstring''' if cache_dir is None: __UpperCAmelCase : Tuple = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Optional[Any] = str(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) __UpperCAmelCase : Union[str, Any] = None if not local_files_only: try: __UpperCAmelCase : int = requests.head(lowercase_ , allow_redirects=lowercase_ , proxies=lowercase_ , timeout=lowercase_ ) if response.status_code == 200: __UpperCAmelCase : Any = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __UpperCAmelCase : int = url_to_filename(lowercase_ , lowercase_ ) # get cache path to put the file __UpperCAmelCase : Union[str, Any] = os.path.join(lowercase_ , lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: __UpperCAmelCase : Tuple = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __UpperCAmelCase : Tuple = cache_path + """.lock""" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __UpperCAmelCase : Optional[Any] = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowercase_ , '''a+b''' ) as f: yield f __UpperCAmelCase : Tuple = _resumable_file_manager if os.path.exists(lowercase_ ): __UpperCAmelCase : Optional[Any] = os.stat(lowercase_ ).st_size else: __UpperCAmelCase : Dict = 0 else: __UpperCAmelCase : int = partial(tempfile.NamedTemporaryFile , dir=lowercase_ , delete=lowercase_ ) __UpperCAmelCase : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , lowercase_ , temp_file.name , ) http_get( lowercase_ , lowercase_ , proxies=lowercase_ , resume_size=lowercase_ , user_agent=lowercase_ , ) os.replace(temp_file.name , lowercase_ ) __UpperCAmelCase : str = {"""url""": url, """etag""": etag} __UpperCAmelCase : Dict = cache_path + """.json""" with open(lowercase_ , '''w''' ) as meta_file: json.dump(lowercase_ , lowercase_ ) return cache_path def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = url.encode('''utf-8''' ) __UpperCAmelCase : List[Any] = shaaaa(lowercase_ ) __UpperCAmelCase : Union[str, Any] = url_hash.hexdigest() if etag: __UpperCAmelCase : str = etag.encode('''utf-8''' ) __UpperCAmelCase : Dict = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=False , ) -> List[str]: '''simple docstring''' if cache_dir is None: __UpperCAmelCase : List[str] = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Optional[Any] = str(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) __UpperCAmelCase : Optional[int] = get_from_cache( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , user_agent=lowercase_ , local_files_only=lowercase_ , ) elif os.path.exists(lowercase_ ): # File, and it exists. __UpperCAmelCase : Any = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowercase_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __UpperCAmelCase : str = os.path.split(lowercase_ ) __UpperCAmelCase : Optional[int] = output_file.replace('''.''' , '''-''' ) + """-extracted""" __UpperCAmelCase : List[str] = os.path.join(lowercase_ , lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __UpperCAmelCase : Tuple = output_path + """.lock""" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ , ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ , '''r''' ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): __UpperCAmelCase : Tuple = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowercase_ ) ) return output_path_extracted return output_path def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_="," ) -> int: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: __UpperCAmelCase : Dict = eval(f.read() ) else: __UpperCAmelCase : Dict = requests.get(lowercase_ ) try: __UpperCAmelCase : Optional[Any] = requests.json() except Exception: __UpperCAmelCase : str = req.content.decode() assert data is not None, "could not connect" try: __UpperCAmelCase : Optional[Any] = eval(lowercase_ ) except Exception: __UpperCAmelCase : Optional[int] = data.split('''\n''' ) req.close() return data def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = requests.get(lowercase_ ) __UpperCAmelCase : Any = np.array(Image.open(BytesIO(response.content ) ) ) return img def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ , '''rb''' ) as stream: __UpperCAmelCase : Dict = pkl.load(lowercase_ ) __UpperCAmelCase : Tuple = weights.pop('''model''' ) __UpperCAmelCase : Union[str, Any] = {} for k, v in model.items(): __UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ ) if "running_var" in k: __UpperCAmelCase : List[Any] = torch.tensor([0] ) __UpperCAmelCase : Optional[int] = k.replace('''running_var''' , '''num_batches_tracked''' ) __UpperCAmelCase : Any = zero return new def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' print(f"{os.path.abspath(os.path.join(lowercase_ , os.pardir ) )}/demo.ipynb" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_="RGB" ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) if os.path.isfile(lowercase_ ): __UpperCAmelCase : Tuple = cva.imread(lowercase_ ) else: __UpperCAmelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, f"could not connect to: {im}" __UpperCAmelCase : Union[str, Any] = cva.cvtColor(lowercase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __UpperCAmelCase : Dict = img[:, :, ::-1] return img def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1 ) -> Tuple: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(lowercase_ ) , lowercase_ ))
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase : List[Any] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Dict = model.state_dict() def to_tf_var_name(lowercase_ ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase : Tuple = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"bert/{name}" def create_tf_var(lowercase_ , lowercase_ , lowercase_ ): __UpperCAmelCase : int = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase : List[str] = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase : Union[str, Any] = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Optional[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase : Any = torch_tensor.T __UpperCAmelCase : Any = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : str = session.run(SCREAMING_SNAKE_CASE_ ) print(f"Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}" ) __UpperCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def __SCREAMING_SNAKE_CASE ( lowercase_=None ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase : str = parser.parse_args(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( __snake_case ): def __init__( self , *lowercase__ , **lowercase__): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: '''simple docstring''' if any(not isinstance(lowercase_ , lowercase_ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(lowercase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowercase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = len(__lowerCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected __UpperCAmelCase : Union[str, Any] = 0 print(__lowerCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(__lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowerCAmelCase , end=''',''' ) __UpperCAmelCase : Union[str, Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = [1, 3, 0, 5, 8, 5] lowerCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = LxmertConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) __UpperCAmelCase : List[str] = LxmertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase = 250_004 lowerCAmelCase = 250_020 @require_sentencepiece @require_tokenizers class lowerCamelCase ( __lowercase , unittest.TestCase ): _lowerCAmelCase : int = MBartTokenizer _lowerCAmelCase : Optional[int] = MBartTokenizerFast _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = True def A( self): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Optional[int] = MBartTokenizer(__a , keep_accents=__a) tokenizer.save_pretrained(self.tmpdirname) def A( self): __UpperCAmelCase : List[str] = MBartTokenizer(__a , keep_accents=__a) __UpperCAmelCase : List[str] = tokenizer.tokenize('''This is a test''') self.assertListEqual(__a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __UpperCAmelCase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(__a) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def A( self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a) __UpperCAmelCase : str = self.tokenizer_class.from_pretrained(__a , **__a) __UpperCAmelCase : Optional[int] = tempfile.mkdtemp() __UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(__a) __UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(__a) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) __UpperCAmelCase : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f) self.assertSequenceEqual(__a , __a) # Checks everything loads correctly in the same way __UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(__a) __UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=True __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : Union[str, Any] = tokenizer_r.save_pretrained(__a , legacy_format=__a) __UpperCAmelCase : Any = tokenizer_p.save_pretrained(__a) # Checks it save with the same files self.assertSequenceEqual(__a , __a) # Checks everything loads correctly in the same way __UpperCAmelCase : int = tokenizer_r.from_pretrained(__a) __UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a)) shutil.rmtree(__a) # Save tokenizer rust, legacy_format=False __UpperCAmelCase : Dict = tempfile.mkdtemp() __UpperCAmelCase : Any = tokenizer_r.save_pretrained(__a , legacy_format=__a) __UpperCAmelCase : List[str] = tokenizer_p.save_pretrained(__a) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way __UpperCAmelCase : Tuple = tokenizer_r.from_pretrained(__a) __UpperCAmelCase : Dict = tokenizer_p.from_pretrained(__a) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a)) shutil.rmtree(__a) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): _lowerCAmelCase : Dict = '''facebook/mbart-large-en-ro''' _lowerCAmelCase : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCAmelCase : Optional[int] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCAmelCase : Optional[int] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def A( cls): __UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''') __UpperCAmelCase : List[Any] = 1 return cls def A( self): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0) def A( self): __UpperCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a) def A( self): self.assertIn(__a , self.tokenizer.all_special_ids) __UpperCAmelCase : Union[str, Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __UpperCAmelCase : Tuple = self.tokenizer.decode(__a , skip_special_tokens=__a) __UpperCAmelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a) self.assertEqual(__a , __a) self.assertNotIn(self.tokenizer.eos_token , __a) def A( self): __UpperCAmelCase : str = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __a) __UpperCAmelCase : Dict = 1_0 __UpperCAmelCase : Union[str, Any] = self.tokenizer(__a , max_length=__a , truncation=__a).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , __a) self.assertEqual(len(__a) , __a) def A( self): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR''']) , [2_5_0_0_2_6, 2_5_0_0_0_1]) def A( self): __UpperCAmelCase : str = tempfile.mkdtemp() __UpperCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a) __UpperCAmelCase : Optional[int] = MBartTokenizer.from_pretrained(__a) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a) @require_torch def A( self): __UpperCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors='''pt''') __UpperCAmelCase : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A( self): __UpperCAmelCase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens) , return_tensors='''pt''' , ) __UpperCAmelCase : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id) self.assertIsInstance(__a , __a) self.assertEqual((2, 1_4) , batch.input_ids.shape) self.assertEqual((2, 1_4) , batch.attention_mask.shape) __UpperCAmelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE]) def A( self): __UpperCAmelCase : Any = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors='''pt''') __UpperCAmelCase : int = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=1_0 , return_tensors='''pt''') __UpperCAmelCase : Optional[int] = targets["""input_ids"""] __UpperCAmelCase : Optional[int] = shift_tokens_right(__a , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0) @require_torch def A( self): __UpperCAmelCase : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''') self.assertEqual( nested_simplify(__a) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_0 , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=None , ): __UpperCAmelCase : Dict = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Any = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : int = is_training __UpperCAmelCase : int = use_labels __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : int = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : str = (image_size // patch_size) ** 2 __UpperCAmelCase : List[str] = num_patches + 1 def A( self): __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def A( self): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = TFViTModel(config=UpperCAmelCase__) __UpperCAmelCase : Any = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. __UpperCAmelCase : Dict = self.image_size // 2 __UpperCAmelCase : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] __UpperCAmelCase : Optional[Any] = model(UpperCAmelCase__ , interpolate_pos_encoding=UpperCAmelCase__ , training=UpperCAmelCase__) __UpperCAmelCase : Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = self.type_sequence_label_size __UpperCAmelCase : int = TFViTForImageClassification(UpperCAmelCase__) __UpperCAmelCase : str = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. __UpperCAmelCase : Union[str, Any] = self.image_size // 2 __UpperCAmelCase : Dict = pixel_values[:, :, :image_size, :image_size] __UpperCAmelCase : Optional[Any] = model(UpperCAmelCase__ , interpolate_pos_encoding=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Union[str, Any] = TFViTForImageClassification(UpperCAmelCase__) __UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : List[str] = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowerCAmelCase : Tuple = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : Dict = False _lowerCAmelCase : str = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : str = TFViTModelTester(self) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def A( self): pass @unittest.skip(reason='''ViT does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(UpperCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , tf.keras.layers.Layer)) def A( self): __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(UpperCAmelCase__) __UpperCAmelCase : Dict = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def A( self): __UpperCAmelCase : str = TFViTModel.from_pretrained('''google/vit-base-patch16-224''') self.assertIsNotNone(UpperCAmelCase__) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None @slow def A( self): __UpperCAmelCase : Any = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''') __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : Any = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass __UpperCAmelCase : str = model(**UpperCAmelCase__) # verify the logits __UpperCAmelCase : Tuple = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) __UpperCAmelCase : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase : str = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase : List[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowercase_ ) if decoder_head_mask is None: __UpperCAmelCase : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase_ ) if cross_attn_head_mask is None: __UpperCAmelCase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowercase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=9_9 , lowercase__=1_6 , lowercase__=2 , lowercase__=4 , lowercase__=4 , lowercase__="relu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=2_0 , lowercase__=2 , lowercase__=1 , lowercase__=0 , ): __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = encoder_layerdrop __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Optional[Any] = eos_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : Union[str, Any] = bos_token_id def A( self): __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Any = self.eos_token_id # Eos Token __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase : List[Any] = input_ids.clamp(self.pad_token_id + 1) __UpperCAmelCase : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1) __UpperCAmelCase : Tuple = self.get_config() __UpperCAmelCase : Dict = prepare_mam_aaa_inputs_dict(A__ , A__ , A__) return config, inputs_dict def A( self): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def A( self , lowercase__ , lowercase__): __UpperCAmelCase : str = MaMaaaModel(config=A__).get_decoder().to(A__).eval() __UpperCAmelCase : Optional[int] = inputs_dict['''input_ids'''] __UpperCAmelCase : int = inputs_dict['''attention_mask'''] __UpperCAmelCase : Dict = inputs_dict['''head_mask'''] # first forward pass __UpperCAmelCase : Optional[Any] = model(A__ , attention_mask=A__ , head_mask=A__ , use_cache=A__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Dict = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : Union[str, Any] = model(A__ , attention_mask=A__)['''last_hidden_state'''] __UpperCAmelCase : Any = model(A__ , attention_mask=A__ , past_key_values=A__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A__ , A__ , atol=1e-2)) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : int = MaMaaaModel(config=A__).to(A__).eval() __UpperCAmelCase : Union[str, Any] = model(**A__) __UpperCAmelCase : Optional[Any] = outputs.encoder_last_hidden_state __UpperCAmelCase : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = model.get_encoder() encoder.save_pretrained(A__) __UpperCAmelCase : Any = MaMaaaEncoder.from_pretrained(A__).to(A__) __UpperCAmelCase : int = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : int = model.get_decoder() decoder.save_pretrained(A__) __UpperCAmelCase : Optional[Any] = MaMaaaDecoder.from_pretrained(A__).to(A__) __UpperCAmelCase : Union[str, Any] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=A__ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class __A ( __a , __a , __a , unittest.TestCase ): _lowerCAmelCase : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _lowerCAmelCase : Optional[Any] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _lowerCAmelCase : int = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : List[str] = False def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def A( self): __UpperCAmelCase : str = MaMaaaModelTester(self) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=A__) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(A__) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A__) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model_class.from_pretrained(A__ , output_loading_info=A__) self.assertEqual(info['''missing_keys'''] , []) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __UpperCAmelCase : int = model_class(A__) model.to(A__) model.eval() __UpperCAmelCase : int = copy.deepcopy(self._prepare_for_class(A__ , A__)) if not self.is_encoder_decoder: __UpperCAmelCase : Dict = inputs['''input_ids'''] del inputs["input_ids"] else: __UpperCAmelCase : str = inputs['''input_ids'''] __UpperCAmelCase : List[str] = inputs.get('''decoder_input_ids''' , A__) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , A__) __UpperCAmelCase : int = model.get_input_embeddings() if not self.is_encoder_decoder: __UpperCAmelCase : List[str] = wte(A__) else: __UpperCAmelCase : int = wte(A__) __UpperCAmelCase : List[Any] = wte(A__) with torch.no_grad(): model(**A__)[0] def A( self): __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : int = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(A__) __UpperCAmelCase : Dict = MaMaaaForConditionalGeneration(A__).eval().to(A__) if torch_device == "cuda": model.half() model.generate(A__ , attention_mask=A__) model.generate(num_beams=4 , do_sample=A__ , early_stopping=A__ , num_return_sequences=3) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' return torch.tensor(lowercase_ , dtype=torch.long , device=lowercase_ ) lowerCAmelCase = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A ( unittest.TestCase ): @cached_property def A( self): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''') def A( self): __UpperCAmelCase : List[Any] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''').to(A__) __UpperCAmelCase : str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]]) __UpperCAmelCase : Any = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]]) __UpperCAmelCase : List[Any] = prepare_mam_aaa_inputs_dict(model.config , A__ , A__) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**A__)[0] __UpperCAmelCase : List[Any] = torch.Size((1, 1_1, 1_0_2_4)) self.assertEqual(output.shape , A__) # change to expected output here __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=A__) self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=A__)) def A( self): __UpperCAmelCase : str = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(A__) # change to intended input __UpperCAmelCase : List[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]]) __UpperCAmelCase : Dict = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]]) __UpperCAmelCase : Any = prepare_mam_aaa_inputs_dict(model.config , A__ , A__) with torch.no_grad(): __UpperCAmelCase : Dict = model(**A__)[0] __UpperCAmelCase : str = torch.Size((1, 1_1, model.config.vocab_size)) self.assertEqual(output.shape , A__) # change to expected output here __UpperCAmelCase : Any = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=A__) self.assertTrue(torch.allclose(output[:, :3, :3] , A__ , atol=A__)) def A( self): __UpperCAmelCase : Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(A__) __UpperCAmelCase : int = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''') __UpperCAmelCase : Dict = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __UpperCAmelCase : Tuple = tokenizer(A__ , padding=A__ , return_tensors='''pt''') __UpperCAmelCase : int = model.generate( input_ids=dct['''input_ids'''].to(A__) , attention_mask=dct['''attention_mask'''].to(A__) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''') , ) __UpperCAmelCase : Tuple = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] __UpperCAmelCase : Optional[int] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=A__ , skip_special_tokens=A__) assert generated == expected_en
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' return len(set(_SCREAMING_SNAKE_CASE ) ) == len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase = float("""nan""") class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : Union[str, Any] = sys.stdout __UpperCAmelCase : List[Any] = open(lowercase__ , '''a''') def __getattr__( self , lowercase__): return getattr(self.stdout , lowercase__) def A( self , lowercase__): self.stdout.write(lowercase__) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , lowercase__ , 0 , re.M)) def __SCREAMING_SNAKE_CASE ( lowercase_=80 , lowercase_=False ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = [] # deal with critical env vars __UpperCAmelCase : List[str] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __UpperCAmelCase : List[Any] = os.environ.get(lowerCAmelCase_ , lowerCAmelCase_ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) __UpperCAmelCase : Any = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(lowerCAmelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = '''''' while len(lowerCAmelCase_ ) > 0: current_line += f"{cmd.pop(0 )} " if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowerCAmelCase_ ) __UpperCAmelCase : Optional[Any] = '''''' return "\\\n".join(lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __UpperCAmelCase : Optional[Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir __UpperCAmelCase : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) __UpperCAmelCase : int = subprocess.run(lowerCAmelCase_ , capture_output=lowerCAmelCase_ , text=lowerCAmelCase_ ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __UpperCAmelCase : Optional[Any] = variation.replace(''' ''' , '''-''' ) with open(Path(lowerCAmelCase_ ) / f"log.{prefix}.stdout.txt" , '''w''' ) as f: f.write(result.stdout ) with open(Path(lowerCAmelCase_ ) / f"log.{prefix}.stderr.txt" , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Union[str, Any] = json.load(lowerCAmelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Dict = f"{id}: {variation:<{longest_variation_len}}" __UpperCAmelCase : int = f"{preamble}: " __UpperCAmelCase : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowerCAmelCase_ ) , desc=lowerCAmelCase_ , leave=lowerCAmelCase_ ): __UpperCAmelCase : Optional[Any] = process_run_single( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = single_run_metrics[target_metric_key] if not math.isnan(lowerCAmelCase_ ): metrics.append(lowerCAmelCase_ ) results.append(lowerCAmelCase_ ) outcome += "✓" else: outcome += "✘" __UpperCAmelCase : Any = f"\33[2K\r{outcome}" if len(lowerCAmelCase_ ) > 0: __UpperCAmelCase : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __UpperCAmelCase : str = round(mean_metrics[target_metric_key] , 2 ) __UpperCAmelCase : Any = f"{outcome} {mean_target}" if len(lowerCAmelCase_ ) > 1: results_str += f" {tuple(round(lowerCAmelCase_ , 2 ) for x in results )}" print(lowerCAmelCase_ ) __UpperCAmelCase : List[Any] = variation return mean_metrics else: print(lowerCAmelCase_ ) return {variation_key: variation, target_metric_key: nan} def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pd.DataFrame(lowerCAmelCase_ ) __UpperCAmelCase : Tuple = '''variation''' __UpperCAmelCase : Any = '''diff_%''' __UpperCAmelCase : Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __UpperCAmelCase : Optional[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowerCAmelCase_ ): # as a fallback, use the minimal value as the sentinel __UpperCAmelCase : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowerCAmelCase_ ): __UpperCAmelCase : str = df.apply( lambda lowercase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __UpperCAmelCase : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __UpperCAmelCase : List[str] = df.reindex(lowerCAmelCase_ , axis='''columns''' ) # reorder cols # capitalize __UpperCAmelCase : List[str] = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __UpperCAmelCase : str = df.rename(lambda lowercase_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __UpperCAmelCase : Any = df.rename(lambda lowercase_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __UpperCAmelCase : List[str] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )] print('''\n\n'''.join(lowerCAmelCase_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , nargs='''+''' , required=lowerCAmelCase_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=lowerCAmelCase_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=lowerCAmelCase_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=lowerCAmelCase_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=lowerCAmelCase_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __UpperCAmelCase : Any = parser.parse_args() __UpperCAmelCase : Dict = args.output_dir Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) __UpperCAmelCase : Any = get_base_command(lowerCAmelCase_ , lowerCAmelCase_ ) # split each dimension into its --foo variations __UpperCAmelCase : Optional[int] = [list(map(str.strip , re.split(r'''\|''' , lowerCAmelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __UpperCAmelCase : int = list(map(str.strip , map(''' '''.join , itertools.product(*lowerCAmelCase_ ) ) ) ) __UpperCAmelCase : Dict = max(len(lowerCAmelCase_ ) for x in variations ) # split wanted keys __UpperCAmelCase : str = args.report_metric_keys.split() # capture prints into a log file for convenience __UpperCAmelCase : Any = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script\'s output is also piped into {report_fn}" ) __UpperCAmelCase : List[Any] = Tee(lowerCAmelCase_ ) print(f"\n*** Running {len(lowerCAmelCase_ )} benchmarks:" ) print(f"Base command: {' '.join(lowerCAmelCase_ )}" ) __UpperCAmelCase : List[Any] = '''variation''' __UpperCAmelCase : Tuple = [] for id, variation in enumerate(tqdm(lowerCAmelCase_ , desc='''Total completion: ''' , leave=lowerCAmelCase_ ) ): __UpperCAmelCase : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.repeat_times , lowerCAmelCase_ , args.verbose , ) ) process_results(lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.base_variation , lowerCAmelCase_ ) if __name__ == "__main__": main()
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCamelCase ( _UpperCAmelCase ): _lowerCAmelCase : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( prior=lowercase__ , image_encoder=lowercase__ , image_processor=lowercase__ , scheduler=lowercase__ , renderer=lowercase__ , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Tuple = latents.to(lowercase__) __UpperCAmelCase : Any = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[Any] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[str] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) @property def A( self): if self.device != torch.device('''meta''') or not hasattr(self.image_encoder , '''_hf_hook'''): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if isinstance(lowercase__ , lowercase__) and isinstance(image[0] , torch.Tensor): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , axis=0) if image[0].ndim == 4 else torch.stack(lowercase__ , axis=0) if not isinstance(lowercase__ , torch.Tensor): __UpperCAmelCase : List[str] = self.image_processor(lowercase__ , return_tensors='''pt''').pixel_values[0].unsqueeze(0) __UpperCAmelCase : List[Any] = image.to(dtype=self.image_encoder.dtype , device=lowercase__) __UpperCAmelCase : int = self.image_encoder(lowercase__)["""last_hidden_state"""] __UpperCAmelCase : Any = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __UpperCAmelCase : List[str] = image_embeds.repeat_interleave(lowercase__ , dim=0) if do_classifier_free_guidance: __UpperCAmelCase : Any = torch.zeros_like(lowercase__) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ = 1 , lowercase__ = 2_5 , lowercase__ = None , lowercase__ = None , lowercase__ = 4.0 , lowercase__ = 6_4 , lowercase__ = "pil" , lowercase__ = True , ): if isinstance(lowercase__ , PIL.Image.Image): __UpperCAmelCase : Dict = 1 elif isinstance(lowercase__ , torch.Tensor): __UpperCAmelCase : str = image.shape[0] elif isinstance(lowercase__ , lowercase__) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): __UpperCAmelCase : Union[str, Any] = len(lowercase__) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase__)}") __UpperCAmelCase : Tuple = self._execution_device __UpperCAmelCase : int = batch_size * num_images_per_prompt __UpperCAmelCase : Optional[int] = guidance_scale > 1.0 __UpperCAmelCase : List[str] = self._encode_image(lowercase__ , lowercase__ , lowercase__ , lowercase__) # prior self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : Any = self.scheduler.timesteps __UpperCAmelCase : int = self.prior.config.num_embeddings __UpperCAmelCase : Optional[int] = self.prior.config.embedding_dim __UpperCAmelCase : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __UpperCAmelCase : Optional[int] = latents.reshape(latents.shape[0] , lowercase__ , lowercase__) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Any = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = self.prior( lowercase__ , timestep=lowercase__ , proj_embedding=lowercase__ , ).predicted_image_embedding # remove the variance __UpperCAmelCase : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __UpperCAmelCase : List[Any] = noise_pred.chunk(2) __UpperCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __UpperCAmelCase : int = self.scheduler.step( lowercase__ , timestep=lowercase__ , sample=lowercase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase__) __UpperCAmelCase : List[str] = [] for i, latent in enumerate(lowercase__): print() __UpperCAmelCase : int = self.renderer.decode( latent[None, :] , lowercase__ , size=lowercase__ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowercase__) __UpperCAmelCase : Any = torch.stack(lowercase__) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}") __UpperCAmelCase : Optional[Any] = images.cpu().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = [self.numpy_to_pil(lowercase__) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''') and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase__)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : int = torch.nn.Linear(1_0 , 1_0) __UpperCAmelCase : str = torch.optim.SGD(model.parameters() , 0.1) __UpperCAmelCase : List[str] = Accelerator() __UpperCAmelCase : Union[str, Any] = accelerator.prepare(__snake_case) try: pickle.loads(pickle.dumps(__snake_case)) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}") AcceleratorState._reset_state()
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=2 , lowercase__=2_4 , lowercase__=1_6 , lowercase__=True , lowercase__=True , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=None , lowercase__=2 , lowercase__=2 , ): __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[Any] = max_length __UpperCAmelCase : Tuple = num_mel_bins __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Any = scope __UpperCAmelCase : Dict = frequency_stride __UpperCAmelCase : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCAmelCase : Tuple = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCAmelCase : str = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCAmelCase : Dict = frequency_out_dimension * time_out_dimension __UpperCAmelCase : str = num_patches + 2 def A( self): __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : str = self.get_config() return config, input_values, labels def A( self): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = ASTModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : str = config_and_inputs __UpperCAmelCase : Optional[int] = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowerCAmelCase : Any = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : Any = False _lowerCAmelCase : Any = False def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A( self): __UpperCAmelCase : List[Any] = ASTModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(lowercase__) __UpperCAmelCase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) @slow def A( self): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = ASTModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __UpperCAmelCase , __UpperCAmelCase : int = torchaudio.load(lowercase_ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''') if is_torchaudio_available() else None ) @slow def A( self): __UpperCAmelCase : Dict = self.default_feature_extractor __UpperCAmelCase : Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''').to(lowercase__) __UpperCAmelCase : List[str] = self.default_feature_extractor __UpperCAmelCase , __UpperCAmelCase : Any = prepare_audio() __UpperCAmelCase : List[Any] = audio.squeeze().numpy() __UpperCAmelCase : Any = feature_extractor(lowercase__ , sampling_rate=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : Any = model(**lowercase__) # verify the logits __UpperCAmelCase : Tuple = torch.Size((1, 5_2_7)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : List[str] = f"Input value of [number={number}] must be an integer" raise TypeError(lowercase_ ) if number < 1: __UpperCAmelCase : List[Any] = f"Input value of [number={number}] must be > 0" raise ValueError(lowercase_ ) __UpperCAmelCase : Tuple = 1 for i in range(1 , lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import argparse lowerCAmelCase = """docs/source/_static/js/custom.js""" def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' with open(__UpperCamelCase , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase : Tuple = f.readlines() __UpperCAmelCase : Dict = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __UpperCAmelCase : int = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") lowerCAmelCase = parser.parse_args() update_custom_js(args.version)
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = torch.device("""cpu""") def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = dct.pop(snake_case_ ) __UpperCAmelCase : Optional[int] = val def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : int = [] for k in state_dict.keys(): __UpperCAmelCase : Dict = k if ".pwconv" in k: __UpperCAmelCase : Dict = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: __UpperCAmelCase : int = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: __UpperCAmelCase : Tuple = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: __UpperCAmelCase : str = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: __UpperCAmelCase : Optional[int] = k_new.split('''.''' ) if ls[2].isdigit(): __UpperCAmelCase : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCAmelCase : int = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Dict = 1000 __UpperCAmelCase : Optional[int] = """huggingface/label-files""" __UpperCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Any = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCAmelCase : Dict = [3, 3, 6, 4] __UpperCAmelCase : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __UpperCAmelCase : List[str] = [3, 3, 9, 6] __UpperCAmelCase : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __UpperCAmelCase : Optional[Any] = [4, 3, 10, 5] __UpperCAmelCase : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __UpperCAmelCase : List[str] = [4, 4, 12, 6] __UpperCAmelCase : Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): __UpperCAmelCase : Any = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' , check_hash=snake_case_ ) else: __UpperCAmelCase : Union[str, Any] = torch.load(snake_case_ , map_location='''cpu''' ) __UpperCAmelCase : List[str] = checkpoint __UpperCAmelCase : List[Any] = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model __UpperCAmelCase : Union[str, Any] = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs __UpperCAmelCase : Tuple = prepare_img() __UpperCAmelCase : Dict = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) __UpperCAmelCase : Optional[Any] = processor(images=snake_case_ , return_tensors='''pt''' ) # compare outputs from both models __UpperCAmelCase : Optional[int] = get_expected_output(snake_case_ ) __UpperCAmelCase : Union[str, Any] = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case_ , atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowerCAmelCase = get_tests_dir("""fixtures/vocab.json""") lowerCAmelCase = get_tests_dir("""fixtures""") class lowerCamelCase ( unittest.TestCase ): _lowerCAmelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def A( self): __UpperCAmelCase : List[Any] = 0 def A( self): __UpperCAmelCase : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[Any] = WavaVecaConfig() __UpperCAmelCase : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''') # save in new folder model_config.save_pretrained(UpperCamelCase__) processor.save_pretrained(UpperCamelCase__) __UpperCAmelCase : Any = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__)) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''')) __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = WavaVecaFeatureExtractor() __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') __UpperCAmelCase : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__) # save in new folder processor.save_pretrained(UpperCamelCase__) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__) , '''r''') as f: __UpperCAmelCase : str = json.load(UpperCamelCase__) config_dict.pop('''processor_class''') with open(os.path.join(UpperCamelCase__ , UpperCamelCase__) , '''w''') as f: f.write(json.dumps(UpperCamelCase__)) __UpperCAmelCase : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor() __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''') __UpperCAmelCase : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__) # save in new folder processor.save_pretrained(UpperCamelCase__) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__) , '''r''') as f: __UpperCAmelCase : List[Any] = json.load(UpperCamelCase__) config_dict.pop('''processor_class''') with open(os.path.join(UpperCamelCase__ , UpperCamelCase__) , '''w''') as f: f.write(json.dumps(UpperCamelCase__)) __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''') model_config.save_pretrained(UpperCamelCase__) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''')) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__) , '''w''') as f: f.write('''{}''') __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) def A( self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__): __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__): __UpperCAmelCase : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__) __UpperCAmelCase : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') __UpperCAmelCase : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') __UpperCAmelCase : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version __UpperCAmelCase : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__) __UpperCAmelCase : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def A( self): try: AutoConfig.register('''custom''' , UpperCamelCase__) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : str = os.path.join(UpperCamelCase__ , '''vocab.txt''') with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCAmelCase : str = CustomTokenizer(UpperCamelCase__) __UpperCAmelCase : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__) __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A( self): class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase : Union[str, Any] = False class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase : str = False class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase : Optional[int] = '''AutoFeatureExtractor''' _lowerCAmelCase : Any = '''AutoTokenizer''' _lowerCAmelCase : Dict = False try: AutoConfig.register('''custom''' , UpperCamelCase__) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__) # If remote code is not set, the default is to use local classes. __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''') self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. __UpperCAmelCase : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''') self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A( self): __UpperCAmelCase : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''') def A( self): __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''') self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''') @is_staging_test class lowerCamelCase ( unittest.TestCase ): _lowerCAmelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def A( cls): __UpperCAmelCase : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__) @classmethod def A( cls): try: delete_repo(token=cls._token , repo_id='''test-processor''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''') except HTTPError: pass def A( self): __UpperCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''') , push_to_hub=UpperCamelCase__ , use_auth_token=self._token) __UpperCAmelCase : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def A( self): __UpperCAmelCase : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''') , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) __UpperCAmelCase : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''') for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__)) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab()) def A( self): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCAmelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''') with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens])) __UpperCAmelCase : Union[str, Any] = CustomTokenizer(UpperCamelCase__) __UpperCAmelCase : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token) __UpperCAmelCase : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token) processor.save_pretrained(UpperCamelCase__) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''')) as f: __UpperCAmelCase : Optional[int] = json.load(UpperCamelCase__) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py'''))) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py'''))) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py'''))) repo.push_to_hub() __UpperCAmelCase : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''')
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """spm_char.model"""} lowerCAmelCase = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } lowerCAmelCase = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class lowerCamelCase ( lowerCAmelCase__ ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : str = ["input_ids", "attention_mask"] def __init__( self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCamelCase) @property def A( self): return self.sp_model.get_piece_size() def A( self): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): __UpperCAmelCase : int = self.__dict__.copy() __UpperCAmelCase : Dict = None return state def __setstate__( self , lowercase__): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A( self , lowercase__): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase) def A( self , lowercase__): return self.sp_model.piece_to_id(_lowerCamelCase) def A( self , lowercase__): __UpperCAmelCase : Tuple = self.sp_model.IdToPiece(_lowerCamelCase) return token def A( self , lowercase__): __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase) + token __UpperCAmelCase : Tuple = [] else: current_sub_tokens.append(_lowerCamelCase) out_string += self.sp_model.decode(_lowerCamelCase) return out_string.strip() def A( self , lowercase__ , lowercase__=None): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) __UpperCAmelCase : str = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase)) + suffix_ones return ([0] * len(_lowerCamelCase)) + ([0] * len(_lowerCamelCase)) + suffix_ones def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(_lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCamelCase , '''wb''') as fi: __UpperCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase) return (out_vocab_file,)
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' with open(__snake_case ) as metadata_file: __UpperCAmelCase : str = json.load(__snake_case ) __UpperCAmelCase : Optional[Any] = LukeConfig(use_entity_aware_attention=__snake_case , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __UpperCAmelCase : Any = torch.load(__snake_case , map_location='''cpu''' )["module"] # Load the entity vocab file __UpperCAmelCase : Optional[int] = load_original_entity_vocab(__snake_case ) # add an entry for [MASK2] __UpperCAmelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCAmelCase : List[Any] = AddedToken('''<ent>''' , lstrip=__snake_case , rstrip=__snake_case ) __UpperCAmelCase : List[Any] = AddedToken('''<ent2>''' , lstrip=__snake_case , rstrip=__snake_case ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''r''' ) as f: __UpperCAmelCase : str = json.load(__snake_case ) __UpperCAmelCase : Optional[Any] = "MLukeTokenizer" with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) __UpperCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens __UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __UpperCAmelCase : Tuple = state_dict["embeddings.word_embeddings.weight"] __UpperCAmelCase : Dict = word_emb[ent_init_index].unsqueeze(0 ) __UpperCAmelCase : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __UpperCAmelCase : Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCAmelCase : Dict = state_dict[bias_name] __UpperCAmelCase : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCAmelCase : str = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCAmelCase : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCAmelCase : int = f"encoder.layer.{layer_index}.attention.self." __UpperCAmelCase : Dict = state_dict[prefix + matrix_name] __UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name] __UpperCAmelCase : Tuple = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCAmelCase : List[str] = state_dict["entity_embeddings.entity_embeddings.weight"] __UpperCAmelCase : Dict = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCAmelCase : List[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCAmelCase : Union[str, Any] = state_dict["entity_predictions.bias"] __UpperCAmelCase : Tuple = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCAmelCase : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCAmelCase : List[Any] = LukeForMaskedLM(config=__snake_case ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __UpperCAmelCase : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __UpperCAmelCase : Tuple = state_dict[key] else: __UpperCAmelCase : Optional[int] = state_dict[key] __UpperCAmelCase : str = model.load_state_dict(__snake_case , strict=__snake_case ) if set(__snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(__snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCAmelCase : int = MLukeTokenizer.from_pretrained(__snake_case , task='''entity_classification''' ) __UpperCAmelCase : Any = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __UpperCAmelCase : str = (0, 9) __UpperCAmelCase : Optional[Any] = tokenizer(__snake_case , entity_spans=[span] , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = model(**__snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase : int = torch.Size((1, 33, 768) ) __UpperCAmelCase : List[Any] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase : int = torch.Size((1, 1, 768) ) __UpperCAmelCase : Optional[int] = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCAmelCase : Union[str, Any] = MLukeTokenizer.from_pretrained(__snake_case ) __UpperCAmelCase : Optional[int] = "Tokyo is the capital of <mask>." __UpperCAmelCase : List[Any] = (24, 30) __UpperCAmelCase : Any = tokenizer(__snake_case , entity_spans=[span] , return_tensors='''pt''' ) __UpperCAmelCase : Optional[Any] = model(**__snake_case ) __UpperCAmelCase : int = encoding["input_ids"][0].tolist() __UpperCAmelCase : Optional[int] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __UpperCAmelCase : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__snake_case ) __UpperCAmelCase : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __UpperCAmelCase : List[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__snake_case ) ) model.save_pretrained(__snake_case ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = ["[MASK]", "[PAD]", "[UNK]"] __UpperCAmelCase : List[Any] = [json.loads(__snake_case ) for line in open(__snake_case )] __UpperCAmelCase : Tuple = {} for entry in data: __UpperCAmelCase : str = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCAmelCase : List[str] = entity_id break __UpperCAmelCase : Optional[Any] = f"{language}:{entity_name}" __UpperCAmelCase : Dict = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
from datetime import datetime as dt import os from github import Github lowerCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Any = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase : str = g.get_repo('''huggingface/transformers''' ) __UpperCAmelCase : Optional[int] = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase_ : i.created_at , reverse=a__ ) __UpperCAmelCase : str = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCAmelCase : Union[str, Any] = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __UpperCAmelCase : Optional[int] = f"{src_lang}-{tgt_lang}" __UpperCAmelCase : int = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __UpperCAmelCase : int = os.path.join(UpperCamelCase__ , '''README.md''' ) print(f"Generating {path}" ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project lowerCAmelCase = Path(__file__).resolve().parent.parent.parent lowerCAmelCase = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = model_name.split("""-""") lowerCAmelCase = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) lowerCAmelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, """rb""") as fp: lowerCAmelCase = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowerCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = KandinskyImgaImgPipeline _lowerCAmelCase : List[Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCAmelCase : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCAmelCase : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase : Tuple = False @property def A( self): return 3_2 @property def A( self): return 3_2 @property def A( self): return self.time_input_dim @property def A( self): return self.time_input_dim * 4 @property def A( self): return 1_0_0 @property def A( self): __UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __UpperCAmelCase : int = MultilingualCLIP(__a) __UpperCAmelCase : Any = text_encoder.eval() return text_encoder @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __UpperCAmelCase : List[str] = UNetaDConditionModel(**__a) return model @property def A( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A( self): torch.manual_seed(0) __UpperCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs) return model def A( self): __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : Union[str, Any] = self.dummy_tokenizer __UpperCAmelCase : List[str] = self.dummy_unet __UpperCAmelCase : List[str] = self.dummy_movq __UpperCAmelCase : str = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __UpperCAmelCase : List[str] = DDIMScheduler(**__a) __UpperCAmelCase : Any = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A( self , lowercase__ , lowercase__=0): __UpperCAmelCase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__a)).to(__a) __UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(__a) # create init_image __UpperCAmelCase : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__a)).to(__a) __UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] __UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(__a)).convert('''RGB''').resize((2_5_6, 2_5_6)) if str(__a).startswith('''mps'''): __UpperCAmelCase : Optional[int] = torch.manual_seed(__a) else: __UpperCAmelCase : Any = torch.Generator(device=__a).manual_seed(__a) __UpperCAmelCase : Union[str, Any] = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def A( self): __UpperCAmelCase : Tuple = 'cpu' __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Optional[int] = self.pipeline_class(**__a) __UpperCAmelCase : Tuple = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) __UpperCAmelCase : List[str] = pipe(**self.get_dummy_inputs(__a)) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(__a) , return_dict=__a , )[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCAmelCase : List[str] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''') __UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') __UpperCAmelCase : int = 'A red cartoon frog, 4k' __UpperCAmelCase : Tuple = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(__a) __UpperCAmelCase : Tuple = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa) __UpperCAmelCase : Any = pipeline.to(__a) pipeline.set_progress_bar_config(disable=__a) __UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase : Optional[int] = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __UpperCAmelCase : List[Any] = pipeline( __a , image=__a , image_embeds=__a , negative_image_embeds=__a , generator=__a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) __UpperCAmelCase : Tuple = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__a , __a)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = create_model( '''HTSAT-tiny''' , '''roberta''' , _lowercase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowercase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = {} __UpperCAmelCase : Any = r'''.*sequential.(\d+).*''' __UpperCAmelCase : Tuple = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __UpperCAmelCase : Optional[int] = key.replace(_lowercase , _lowercase ) if re.match(_lowercase , _lowercase ): # replace sequential layers with list __UpperCAmelCase : List[str] = re.match(_lowercase , _lowercase ).group(1 ) __UpperCAmelCase : int = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_lowercase )//3}.linear." ) elif re.match(_lowercase , _lowercase ): __UpperCAmelCase : str = int(re.match(_lowercase , _lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __UpperCAmelCase : Any = 1 if projecton_layer == 0 else 2 __UpperCAmelCase : List[Any] = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value __UpperCAmelCase : List[str] = value __UpperCAmelCase : Any = mixed_qkv.size(0 ) // 3 __UpperCAmelCase : Tuple = mixed_qkv[:qkv_dim] __UpperCAmelCase : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] __UpperCAmelCase : Dict = mixed_qkv[qkv_dim * 2 :] __UpperCAmelCase : List[str] = query_layer __UpperCAmelCase : Tuple = key_layer __UpperCAmelCase : Optional[Any] = value_layer else: __UpperCAmelCase : List[str] = value return model_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = init_clap(_lowercase , enable_fusion=_lowercase ) clap_model.eval() __UpperCAmelCase : int = clap_model.state_dict() __UpperCAmelCase : Union[str, Any] = rename_state_dict(_lowercase ) __UpperCAmelCase : str = ClapConfig() __UpperCAmelCase : Optional[Any] = enable_fusion __UpperCAmelCase : List[str] = ClapModel(_lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowercase , strict=_lowercase ) model.save_pretrained(_lowercase ) transformers_config.save_pretrained(_lowercase ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( __snake_case ): def __init__( self , *lowercase__ , **lowercase__): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , _lowercase , ) super().__init__(*_lowercase , **_lowercase)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = 3_2 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ): __UpperCAmelCase : int = do_resize __UpperCAmelCase : Tuple = do_rescale __UpperCAmelCase : Tuple = size_divisor __UpperCAmelCase : List[Any] = resample super().__init__(**A__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__): __UpperCAmelCase : str = get_image_size(A__) # Rounds the height and width down to the closest multiple of size_divisor __UpperCAmelCase : List[str] = height // size_divisor * size_divisor __UpperCAmelCase : List[Any] = width // size_divisor * size_divisor __UpperCAmelCase : List[Any] = resize(A__ , (new_h, new_w) , resample=A__ , data_format=A__ , **A__) return image def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__): return rescale(image=A__ , scale=A__ , data_format=A__ , **A__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : int = size_divisor if size_divisor is not None else self.size_divisor __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') __UpperCAmelCase : str = make_list_of_images(A__) if not valid_images(A__): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(A__) for img in images] if do_resize: __UpperCAmelCase : Optional[Any] = [self.resize(A__ , size_divisor=A__ , resample=A__) for image in images] if do_rescale: __UpperCAmelCase : List[Any] = [self.rescale(A__ , scale=1 / 2_5_5) for image in images] __UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(A__ , A__) for image in images] __UpperCAmelCase : int = {"""pixel_values""": images} return BatchFeature(data=A__ , tensor_type=A__)
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): _lowerCAmelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCAmelCase : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCAmelCase : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = ZeroShotClassificationPipeline( model=_a , tokenizer=_a , candidate_labels=['''polics''', '''health''']) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A( self , lowercase__ , lowercase__): __UpperCAmelCase : int = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''') self.assertEqual(_a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a)], '''scores''': [ANY(_a)]}) # No kwarg __UpperCAmelCase : List[str] = classifier('''Who are you voting for in 2020?''' , ['''politics''']) self.assertEqual(_a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a)], '''scores''': [ANY(_a)]}) __UpperCAmelCase : Optional[int] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''']) self.assertEqual(_a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a)], '''scores''': [ANY(_a)]}) __UpperCAmelCase : Tuple = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''') self.assertEqual( _a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a), ANY(_a)], '''scores''': [ANY(_a), ANY(_a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) __UpperCAmelCase : Union[str, Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''']) self.assertEqual( _a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a), ANY(_a)], '''scores''': [ANY(_a), ANY(_a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''])) , 1.0) __UpperCAmelCase : Tuple = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''') self.assertEqual(_a , {'''sequence''': ANY(_a), '''labels''': [ANY(_a)], '''scores''': [ANY(_a)]}) # https://github.com/huggingface/transformers/issues/13846 __UpperCAmelCase : Optional[Any] = classifier(['''I am happy'''] , ['''positive''', '''negative''']) self.assertEqual( _a , [ {'''sequence''': ANY(_a), '''labels''': [ANY(_a), ANY(_a)], '''scores''': [ANY(_a), ANY(_a)]} for i in range(1) ] , ) __UpperCAmelCase : Dict = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative''']) self.assertEqual( _a , [ {'''sequence''': ANY(_a), '''labels''': [ANY(_a), ANY(_a)], '''scores''': [ANY(_a), ANY(_a)]} for i in range(2) ] , ) with self.assertRaises(_a): classifier('''''' , candidate_labels='''politics''') with self.assertRaises(_a): classifier(_a , candidate_labels='''politics''') with self.assertRaises(_a): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''') with self.assertRaises(_a): classifier('''Who are you voting for in 2020?''' , candidate_labels=_a) with self.assertRaises(_a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_a): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_a , ) self.run_entailment_id(_a) def A( self , lowercase__): __UpperCAmelCase : List[str] = zero_shot_classifier.model.config __UpperCAmelCase : Any = config.labelaid __UpperCAmelCase : Optional[Any] = zero_shot_classifier.entailment_id __UpperCAmelCase : List[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) __UpperCAmelCase : List[str] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) __UpperCAmelCase : Union[str, Any] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) __UpperCAmelCase : List[str] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) __UpperCAmelCase : str = original_labelaid self.assertEqual(_a , zero_shot_classifier.entailment_id) @require_torch def A( self): __UpperCAmelCase : List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_0_0 , candidate_labels=['''politics''', '''public health''', '''science''']) @require_torch def A( self): __UpperCAmelCase : Dict = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) __UpperCAmelCase : Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def A( self): __UpperCAmelCase : Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) __UpperCAmelCase : List[str] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def A( self): __UpperCAmelCase : Dict = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''') __UpperCAmelCase : List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) __UpperCAmelCase : Union[str, Any] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_a , ) self.assertEqual( nested_simplify(_a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def A( self): __UpperCAmelCase : str = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''') __UpperCAmelCase : Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science''']) self.assertEqual( nested_simplify(_a) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) __UpperCAmelCase : List[Any] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_a , ) self.assertEqual( nested_simplify(_a) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import os from datetime import datetime as dt from github import Github lowerCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCAmelCase : Tuple = g.get_repo('''huggingface/diffusers''' ) __UpperCAmelCase : Any = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCAmelCase : str = sorted(issue.get_comments() , key=lambda lowercase_ : i.created_at , reverse=_lowerCamelCase ) __UpperCAmelCase : Any = comments[0] if len(_lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : str = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __UpperCAmelCase : Optional[int] = getattr(lowercase_ , lowercase_ ).shape else: __UpperCAmelCase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __UpperCAmelCase : Dict = value elif weight_type == "weight_v": __UpperCAmelCase : Tuple = value elif weight_type == "bias": __UpperCAmelCase : str = value else: __UpperCAmelCase : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = [] __UpperCAmelCase : str = fairseq_model.state_dict() __UpperCAmelCase : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Any = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __UpperCAmelCase : List[str] = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : Any = '''weight_v''' elif "weight" in name: __UpperCAmelCase : Union[str, Any] = '''weight''' elif "bias" in name: __UpperCAmelCase : List[str] = '''bias''' else: __UpperCAmelCase : Optional[int] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : Dict = name.split('''.''' ) __UpperCAmelCase : Tuple = int(items[0] ) __UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __UpperCAmelCase : List[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: __UpperCAmelCase : List[str] = HubertConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : str = HubertConfig() if is_finetuned: if dict_path: __UpperCAmelCase : Dict = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Any = target_dict.pad_index __UpperCAmelCase : List[Any] = target_dict.bos_index __UpperCAmelCase : Tuple = target_dict.eos_index __UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) __UpperCAmelCase : List[Any] = os.path.join(lowercase_ , '''vocab.json''' ) if not os.path.isdir(lowercase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , lowercase_ ) __UpperCAmelCase : List[str] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , ) __UpperCAmelCase : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) __UpperCAmelCase : Optional[Any] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) __UpperCAmelCase : int = HubertForCTC(lowercase_ ) else: __UpperCAmelCase : Optional[Any] = HubertModel(lowercase_ ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase : Any = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCAmelCase ): _lowerCAmelCase : int = '''maskformer''' _lowerCAmelCase : str = {'''hidden_size''': '''mask_feature_size'''} _lowerCAmelCase : Any = ['''resnet''', '''swin'''] _lowerCAmelCase : str = ['''detr'''] def __init__( self , lowercase__ = 2_5_6 , lowercase__ = 2_5_6 , lowercase__ = 0.1 , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0.0_2 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 2_0.0 , lowercase__ = None , **lowercase__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __UpperCAmelCase : List[Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = backbone_config.pop('''model_type''') __UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Optional[int] = config_class.from_dict(lowercase__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported)}") if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __UpperCAmelCase : Tuple = DetrConfig() else: # verify that the decoder is supported __UpperCAmelCase : Optional[Any] = ( decoder_config.pop('''model_type''') if isinstance(lowercase__ , lowercase__) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported)}") if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = CONFIG_MAPPING[decoder_type] __UpperCAmelCase : Tuple = config_class.from_dict(lowercase__) __UpperCAmelCase : Union[str, Any] = backbone_config __UpperCAmelCase : int = decoder_config # main feature dimension for the model __UpperCAmelCase : Union[str, Any] = fpn_feature_size __UpperCAmelCase : Optional[Any] = mask_feature_size # initializer __UpperCAmelCase : Optional[int] = init_std __UpperCAmelCase : int = init_xavier_std # Hungarian matcher && loss __UpperCAmelCase : str = cross_entropy_weight __UpperCAmelCase : List[Any] = dice_weight __UpperCAmelCase : Any = mask_weight __UpperCAmelCase : Dict = use_auxiliary_loss __UpperCAmelCase : Dict = no_object_weight __UpperCAmelCase : Optional[int] = output_auxiliary_logits __UpperCAmelCase : Union[str, Any] = self.decoder_config.encoder_attention_heads __UpperCAmelCase : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**lowercase__) @classmethod def A( cls , lowercase__ , lowercase__ , **lowercase__): return cls( backbone_config=lowercase__ , decoder_config=lowercase__ , **lowercase__ , ) def A( self): __UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__) __UpperCAmelCase : List[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Dict = self.decoder_config.to_dict() __UpperCAmelCase : int = self.__class__.model_type return output
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Dict: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" __UpperCAmelCase : str = nn.Parameter(SCREAMING_SNAKE_CASE_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" __UpperCAmelCase : List[str] = nn.Parameter(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = np.asarray(weights[0] ) __UpperCAmelCase : Dict = np.asarray(weights[1] ) __UpperCAmelCase : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = np.asarray(weights[0] ) __UpperCAmelCase : Any = np.asarray(weights[1] ) __UpperCAmelCase : Tuple = np.asarray(weights[2] ) __UpperCAmelCase : Any = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = weights[0][0][0] __UpperCAmelCase : int = np.asarray(layer_norm_a[0] ) __UpperCAmelCase : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # lsh weights + output __UpperCAmelCase : Optional[Any] = weights[0][1] if len(SCREAMING_SNAKE_CASE_ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) # intermediate weighs __UpperCAmelCase : List[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE_ ) == 4: __UpperCAmelCase : Dict = intermediate_weights[2] # layernorm 2 __UpperCAmelCase : List[str] = np.asarray(intermediate_weights[0][0] ) __UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate dense __UpperCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[1][0] ) __UpperCAmelCase : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate out __UpperCAmelCase : Any = np.asarray(intermediate_weights[4][0] ) __UpperCAmelCase : Tuple = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch_model.reformer # word embeds __UpperCAmelCase : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __UpperCAmelCase : int = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" __UpperCAmelCase : int = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __UpperCAmelCase : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # output layer norm __UpperCAmelCase : Any = np.asarray(weights[7][0] ) __UpperCAmelCase : Union[str, Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # output embeddings __UpperCAmelCase : List[str] = np.asarray(weights[9][0] ) __UpperCAmelCase : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"Building PyTorch model from configuration: {config}" ) __UpperCAmelCase : List[Any] = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: __UpperCAmelCase : Dict = pickle.load(SCREAMING_SNAKE_CASE_ )['weights'] set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import random class lowerCamelCase : @staticmethod def A( lowercase__): __UpperCAmelCase : Dict = [ord(lowercase__) for i in text] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[str] = [] for i in plain: __UpperCAmelCase : Optional[int] = random.randint(1 , 3_0_0) __UpperCAmelCase : List[Any] = (i + k) * k cipher.append(lowercase__) key.append(lowercase__) return cipher, key @staticmethod def A( lowercase__ , lowercase__): __UpperCAmelCase : Dict = [] for i in range(len(lowercase__)): __UpperCAmelCase : int = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowercase__)) return "".join(lowercase__) if __name__ == "__main__": lowerCAmelCase ,lowerCAmelCase = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase ( __a ): _lowerCAmelCase : "DiagonalGaussianDistribution" class lowerCamelCase ( __a , __a ): _lowerCAmelCase : Tuple = True @register_to_config def __init__( self , lowercase__ = 3 , lowercase__ = 3 , lowercase__ = ("DownEncoderBlock2D",) , lowercase__ = ("UpDecoderBlock2D",) , lowercase__ = (6_4,) , lowercase__ = 1 , lowercase__ = "silu" , lowercase__ = 4 , lowercase__ = 3_2 , lowercase__ = 3_2 , lowercase__ = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder __UpperCAmelCase : Optional[int] = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) # pass init params to Decoder __UpperCAmelCase : str = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , norm_num_groups=snake_case__ , act_fn=snake_case__ , ) __UpperCAmelCase : Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) __UpperCAmelCase : List[str] = nn.Convad(snake_case__ , snake_case__ , 1) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Union[str, Any] = False # only relevant if vae tiling is enabled __UpperCAmelCase : Optional[Any] = self.config.sample_size __UpperCAmelCase : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) __UpperCAmelCase : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) __UpperCAmelCase : Union[str, Any] = 0.2_5 def A( self , lowercase__ , lowercase__=False): if isinstance(snake_case__ , (Encoder, Decoder)): __UpperCAmelCase : Tuple = value def A( self , lowercase__ = True): __UpperCAmelCase : Tuple = use_tiling def A( self): self.enable_tiling(snake_case__) def A( self): __UpperCAmelCase : Any = True def A( self): __UpperCAmelCase : List[str] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A( self): __UpperCAmelCase : Dict = {} def fn_recursive_add_processors(lowercase__ , lowercase__ , lowercase__): if hasattr(snake_case__ , '''set_processor'''): __UpperCAmelCase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , snake_case__ , snake_case__) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__) return processors def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = len(self.attn_processors.keys()) if isinstance(snake_case__ , snake_case__) and len(snake_case__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(snake_case__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(lowercase__ , lowercase__ , lowercase__): if hasattr(snake_case__ , '''set_processor'''): if not isinstance(snake_case__ , snake_case__): module.set_processor(snake_case__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , snake_case__ , snake_case__) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__) def A( self): self.set_attn_processor(AttnProcessor()) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case__ , return_dict=snake_case__) if self.use_slicing and x.shape[0] > 1: __UpperCAmelCase : Union[str, Any] = [self.encoder(snake_case__) for x_slice in x.split(1)] __UpperCAmelCase : List[str] = torch.cat(snake_case__) else: __UpperCAmelCase : Dict = self.encoder(snake_case__) __UpperCAmelCase : Dict = self.quant_conv(snake_case__) __UpperCAmelCase : int = DiagonalGaussianDistribution(snake_case__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__) def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case__ , return_dict=snake_case__) __UpperCAmelCase : Any = self.post_quant_conv(snake_case__) __UpperCAmelCase : Any = self.decoder(snake_case__) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_slicing and z.shape[0] > 1: __UpperCAmelCase : Dict = [self._decode(snake_case__).sample for z_slice in z.split(1)] __UpperCAmelCase : str = torch.cat(snake_case__) else: __UpperCAmelCase : Dict = self._decode(snake_case__).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case__) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = min(a.shape[2] , b.shape[2] , snake_case__) for y in range(snake_case__): __UpperCAmelCase : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = min(a.shape[3] , b.shape[3] , snake_case__) for x in range(snake_case__): __UpperCAmelCase : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : Optional[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor) __UpperCAmelCase : List[str] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __UpperCAmelCase : Dict = [] for i in range(0 , x.shape[2] , snake_case__): __UpperCAmelCase : Union[str, Any] = [] for j in range(0 , x.shape[3] , snake_case__): __UpperCAmelCase : List[str] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __UpperCAmelCase : Dict = self.encoder(snake_case__) __UpperCAmelCase : Union[str, Any] = self.quant_conv(snake_case__) row.append(snake_case__) rows.append(snake_case__) __UpperCAmelCase : Any = [] for i, row in enumerate(snake_case__): __UpperCAmelCase : Optional[Any] = [] for j, tile in enumerate(snake_case__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : int = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__) if j > 0: __UpperCAmelCase : Any = self.blend_h(row[j - 1] , snake_case__ , snake_case__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(snake_case__ , dim=3)) __UpperCAmelCase : Any = torch.cat(snake_case__ , dim=2) __UpperCAmelCase : int = DiagonalGaussianDistribution(snake_case__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__) def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : Any = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor) __UpperCAmelCase : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __UpperCAmelCase : int = [] for i in range(0 , z.shape[2] , snake_case__): __UpperCAmelCase : Optional[Any] = [] for j in range(0 , z.shape[3] , snake_case__): __UpperCAmelCase : Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __UpperCAmelCase : List[Any] = self.post_quant_conv(snake_case__) __UpperCAmelCase : Union[str, Any] = self.decoder(snake_case__) row.append(snake_case__) rows.append(snake_case__) __UpperCAmelCase : int = [] for i, row in enumerate(snake_case__): __UpperCAmelCase : Dict = [] for j, tile in enumerate(snake_case__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : Union[str, Any] = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__) if j > 0: __UpperCAmelCase : Tuple = self.blend_h(row[j - 1] , snake_case__ , snake_case__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(snake_case__ , dim=3)) __UpperCAmelCase : List[str] = torch.cat(snake_case__ , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__) def A( self , lowercase__ , lowercase__ = False , lowercase__ = True , lowercase__ = None , ): __UpperCAmelCase : List[Any] = sample __UpperCAmelCase : str = self.encode(snake_case__).latent_dist if sample_posterior: __UpperCAmelCase : Optional[int] = posterior.sample(generator=snake_case__) else: __UpperCAmelCase : Optional[int] = posterior.mode() __UpperCAmelCase : Any = self.decode(snake_case__).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__)
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase = """\ """ lowerCAmelCase = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCAmelCase = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string'''), }) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def A( self , lowercase__ , lowercase__ , lowercase__ = 1_6 , lowercase__ = True , lowercase__=None): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __UpperCAmelCase : Optional[Any] = "cuda" else: __UpperCAmelCase : Tuple = "cuda" if torch.cuda.is_available() else "cpu" __UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained(a_) __UpperCAmelCase : List[str] = model.to(a_) __UpperCAmelCase : Any = AutoTokenizer.from_pretrained(a_) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __UpperCAmelCase : str = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(a_) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __UpperCAmelCase : List[str] = model.config.max_length - 1 else: __UpperCAmelCase : int = model.config.max_length __UpperCAmelCase : Any = tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='''pt''' , return_attention_mask=a_ , ).to(a_) __UpperCAmelCase : Dict = encodings["input_ids"] __UpperCAmelCase : Union[str, Any] = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __UpperCAmelCase : str = [] __UpperCAmelCase : Union[str, Any] = CrossEntropyLoss(reduction='''none''') for start_index in logging.tqdm(range(0 , len(a_) , a_)): __UpperCAmelCase : Optional[Any] = min(start_index + batch_size , len(a_)) __UpperCAmelCase : List[str] = encoded_texts[start_index:end_index] __UpperCAmelCase : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: __UpperCAmelCase : Any = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(a_) __UpperCAmelCase : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) __UpperCAmelCase : Tuple = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(a_), attn_mask] , dim=1) __UpperCAmelCase : Tuple = encoded_batch with torch.no_grad(): __UpperCAmelCase : Dict = model(a_ , attention_mask=a_).logits __UpperCAmelCase : List[str] = out_logits[..., :-1, :].contiguous() __UpperCAmelCase : Any = labels[..., 1:].contiguous() __UpperCAmelCase : int = attn_mask[..., 1:].contiguous() __UpperCAmelCase : Optional[int] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , a_) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_)}
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''convbert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__=7_6_8 , lowercase__=2 , lowercase__=9 , lowercase__=1 , lowercase__=None , **lowercase__ , ): super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Dict = embedding_size __UpperCAmelCase : str = head_ratio __UpperCAmelCase : Union[str, Any] = conv_kernel_size __UpperCAmelCase : int = num_groups __UpperCAmelCase : Dict = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowerCAmelCase = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = None # source code of `config_class` __UpperCAmelCase : str = inspect.getsource(_A ) __UpperCAmelCase : int = _re_checkpoint.findall(_A ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __UpperCAmelCase : int = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __UpperCAmelCase : List[str] = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __UpperCAmelCase : List[str] = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __UpperCAmelCase : Union[str, Any] = get_checkpoint_from_config_class(_A ) __UpperCAmelCase : List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_A ) if len(_A ) > 0: __UpperCAmelCase : Optional[Any] = '''\n'''.join(sorted(_A ) ) raise ValueError(f"The following configurations don\'t contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = list(range(len(A_ ) ) ) __UpperCAmelCase : int = [v / w for v, w in zip(A_ , A_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=A_ ) __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = [0] * len(A_ ) for i in index: if weight[i] <= capacity: __UpperCAmelCase : Dict = 1 max_value += value[i] capacity -= weight[i] else: __UpperCAmelCase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Dict = str(lowercase_ ) while len(lowercase_ ) != 1: __UpperCAmelCase : Any = [int(lowercase_ ) for i in num_string] __UpperCAmelCase : Optional[Any] = 1 for i in range(0 , len(lowercase_ ) ): total *= numbers[i] __UpperCAmelCase : List[Any] = str(lowercase_ ) steps += 1 return steps def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Optional[Any] = str(lowercase_ ) while len(lowercase_ ) != 1: __UpperCAmelCase : str = [int(lowercase_ ) for i in num_string] __UpperCAmelCase : List[str] = 0 for i in range(0 , len(lowercase_ ) ): total += numbers[i] __UpperCAmelCase : int = str(lowercase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
lowerCAmelCase = { """km/h""": 1.0, """m/s""": 3.6, """mph""": 1.60_93_44, """knot""": 1.8_52, } lowerCAmelCase = { """km/h""": 1.0, """m/s""": 0.2_77_77_77_78, """mph""": 0.6_21_37_11_92, """knot""": 0.5_39_95_68_03, } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCAmelCase : Tuple = ( f"Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(__snake_case )}" ) raise ValueError(__snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class lowerCamelCase ( lowercase_ ): _lowerCAmelCase : List[Any] = '''markuplm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__=0 , lowercase__=2 , lowercase__=2_5_6 , lowercase__=1_0_2_4 , lowercase__=2_1_6 , lowercase__=1_0_0_1 , lowercase__=3_2 , lowercase__=5_0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Any = use_cache __UpperCAmelCase : Any = classifier_dropout # additional properties __UpperCAmelCase : str = max_depth __UpperCAmelCase : Dict = max_xpath_tag_unit_embeddings __UpperCAmelCase : Dict = max_xpath_subs_unit_embeddings __UpperCAmelCase : int = tag_pad_id __UpperCAmelCase : int = subs_pad_id __UpperCAmelCase : Any = xpath_unit_hidden_size
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class lowerCamelCase ( __lowerCamelCase ): def __init__( self , *lowercase__ , **lowercase__): super().__init__(*UpperCamelCase_ , **UpperCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING) def A( self , lowercase__=None , lowercase__=None , lowercase__=None): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[Any] = {} if prompt is not None: __UpperCAmelCase : List[Any] = prompt if generate_kwargs is not None: __UpperCAmelCase : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __UpperCAmelCase : Any = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''') __UpperCAmelCase : Union[str, Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowercase__ , **lowercase__): return super().__call__(UpperCamelCase_ , **UpperCamelCase_) def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Dict = load_image(UpperCamelCase_) if prompt is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_): raise ValueError( F"Received an invalid text input, got - {type(UpperCamelCase_)} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''') __UpperCAmelCase : Any = self.model.config.model_type if model_type == "git": __UpperCAmelCase : List[str] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework) __UpperCAmelCase : Optional[Any] = self.tokenizer(text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_).input_ids __UpperCAmelCase : List[Any] = [self.tokenizer.cls_token_id] + input_ids __UpperCAmelCase : Any = torch.tensor(UpperCamelCase_).unsqueeze(0) model_inputs.update({'''input_ids''': input_ids}) elif model_type == "pix2struct": __UpperCAmelCase : int = self.image_processor(images=UpperCamelCase_ , header_text=UpperCamelCase_ , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __UpperCAmelCase : List[str] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework) __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework) model_inputs.update(UpperCamelCase_) else: raise ValueError(F"Model type {model_type} does not support conditional text generation") else: __UpperCAmelCase : Any = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: __UpperCAmelCase : Optional[int] = None return model_inputs def A( self , lowercase__ , lowercase__=None): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , UpperCamelCase_) and all(x is None for x in model_inputs['''input_ids''']) ): __UpperCAmelCase : List[str] = None if generate_kwargs is None: __UpperCAmelCase : Union[str, Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __UpperCAmelCase : Optional[int] = model_inputs.pop(self.model.main_input_name) __UpperCAmelCase : str = self.model.generate(UpperCamelCase_ , **UpperCamelCase_ , **UpperCamelCase_) return model_outputs def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = [] for output_ids in model_outputs: __UpperCAmelCase : Any = { '''generated_text''': self.tokenizer.decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , ) } records.append(UpperCamelCase_) return records
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False , ) -> Tuple: '''simple docstring''' output_path.parent.mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCamelCase__ , lowerCamelCase__ , f=output_path.as_posix() , input_names=lowerCamelCase__ , output_names=lowerCamelCase__ , dynamic_axes=lowerCamelCase__ , do_constant_folding=lowerCamelCase__ , use_external_data_format=lowerCamelCase__ , enable_onnx_checker=lowerCamelCase__ , opset_version=lowerCamelCase__ , ) else: export( lowerCamelCase__ , lowerCamelCase__ , f=output_path.as_posix() , input_names=lowerCamelCase__ , output_names=lowerCamelCase__ , dynamic_axes=lowerCamelCase__ , do_constant_folding=lowerCamelCase__ , opset_version=lowerCamelCase__ , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCAmelCase : List[Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __UpperCAmelCase : Any = "cpu" __UpperCAmelCase : Tuple = Path(lowerCamelCase__ ) # VAE DECODER __UpperCAmelCase : Optional[int] = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __UpperCAmelCase : Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCAmelCase : Union[str, Any] = vae_decoder.decode onnx_export( lowerCamelCase__ , model_args=( torch.randn(1 , lowerCamelCase__ , 25 , 25 ).to(device=lowerCamelCase__ , dtype=lowerCamelCase__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowerCamelCase__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
class lowerCamelCase : def __init__( self): __UpperCAmelCase : Optional[Any] = {} def A( self): print(self.vertex) for i in self.vertex: print(lowercase_ , ''' -> ''' , ''' -> '''.join([str(lowercase_) for j in self.vertex[i]])) def A( self , lowercase__ , lowercase__): if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase_) else: # else make a new vertex __UpperCAmelCase : List[Any] = [to_vertex] def A( self): __UpperCAmelCase : Any = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = True print(lowercase_ , end=''' ''') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_) if __name__ == "__main__": lowerCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings( __lowerCAmelCase , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class lowerCamelCase ( __lowerCAmelCase ): def A( self , lowercase__): if self.framework == "tf": __UpperCAmelCase : List[Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __UpperCAmelCase : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_) else: raise ValueError('''Unsupported framework''') return masked_index def A( self , lowercase__): __UpperCAmelCase : List[str] = self.get_masked_index(lowerCAmelCase_) __UpperCAmelCase : List[Any] = np.prod(masked_index.shape) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def A( self , lowercase__): if isinstance(lowerCAmelCase_ , lowerCAmelCase_): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase_) def A( self , lowercase__ , lowercase__=None , **lowercase__): if return_tensors is None: __UpperCAmelCase : List[Any] = self.framework __UpperCAmelCase : int = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_) self.ensure_exactly_one_mask_token(lowerCAmelCase_) return model_inputs def A( self , lowercase__): __UpperCAmelCase : Optional[int] = self.model(**lowerCAmelCase_) __UpperCAmelCase : List[Any] = model_inputs['''input_ids'''] return model_outputs def A( self , lowercase__ , lowercase__=5 , lowercase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase : int = target_ids.shape[0] __UpperCAmelCase : str = model_outputs['''input_ids'''][0] __UpperCAmelCase : str = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase : str = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __UpperCAmelCase : List[Any] = outputs.numpy() __UpperCAmelCase : Any = outputs[0, masked_index, :] __UpperCAmelCase : Optional[int] = stable_softmax(lowerCAmelCase_ , axis=-1) if target_ids is not None: __UpperCAmelCase : Dict = tf.gather_nd(tf.squeeze(lowerCAmelCase_ , 0) , target_ids.reshape(-1 , 1)) __UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase_ , 0) __UpperCAmelCase : Optional[int] = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_) __UpperCAmelCase , __UpperCAmelCase : List[Any] = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase : Dict = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase : Tuple = outputs[0, masked_index, :] __UpperCAmelCase : str = logits.softmax(dim=-1) if target_ids is not None: __UpperCAmelCase : Optional[Any] = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase : Tuple = probs.topk(lowerCAmelCase_) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __UpperCAmelCase : Dict = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __UpperCAmelCase : List[Any] = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase : int = target_ids[p].tolist() __UpperCAmelCase : str = p # Filter padding out: __UpperCAmelCase : str = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase : Union[str, Any] = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) __UpperCAmelCase : Union[str, Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence} row.append(lowerCAmelCase_) result.append(lowerCAmelCase_) if single_mask: return result[0] return result def A( self , lowercase__ , lowercase__=None): if isinstance(lowerCAmelCase_ , lowerCAmelCase_): __UpperCAmelCase : Optional[int] = [targets] try: __UpperCAmelCase : List[str] = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase : str = {} __UpperCAmelCase : Any = [] for target in targets: __UpperCAmelCase : Any = vocab.get(lowerCAmelCase_ , lowerCAmelCase_) if id_ is None: __UpperCAmelCase : List[Any] = self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , max_length=1 , truncation=lowerCAmelCase_ , )['''input_ids'''] if len(lowerCAmelCase_) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''') continue __UpperCAmelCase : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __UpperCAmelCase : Dict = list(set(lowerCAmelCase_)) if len(lowerCAmelCase_) == 0: raise ValueError('''At least one target must be provided when passed.''') __UpperCAmelCase : List[str] = np.array(lowerCAmelCase_) return target_ids def A( self , lowercase__=None , lowercase__=None): __UpperCAmelCase : str = {} if targets is not None: __UpperCAmelCase : Tuple = self.get_target_ids(lowerCAmelCase_ , lowerCAmelCase_) __UpperCAmelCase : Tuple = target_ids if top_k is not None: __UpperCAmelCase : Optional[int] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''') return {}, {}, postprocess_params def __call__( self , lowercase__ , *lowercase__ , **lowercase__): __UpperCAmelCase : Tuple = super().__call__(lowerCAmelCase_ , **lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(lowerCAmelCase_) == 1: return outputs[0] return outputs
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: '''simple docstring''' if not head: return True # split the list to two parts __UpperCAmelCase : str = head.next, head while fast and fast.next: __UpperCAmelCase : Union[str, Any] = fast.next.next __UpperCAmelCase : Any = slow.next __UpperCAmelCase : Union[str, Any] = slow.next __UpperCAmelCase : Tuple = None # Don't forget here! But forget still works! # reverse the second part __UpperCAmelCase : List[Any] = None while second: __UpperCAmelCase : str = second.next __UpperCAmelCase : Dict = node __UpperCAmelCase : str = second __UpperCAmelCase : List[str] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __UpperCAmelCase : List[Any] = node.next __UpperCAmelCase : Optional[int] = head.next return True def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) __UpperCAmelCase : str = head while fast and fast.next: __UpperCAmelCase : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack __UpperCAmelCase : List[Any] = [slow.val] while slow.next: __UpperCAmelCase : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __UpperCAmelCase : Optional[Any] = cur.next return True def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' if not head or not head.next: return True __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = 0 while head: if head.val in d: d[head.val].append(lowercase_ ) else: __UpperCAmelCase : List[Any] = [pos] __UpperCAmelCase : Optional[Any] = head.next pos += 1 __UpperCAmelCase : Optional[Any] = pos - 1 __UpperCAmelCase : Tuple = 0 for v in d.values(): if len(lowercase_ ) % 2 != 0: middle += 1 else: __UpperCAmelCase : List[str] = 0 for i in range(0 , len(lowercase_ ) ): if v[i] + v[len(lowercase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): _lowerCAmelCase : Any = 4_2 class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__=3 , lowercase__=3 , lowercase__=("DownEncoderBlock2D",) , lowercase__=(6_4,) , lowercase__=2 , lowercase__=3_2 , lowercase__="silu" , lowercase__=True , ): super().__init__() __UpperCAmelCase : int = layers_per_block __UpperCAmelCase : Optional[int] = torch.nn.Convad( snake_case__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __UpperCAmelCase : Dict = None __UpperCAmelCase : Tuple = nn.ModuleList([]) # down __UpperCAmelCase : Tuple = block_out_channels[0] for i, down_block_type in enumerate(snake_case__): __UpperCAmelCase : Tuple = output_channel __UpperCAmelCase : int = block_out_channels[i] __UpperCAmelCase : str = i == len(snake_case__) - 1 __UpperCAmelCase : Optional[int] = get_down_block( snake_case__ , num_layers=self.layers_per_block , in_channels=snake_case__ , out_channels=snake_case__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , ) self.down_blocks.append(snake_case__) # mid __UpperCAmelCase : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # out __UpperCAmelCase : str = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=snake_case__ , eps=1e-6) __UpperCAmelCase : Optional[Any] = nn.SiLU() __UpperCAmelCase : Optional[Any] = 2 * out_channels if double_z else out_channels __UpperCAmelCase : List[Any] = nn.Convad(block_out_channels[-1] , snake_case__ , 3 , padding=1) __UpperCAmelCase : List[str] = False def A( self , lowercase__): __UpperCAmelCase : Optional[int] = x __UpperCAmelCase : Union[str, Any] = self.conv_in(snake_case__) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__): def custom_forward(*lowercase__): return module(*snake_case__) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0'''): for down_block in self.down_blocks: __UpperCAmelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__) , snake_case__ , use_reentrant=snake_case__) # middle __UpperCAmelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , snake_case__ , use_reentrant=snake_case__) else: for down_block in self.down_blocks: __UpperCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__) , snake_case__) # middle __UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , snake_case__) else: # down for down_block in self.down_blocks: __UpperCAmelCase : List[Any] = down_block(snake_case__) # middle __UpperCAmelCase : List[Any] = self.mid_block(snake_case__) # post-process __UpperCAmelCase : Any = self.conv_norm_out(snake_case__) __UpperCAmelCase : Dict = self.conv_act(snake_case__) __UpperCAmelCase : Tuple = self.conv_out(snake_case__) return sample class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__=3 , lowercase__=3 , lowercase__=("UpDecoderBlock2D",) , lowercase__=(6_4,) , lowercase__=2 , lowercase__=3_2 , lowercase__="silu" , lowercase__="group" , ): super().__init__() __UpperCAmelCase : Dict = layers_per_block __UpperCAmelCase : List[Any] = nn.Convad( snake_case__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __UpperCAmelCase : int = None __UpperCAmelCase : Dict = nn.ModuleList([]) __UpperCAmelCase : List[str] = in_channels if norm_type == "spatial" else None # mid __UpperCAmelCase : List[str] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # up __UpperCAmelCase : Optional[Any] = list(reversed(snake_case__)) __UpperCAmelCase : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(snake_case__): __UpperCAmelCase : List[Any] = output_channel __UpperCAmelCase : Any = reversed_block_out_channels[i] __UpperCAmelCase : Dict = i == len(snake_case__) - 1 __UpperCAmelCase : Any = get_up_block( snake_case__ , num_layers=self.layers_per_block + 1 , in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , resnet_time_scale_shift=snake_case__ , ) self.up_blocks.append(snake_case__) __UpperCAmelCase : Any = output_channel # out if norm_type == "spatial": __UpperCAmelCase : List[str] = SpatialNorm(block_out_channels[0] , snake_case__) else: __UpperCAmelCase : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=snake_case__ , eps=1e-6) __UpperCAmelCase : List[Any] = nn.SiLU() __UpperCAmelCase : List[Any] = nn.Convad(block_out_channels[0] , snake_case__ , 3 , padding=1) __UpperCAmelCase : Optional[int] = False def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Tuple = z __UpperCAmelCase : Tuple = self.conv_in(snake_case__) __UpperCAmelCase : Any = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase__): def custom_forward(*lowercase__): return module(*snake_case__) return custom_forward if is_torch_version('''>=''' , '''1.11.0'''): # middle __UpperCAmelCase : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , snake_case__ , snake_case__ , use_reentrant=snake_case__) __UpperCAmelCase : Tuple = sample.to(snake_case__) # up for up_block in self.up_blocks: __UpperCAmelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__) , snake_case__ , snake_case__ , use_reentrant=snake_case__) else: # middle __UpperCAmelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , snake_case__ , snake_case__) __UpperCAmelCase : Any = sample.to(snake_case__) # up for up_block in self.up_blocks: __UpperCAmelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__) , snake_case__ , snake_case__) else: # middle __UpperCAmelCase : str = self.mid_block(snake_case__ , snake_case__) __UpperCAmelCase : Tuple = sample.to(snake_case__) # up for up_block in self.up_blocks: __UpperCAmelCase : int = up_block(snake_case__ , snake_case__) # post-process if latent_embeds is None: __UpperCAmelCase : List[str] = self.conv_norm_out(snake_case__) else: __UpperCAmelCase : Tuple = self.conv_norm_out(snake_case__ , snake_case__) __UpperCAmelCase : Optional[Any] = self.conv_act(snake_case__) __UpperCAmelCase : str = self.conv_out(snake_case__) return sample class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__="random" , lowercase__=False , lowercase__=True): super().__init__() __UpperCAmelCase : List[Any] = n_e __UpperCAmelCase : Dict = vq_embed_dim __UpperCAmelCase : int = beta __UpperCAmelCase : Union[str, Any] = legacy __UpperCAmelCase : str = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) __UpperCAmelCase : Union[str, Any] = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap))) __UpperCAmelCase : Optional[Any] = self.used.shape[0] __UpperCAmelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __UpperCAmelCase : Dict = self.re_embed __UpperCAmelCase : str = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices.") else: __UpperCAmelCase : Tuple = n_e __UpperCAmelCase : Optional[int] = sane_index_shape def A( self , lowercase__): __UpperCAmelCase : str = inds.shape assert len(snake_case__) > 1 __UpperCAmelCase : Union[str, Any] = inds.reshape(ishape[0] , -1) __UpperCAmelCase : str = self.used.to(snake_case__) __UpperCAmelCase : str = (inds[:, :, None] == used[None, None, ...]).long() __UpperCAmelCase : Any = match.argmax(-1) __UpperCAmelCase : int = match.sum(2) < 1 if self.unknown_index == "random": __UpperCAmelCase : int = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: __UpperCAmelCase : Optional[int] = self.unknown_index return new.reshape(snake_case__) def A( self , lowercase__): __UpperCAmelCase : Dict = inds.shape assert len(snake_case__) > 1 __UpperCAmelCase : str = inds.reshape(ishape[0] , -1) __UpperCAmelCase : Dict = self.used.to(snake_case__) if self.re_embed > self.used.shape[0]: # extra token __UpperCAmelCase : Dict = 0 # simply set to zero __UpperCAmelCase : Dict = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , snake_case__) return back.reshape(snake_case__) def A( self , lowercase__): __UpperCAmelCase : List[str] = z.permute(0 , 2 , 3 , 1).contiguous() __UpperCAmelCase : Any = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __UpperCAmelCase : Optional[Any] = torch.argmin(torch.cdist(snake_case__ , self.embedding.weight) , dim=1) __UpperCAmelCase : Optional[Any] = self.embedding(snake_case__).view(z.shape) __UpperCAmelCase : List[Any] = None __UpperCAmelCase : str = None # compute loss for embedding if not self.legacy: __UpperCAmelCase : int = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: __UpperCAmelCase : List[Any] = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients __UpperCAmelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape __UpperCAmelCase : str = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: __UpperCAmelCase : Optional[int] = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis __UpperCAmelCase : Union[str, Any] = self.remap_to_used(snake_case__) __UpperCAmelCase : Optional[Any] = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: __UpperCAmelCase : Optional[int] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def A( self , lowercase__ , lowercase__): # shape specifying (batch, height, width, channel) if self.remap is not None: __UpperCAmelCase : List[str] = indices.reshape(shape[0] , -1) # add batch axis __UpperCAmelCase : Any = self.unmap_to_all(snake_case__) __UpperCAmelCase : Tuple = indices.reshape(-1) # flatten again # get quantized latent vectors __UpperCAmelCase : str = self.embedding(snake_case__) if shape is not None: __UpperCAmelCase : Optional[Any] = z_q.view(snake_case__) # reshape back to match original input shape __UpperCAmelCase : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): def __init__( self , lowercase__ , lowercase__=False): __UpperCAmelCase : str = parameters __UpperCAmelCase : int = torch.chunk(snake_case__ , 2 , dim=1) __UpperCAmelCase : int = torch.clamp(self.logvar , -3_0.0 , 2_0.0) __UpperCAmelCase : str = deterministic __UpperCAmelCase : Optional[Any] = torch.exp(0.5 * self.logvar) __UpperCAmelCase : Any = torch.exp(self.logvar) if self.deterministic: __UpperCAmelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def A( self , lowercase__ = None): __UpperCAmelCase : str = randn_tensor( self.mean.shape , generator=snake_case__ , device=self.parameters.device , dtype=self.parameters.dtype) __UpperCAmelCase : Union[str, Any] = self.mean + self.std * sample return x def A( self , lowercase__=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def A( self , lowercase__ , lowercase__=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) __UpperCAmelCase : Tuple = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=snake_case__) def A( self): return self.mean
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase ( __lowerCamelCase , unittest.TestCase ): _lowerCAmelCase : str = CpmAntTokenizer _lowerCAmelCase : List[str] = False def A( self): super().setUp() __UpperCAmelCase : str = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) @tooslow def A( self): __UpperCAmelCase : Union[str, Any] = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''') __UpperCAmelCase : int = '''今天天气真好!''' __UpperCAmelCase : Union[str, Any] = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) __UpperCAmelCase : Dict = '''今天天气真好!''' __UpperCAmelCase : List[Any] = [tokenizer.bos_token] + tokens __UpperCAmelCase : Dict = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) __UpperCAmelCase : Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ lowerCAmelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ lowerCAmelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence'''), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''') , id='''sequence''') , id='''references'''), }) , ) def A( self , lowercase__ , lowercase__ , lowercase__ = 1 , lowercase__ = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case_ , hypotheses=snake_case_ , min_len=snake_case_ , max_len=snake_case_) }
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCAmelCase : int = model_type_to_module_name(lowercase_ ) __UpperCAmelCase : int = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(lowercase_ , lowercase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowercase_ , '''__name__''' , lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCAmelCase : Any = importlib.import_module('''transformers''' ) if hasattr(lowercase_ , lowercase_ ): return getattr(lowercase_ , lowercase_ ) return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , **lowercase_ , ) -> str: '''simple docstring''' __UpperCAmelCase : str = get_file_from_repo( lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase_ , encoding='''utf-8''' ) as reader: return json.load(lowercase_ ) class __A : def __init__( self): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(UpperCAmelCase__) def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : str = kwargs.pop('''config''' , UpperCAmelCase__) __UpperCAmelCase : List[Any] = kwargs.pop('''trust_remote_code''' , UpperCAmelCase__) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[int] = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase__ , **UpperCAmelCase__) __UpperCAmelCase : Optional[Any] = config_dict.get('''feature_extractor_type''' , UpperCAmelCase__) __UpperCAmelCase : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): __UpperCAmelCase : int = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): __UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) # It could be in `config.feature_extractor_type`` __UpperCAmelCase : int = getattr(UpperCAmelCase__ , '''feature_extractor_type''' , UpperCAmelCase__) if hasattr(UpperCAmelCase__ , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: __UpperCAmelCase : int = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __UpperCAmelCase : int = feature_extractor_class_from_name(UpperCAmelCase__) __UpperCAmelCase : List[str] = feature_extractor_auto_map is not None __UpperCAmelCase : List[Any] = feature_extractor_class is not None or type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING __UpperCAmelCase : Any = resolve_trust_remote_code( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) if has_remote_code and trust_remote_code: __UpperCAmelCase : Any = get_class_from_dynamic_module( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__) __UpperCAmelCase : Union[str, Any] = kwargs.pop('''code_revision''' , UpperCAmelCase__) if os.path.isdir(UpperCAmelCase__): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase__) in FEATURE_EXTRACTOR_MAPPING: __UpperCAmelCase : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase__)] return feature_extractor_class.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}") @staticmethod def A( lowercase__ , lowercase__): FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase__ , UpperCAmelCase__)
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( lowerCamelCase__ ): _lowerCAmelCase : List[str] = ['''input_features''', '''is_longer'''] def __init__( self , lowercase__=6_4 , lowercase__=4_8_0_0_0 , lowercase__=4_8_0 , lowercase__=1_0 , lowercase__=1_0_2_4 , lowercase__=0.0 , lowercase__=False , lowercase__ = 0 , lowercase__ = 1_4_0_0_0 , lowercase__ = None , lowercase__ = "fusion" , lowercase__ = "repeatpad" , **lowercase__ , ): super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : List[Any] = top_db __UpperCAmelCase : Tuple = truncation __UpperCAmelCase : str = padding __UpperCAmelCase : Dict = fft_window_size __UpperCAmelCase : str = (fft_window_size >> 1) + 1 __UpperCAmelCase : Tuple = hop_length __UpperCAmelCase : Optional[Any] = max_length_s __UpperCAmelCase : List[Any] = max_length_s * sampling_rate __UpperCAmelCase : List[Any] = sampling_rate __UpperCAmelCase : Dict = frequency_min __UpperCAmelCase : List[str] = frequency_max __UpperCAmelCase : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCamelCase , min_frequency=__lowerCamelCase , max_frequency=__lowerCamelCase , sampling_rate=__lowerCamelCase , norm=__lowerCamelCase , mel_scale='''htk''' , ) __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowerCamelCase , min_frequency=__lowerCamelCase , max_frequency=__lowerCamelCase , sampling_rate=__lowerCamelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def A( self): __UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__) __UpperCAmelCase : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Optional[Any] = spectrogram( __lowerCamelCase , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowerCamelCase , log_mel='''dB''' , ) return log_mel_spectrogram.T def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : Dict = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : Optional[Any] = [0] # randomly choose index for each part __UpperCAmelCase : int = np.random.choice(ranges[0]) __UpperCAmelCase : Optional[Any] = np.random.choice(ranges[1]) __UpperCAmelCase : Tuple = np.random.choice(ranges[2]) __UpperCAmelCase : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : Dict = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : Any = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : Union[str, Any] = torch.tensor(mel[None, None, :]) __UpperCAmelCase : Optional[int] = torch.nn.functional.interpolate( __lowerCamelCase , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=__lowerCamelCase) __UpperCAmelCase : str = mel_shrink[0][0].numpy() __UpperCAmelCase : List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : Union[str, Any] = len(__lowerCamelCase) - max_length __UpperCAmelCase : List[str] = np.random.randint(0 , overflow + 1) __UpperCAmelCase : Any = waveform[idx : idx + max_length] __UpperCAmelCase : List[str] = self._np_extract_fbank_features(__lowerCamelCase , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __UpperCAmelCase : Union[str, Any] = self._np_extract_fbank_features(__lowerCamelCase , self.mel_filters) __UpperCAmelCase : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : str = np.stack([mel, mel, mel, mel] , axis=0) __UpperCAmelCase : int = False else: __UpperCAmelCase : List[str] = self._random_mel_fusion(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) __UpperCAmelCase : Optional[Any] = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented") else: __UpperCAmelCase : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : str = int(max_length / len(__lowerCamelCase)) __UpperCAmelCase : int = np.stack(np.tile(__lowerCamelCase , n_repeat + 1))[:max_length] if padding == "repeatpad": __UpperCAmelCase : Any = int(max_length / len(__lowerCamelCase)) __UpperCAmelCase : Any = np.stack(np.tile(__lowerCamelCase , __lowerCamelCase)) __UpperCAmelCase : List[Any] = np.pad(__lowerCamelCase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": __UpperCAmelCase : Tuple = self._np_extract_fbank_features(__lowerCamelCase , self.mel_filters) __UpperCAmelCase : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __UpperCAmelCase : Any = self._np_extract_fbank_features(__lowerCamelCase , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : int = truncation if truncation is not None else self.truncation __UpperCAmelCase : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') __UpperCAmelCase : int = isinstance(__lowerCamelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCAmelCase : Optional[int] = [np.asarray(__lowerCamelCase , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray): __UpperCAmelCase : int = np.asarray(__lowerCamelCase , dtype=np.floataa) elif isinstance(__lowerCamelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCAmelCase : Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCAmelCase : Tuple = [np.asarray(__lowerCamelCase)] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : str = [ self._get_input_mel(__lowerCamelCase , max_length if max_length else self.nb_max_samples , __lowerCamelCase , __lowerCamelCase) for waveform in raw_speech ] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(__lowerCamelCase) is_longer.append(__lowerCamelCase) if truncation == "fusion" and sum(__lowerCamelCase) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : Any = np.random.randint(0 , len(__lowerCamelCase)) __UpperCAmelCase : Union[str, Any] = True if isinstance(input_mel[0] , __lowerCamelCase): __UpperCAmelCase : Any = [np.asarray(__lowerCamelCase , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : Any = [[longer] for longer in is_longer] __UpperCAmelCase : Optional[int] = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCAmelCase : Dict = BatchFeature(__lowerCamelCase) if return_tensors is not None: __UpperCAmelCase : Any = input_features.convert_to_tensors(__lowerCamelCase) return input_features
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"vocab_file": "spiece.model"} lowerCAmelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowerCamelCase ( UpperCAmelCase_ ): def __init__( self , lowercase__ , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<sep>" , lowercase__="<pad>" , lowercase__="<cls>" , lowercase__="<mask>" , lowercase__=["<eop>", "<eod>"] , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token __UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Any = do_lower_case __UpperCAmelCase : Any = remove_space __UpperCAmelCase : Union[str, Any] = keep_accents __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') __UpperCAmelCase : Dict = jieba __UpperCAmelCase : List[str] = str.maketrans(''' \n''' , '''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A( self): return len(self.sp_model) def A( self): __UpperCAmelCase : Dict = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): __UpperCAmelCase : Tuple = self.__dict__.copy() __UpperCAmelCase : str = None return state def __setstate__( self , lowercase__): __UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCAmelCase : List[str] = {} __UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A( self , lowercase__): if self.remove_space: __UpperCAmelCase : Tuple = ''' '''.join(inputs.strip().split()) else: __UpperCAmelCase : Dict = inputs __UpperCAmelCase : Dict = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __UpperCAmelCase : str = unicodedata.normalize('''NFKD''' , _lowercase) __UpperCAmelCase : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: __UpperCAmelCase : List[str] = outputs.lower() return outputs def A( self , lowercase__): __UpperCAmelCase : Dict = self.preprocess_text(_lowercase) __UpperCAmelCase : int = self.sp_model.encode(_lowercase , out_type=_lowercase) __UpperCAmelCase : Union[str, Any] = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __UpperCAmelCase : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __UpperCAmelCase : str = cur_pieces[1:] else: __UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def A( self , lowercase__): return self.sp_model.PieceToId(_lowercase) def A( self , lowercase__): return self.sp_model.IdToPiece(_lowercase) def A( self , lowercase__): __UpperCAmelCase : List[Any] = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(_lowercase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : Optional[int] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: __UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,) def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : int = super()._decode(*_lowercase , **_lowercase) __UpperCAmelCase : Optional[int] = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''') return text
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0