code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _lowerCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _lowerCAmelCase : str = "audio" _lowerCAmelCase : str = "transcription" def A( self , lowercase__): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowercase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") __UpperCAmelCase : Union[str, Any] = copy.deepcopy(self) __UpperCAmelCase : int = self.input_schema.copy() __UpperCAmelCase : List[Any] = features[self.audio_column] __UpperCAmelCase : int = input_schema return task_template @property def A( self): return {self.audio_column: "audio", self.transcription_column: "transcription"}
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = int(lowercase_ ) __UpperCAmelCase : List[Any] = t // 3600, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=300 ) -> Optional[int]: '''simple docstring''' return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __UpperCAmelCase : Optional[Any] = f"{elt:.6f}" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCamelCase : _lowerCAmelCase : Optional[Any] = 5 _lowerCAmelCase : List[Any] = 0.2 def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = 3_0_0 , ): __UpperCAmelCase : Optional[Any] = total __UpperCAmelCase : Tuple = '''''' if prefix is None else prefix __UpperCAmelCase : Any = leave __UpperCAmelCase : Any = parent __UpperCAmelCase : List[str] = width __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Tuple = None def A( self , lowercase__ , lowercase__ = False , lowercase__ = None): __UpperCAmelCase : Tuple = value if comment is not None: __UpperCAmelCase : Optional[Any] = comment if self.last_value is None: __UpperCAmelCase : Any = time.time() __UpperCAmelCase : List[str] = value __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Dict = self.warmup __UpperCAmelCase : Optional[Any] = 1 self.update_bar(lowercase__) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 __UpperCAmelCase : int = time.time() __UpperCAmelCase : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __UpperCAmelCase : List[Any] = self.elapsed_time / (value - self.start_value) else: __UpperCAmelCase : Optional[int] = None if value >= self.total: __UpperCAmelCase : Union[str, Any] = self.total __UpperCAmelCase : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: __UpperCAmelCase : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(lowercase__) __UpperCAmelCase : List[str] = value __UpperCAmelCase : Dict = current_time if self.average_time_per_item is None: __UpperCAmelCase : str = 1 else: __UpperCAmelCase : Optional[Any] = max(int(self.update_every / self.average_time_per_item) , 1) def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : int = ''' ''' * (len(str(self.total)) - len(str(lowercase__))) + str(lowercase__) if self.elapsed_time is None: __UpperCAmelCase : str = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: __UpperCAmelCase : List[str] = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: __UpperCAmelCase : Dict = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" F" {format_time(self.predicted_remaining)}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else F", {self.comment}]" self.display() def A( self): __UpperCAmelCase : Tuple = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __UpperCAmelCase : List[str] = disp.display(disp.HTML(self.html_code) , display_id=lowercase__) else: self.output.update(disp.HTML(self.html_code)) def A( self): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''')) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__=None): super().__init__(lowercase__) __UpperCAmelCase : str = None if column_names is None else [column_names] __UpperCAmelCase : List[Any] = None def A( self): __UpperCAmelCase : Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __UpperCAmelCase : Optional[Any] = disp.display(disp.HTML(self.html_code) , display_id=lowercase__) else: self.output.update(disp.HTML(self.html_code)) def A( self , lowercase__): if self.inner_table is None: __UpperCAmelCase : Dict = [list(values.keys()), list(values.values())] else: __UpperCAmelCase : Optional[Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowercase__) __UpperCAmelCase : Dict = columns self.inner_table.append([values[c] for c in columns]) def A( self , lowercase__ , lowercase__=None , lowercase__=3_0_0): __UpperCAmelCase : int = NotebookProgressBar(lowercase__ , prefix=lowercase__ , parent=self , width=lowercase__) return self.child_bar def A( self): __UpperCAmelCase : str = None self.display() class lowerCamelCase ( _UpperCamelCase ): def __init__( self): __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Dict = False def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : List[Any] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''') __UpperCAmelCase : List[str] = NotebookTrainingTracker(state.max_steps , lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : Any = int(state.epoch) if int(state.epoch) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) __UpperCAmelCase : List[Any] = False def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): if not has_length(lowercase__): return if self.prediction_bar is None: if self.training_tracker is not None: __UpperCAmelCase : Union[str, Any] = self.training_tracker.add_child(len(lowercase__)) else: __UpperCAmelCase : Tuple = NotebookProgressBar(len(lowercase__)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if self.prediction_bar is not None: self.prediction_bar.close() __UpperCAmelCase : Union[str, Any] = None def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __UpperCAmelCase : Union[str, Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __UpperCAmelCase : List[Any] = state.global_step self.training_tracker.write_line(lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): if self.training_tracker is not None: __UpperCAmelCase : Tuple = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history): if "loss" in log: __UpperCAmelCase : Tuple = log['''loss'''] break if self.first_column == "Epoch": __UpperCAmelCase : List[str] = int(state.epoch) else: __UpperCAmelCase : Any = state.global_step __UpperCAmelCase : Union[str, Any] = '''eval''' for k in metrics: if k.endswith('''_loss'''): __UpperCAmelCase : int = re.sub(r'''\_loss$''' , '''''' , lowercase__) __UpperCAmelCase : List[Any] = metrics.pop('''total_flos''' , lowercase__) __UpperCAmelCase : List[str] = metrics.pop('''epoch''' , lowercase__) __UpperCAmelCase : int = metrics.pop(F"{metric_key_prefix}_runtime" , lowercase__) __UpperCAmelCase : Dict = metrics.pop(F"{metric_key_prefix}_samples_per_second" , lowercase__) __UpperCAmelCase : Any = metrics.pop(F"{metric_key_prefix}_steps_per_second" , lowercase__) __UpperCAmelCase : Optional[Any] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , lowercase__) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": __UpperCAmelCase : List[str] = v else: __UpperCAmelCase : Dict = k.split('''_''') __UpperCAmelCase : Optional[int] = ''' '''.join([part.capitalize() for part in splits[1:]]) __UpperCAmelCase : Optional[Any] = v self.training_tracker.write_line(lowercase__) self.training_tracker.remove_child() __UpperCAmelCase : List[Any] = None # Evaluation takes a long time so we should force the next update. __UpperCAmelCase : Any = True def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch)}/{state.num_train_epochs}" , force_update=lowercase__) __UpperCAmelCase : Optional[int] = None
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } lowerCAmelCase = { """junnyu/roformer_chinese_small""": 1_536, """junnyu/roformer_chinese_base""": 1_536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } lowerCAmelCase = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Tuple = RoFormerTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('''lowercase''' , lowercase__) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowercase__) != strip_accents ): __UpperCAmelCase : Optional[int] = getattr(lowercase__ , pre_tok_state.pop('''type''')) __UpperCAmelCase : Optional[int] = do_lower_case __UpperCAmelCase : Dict = strip_accents __UpperCAmelCase : str = pre_tok_class(**lowercase__) __UpperCAmelCase : Dict = do_lower_case def __getstate__( self): __UpperCAmelCase : str = self.__dict__.copy() __UpperCAmelCase : Any = BertPreTokenizer() return state def __setstate__( self , lowercase__): __UpperCAmelCase : Optional[Any] = d __UpperCAmelCase : Optional[int] = self.__dict__['''_tokenizer'''].get_vocab() __UpperCAmelCase : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(lowercase__)) def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : List[str] = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__) def A( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ): __UpperCAmelCase : Optional[int] = BertPreTokenizer() return super().save_pretrained(lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 2_2_4} __UpperCAmelCase : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : int = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase : Optional[Any] = get_size_dict(lowercase__ , param_name='''crop_size''') __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : str = crop_pct __UpperCAmelCase : Tuple = resample __UpperCAmelCase : Optional[int] = do_center_crop __UpperCAmelCase : Optional[int] = crop_size __UpperCAmelCase : List[Any] = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A( self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = int(size['''shortest_edge'''] / crop_pct) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Union[str, Any] = int(size['''height'''] / crop_pct) else: __UpperCAmelCase : Dict = (int(size['''height'''] / crop_pct), int(size['''width'''] / crop_pct)) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase__)) __UpperCAmelCase : Tuple = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__) else: if "shortest_edge" in size: __UpperCAmelCase : int = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__) elif "height" in size and "width" in size: __UpperCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(lowercase__)) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : int = get_size_dict(lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}") return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : str = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : int = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Tuple = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Optional[int] = get_size_dict(lowercase__ , param_name='''crop_size''') __UpperCAmelCase : str = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(lowercase__) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__) for image in images] if do_center_crop: __UpperCAmelCase : List[Any] = [self.center_crop(image=lowercase__ , size=lowercase__) for image in images] if do_rescale: __UpperCAmelCase : Tuple = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: __UpperCAmelCase : List[str] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] __UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] __UpperCAmelCase : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase = """__DUMMY_TRANSFORMERS_USER__""" lowerCAmelCase = """Dummy User""" lowerCAmelCase = """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""" lowerCAmelCase = """https://hub-ci.huggingface.co""" lowerCAmelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCAmelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCAmelCase = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , lowercase_ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' HfFolder.save_token(lowercase_ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=lowercase_ ) @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = HfFolder.get_token() HfFolder.save_token(lowercase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' def _cleanup_repo(lowercase_ ): hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' @contextmanager def _temporary_repo(lowercase_ ): try: yield repo_id finally: cleanup_repo(lowercase_ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = f"repo_txt_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Dict = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data/text_data.txt''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = f"repo_zipped_txt_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Tuple = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data.zip''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = f"repo_zipped_img_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Dict = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data.zip''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , *lowercase__ , **lowercase__): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__)
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : Optional[torch.FloatTensor] = None class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Tuple = 2 @register_to_config def __init__( self , lowercase__ = 0.0_2 , lowercase__ = 1_0_0 , lowercase__ = 1.0_0_7 , lowercase__ = 8_0 , lowercase__ = 0.0_5 , lowercase__ = 5_0 , ): # standard deviation of the initial noise distribution __UpperCAmelCase : str = sigma_max # setable values __UpperCAmelCase : int = None __UpperCAmelCase : np.IntTensor = None __UpperCAmelCase : torch.FloatTensor = None # sigma(t_i) def A( self , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : str = num_inference_steps __UpperCAmelCase : Optional[int] = np.arange(0 , self.num_inference_steps)[::-1].copy() __UpperCAmelCase : List[Any] = torch.from_numpy(lowercase__).to(lowercase__) __UpperCAmelCase : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __UpperCAmelCase : Any = torch.tensor(lowercase__ , dtype=torch.floataa , device=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None): if self.config.s_min <= sigma <= self.config.s_max: __UpperCAmelCase : Optional[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __UpperCAmelCase : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) __UpperCAmelCase : Any = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase__).to(sample.device) __UpperCAmelCase : str = sigma + gamma * sigma __UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Dict = sample_hat + sigma_hat * model_output __UpperCAmelCase : List[str] = (sample_hat - pred_original_sample) / sigma_hat __UpperCAmelCase : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Optional[int] = sample_prev + sigma_prev * model_output __UpperCAmelCase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev __UpperCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__): raise NotImplementedError()
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __SCREAMING_SNAKE_CASE ( lowercase_ = "laptop" ) -> DataFrame: '''simple docstring''' __UpperCAmelCase : str = f"https://www.amazon.in/laptop/s?k={product}" __UpperCAmelCase : Tuple = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } __UpperCAmelCase : Tuple = BeautifulSoup(requests.get(lowercase_ , headers=lowercase_ ).text ) # Initialize a Pandas dataframe with the column titles __UpperCAmelCase : Tuple = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: __UpperCAmelCase : int = item.ha.text __UpperCAmelCase : int = '''https://www.amazon.in/''' + item.ha.a['''href'''] __UpperCAmelCase : List[Any] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: __UpperCAmelCase : Any = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: __UpperCAmelCase : Optional[int] = '''Not available''' try: __UpperCAmelCase : Any = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: __UpperCAmelCase : str = '''''' try: __UpperCAmelCase : Optional[Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: __UpperCAmelCase : str = float('''nan''' ) except AttributeError: pass __UpperCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __UpperCAmelCase : Any = ''' ''' __UpperCAmelCase : Dict = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase = """headphones""" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import argparse import os import re lowerCAmelCase = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCAmelCase = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = False ) -> Optional[Any]: '''simple docstring''' with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Optional[int] = f.read() __UpperCAmelCase : int = content.split('''\n''' ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Union[str, Any] = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : Optional[int] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : Optional[int] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : Optional[Any] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : Optional[Any] = sorted(lowercase_ , key=lambda lowercase_ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def __SCREAMING_SNAKE_CASE ( lowercase_ = False ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [os.path.join(lowercase_ , lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith('''.py''' )] __UpperCAmelCase : int = [sort_auto_mapping(lowercase_ , overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): __UpperCAmelCase : Any = [f for f, d in zip(lowercase_ , lowercase_ ) if d] raise ValueError( f"The following files have auto mappings that need sorting: {', '.join(lowercase_ )}. Run `make style` to fix" ''' this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = BertJapaneseTokenizer _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = True def A( self): super().setUp() __UpperCAmelCase : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def A( self , lowercase__): __UpperCAmelCase : int = '''こんにちは、世界。 \nこんばんは、世界。''' __UpperCAmelCase : Union[str, Any] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A( self , lowercase__): __UpperCAmelCase : List[str] = self.get_input_output_texts(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) return text, ids def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file) __UpperCAmelCase : Tuple = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''') self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def A( self): __UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : List[Any] = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : Dict = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : int = pickle.load(lowercase__) __UpperCAmelCase : int = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Any = MecabTokenizer(mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : List[Any] = MecabTokenizer(mecab_dic='''unidic_lite''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : Optional[int] = MecabTokenizer(mecab_dic='''unidic''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): __UpperCAmelCase : Optional[Any] = MecabTokenizer(do_lower_case=lowercase__ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : int = MecabTokenizer( do_lower_case=lowercase__ , normalize_text=lowercase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def A( self): __UpperCAmelCase : Optional[Any] = MecabTokenizer(normalize_text=lowercase__ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : Any = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : List[str] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : Any = pickle.load(lowercase__) __UpperCAmelCase : int = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) @require_sudachi def A( self): __UpperCAmelCase : Optional[int] = SudachiTokenizer(sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国''', '''人''', '''参政''', '''権''']) @require_sudachi def A( self): __UpperCAmelCase : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人''', '''参政権''']) @require_sudachi def A( self): __UpperCAmelCase : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人参政権''']) @require_sudachi def A( self): __UpperCAmelCase : str = SudachiTokenizer(do_lower_case=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : Optional[int] = SudachiTokenizer(normalize_text=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : List[Any] = SudachiTokenizer(trim_whitespace=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : Union[str, Any] = pickle.load(lowercase__) __UpperCAmelCase : Tuple = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) @require_jumanpp def A( self): __UpperCAmelCase : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Tuple = JumanppTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : List[Any] = JumanppTokenizer(normalize_text=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Optional[Any] = JumanppTokenizer(trim_whitespace=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''') , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def A( self): __UpperCAmelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __UpperCAmelCase : Optional[Any] = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : int = i __UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こんにちは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは''') , ['''こん''', '''##ばんは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''') , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは''']) def A( self): __UpperCAmelCase : Dict = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''') __UpperCAmelCase : str = tokenizer.subword_tokenizer __UpperCAmelCase : Optional[int] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''') self.assertListEqual(lowercase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。''']) __UpperCAmelCase : Tuple = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''') self.assertListEqual(lowercase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは''']) def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''') __UpperCAmelCase : List[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : List[str] = BertJapaneseTokenizer _lowerCAmelCase : Tuple = False def A( self): super().setUp() __UpperCAmelCase : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def A( self , **lowercase__): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowercase__) def A( self , lowercase__): __UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' __UpperCAmelCase : Any = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''') __UpperCAmelCase : Optional[int] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''') self.assertListEqual( lowercase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def A( self): __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __UpperCAmelCase : Dict = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : int = i __UpperCAmelCase : Tuple = CharacterTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こ''', '''ん''', '''に''', '''ち''', '''は''']) self.assertListEqual(tokenizer.tokenize('''こんにちほ''') , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]''']) def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''') __UpperCAmelCase : Optional[int] = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowercase__) __UpperCAmelCase : int = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : str = '''cl-tohoku/bert-base-japanese''' __UpperCAmelCase : str = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Tuple = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertTokenizer.from_pretrained(lowercase__) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''')) __UpperCAmelCase : str = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertJapaneseTokenizer.from_pretrained(lowercase__) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.'''))
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase ( pl.LightningModule ): def __init__( self , lowercase__): super().__init__() __UpperCAmelCase : List[str] = model __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : int = nn.Linear(self.model.config.hidden_size , self.num_labels) def A( self): pass def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = LongformerModel.from_pretrained(lowercase_ ) __UpperCAmelCase : List[Any] = LightningModel(lowercase_ ) __UpperCAmelCase : Any = torch.load(lowercase_ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(lowercase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase_ ) print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
import argparse from collections import defaultdict import yaml lowerCAmelCase = """docs/source/en/_toctree.yml""" def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = defaultdict(lowercase_ ) __UpperCAmelCase : Any = [] __UpperCAmelCase : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(lowercase_ ) __UpperCAmelCase : List[Any] = new_doc_list __UpperCAmelCase : Dict = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: __UpperCAmelCase : List[str] = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) __UpperCAmelCase : int = sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase_ ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(lowercase_ ) # Sort return overview_doc def __SCREAMING_SNAKE_CASE ( lowercase_=False ) -> List[Any]: '''simple docstring''' with open(lowercase_ , encoding='''utf-8''' ) as f: __UpperCAmelCase : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : List[Any] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCAmelCase : Union[str, Any] = api_doc[scheduler_idx]['''sections'''] __UpperCAmelCase : Optional[int] = clean_doc_toc(lowercase_ ) __UpperCAmelCase : Optional[int] = False if new_scheduler_doc != scheduler_doc: __UpperCAmelCase : Tuple = True if overwrite: __UpperCAmelCase : Union[str, Any] = new_scheduler_doc if diff: if overwrite: __UpperCAmelCase : Dict = api_doc with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def __SCREAMING_SNAKE_CASE ( lowercase_=False ) -> List[Any]: '''simple docstring''' with open(lowercase_ , encoding='''utf-8''' ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : Optional[int] = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase : Any = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCAmelCase : Any = False __UpperCAmelCase : Union[str, Any] = api_doc[pipeline_idx]['''sections'''] __UpperCAmelCase : List[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCAmelCase : Dict = pipeline_doc['''section'''] __UpperCAmelCase : Optional[Any] = clean_doc_toc(lowercase_ ) if overwrite: __UpperCAmelCase : int = new_sub_pipeline_doc new_pipeline_docs.append(lowercase_ ) # sort overall pipeline doc __UpperCAmelCase : List[str] = clean_doc_toc(lowercase_ ) if new_pipeline_docs != pipeline_docs: __UpperCAmelCase : Tuple = True if overwrite: __UpperCAmelCase : List[Any] = new_pipeline_docs if diff: if overwrite: __UpperCAmelCase : Union[str, Any] = api_doc with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCAmelCase : Optional[Any] = model_type_to_module_name(lowercase_ ) __UpperCAmelCase : Tuple = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(lowercase_ , lowercase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase_ , '''__name__''' , lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCAmelCase : Tuple = importlib.import_module('''transformers''' ) if hasattr(lowercase_ , lowercase_ ): return getattr(lowercase_ , lowercase_ ) return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , **lowercase_ , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_file_from_repo( lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase_ , encoding='''utf-8''' ) as reader: return json.load(lowercase_ ) class lowerCamelCase : def __init__( self): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(lowercase__) def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = kwargs.pop('''config''' , lowercase__) __UpperCAmelCase : List[str] = kwargs.pop('''trust_remote_code''' , lowercase__) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : int = ImageProcessingMixin.get_image_processor_dict(lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = config_dict.get('''image_processor_type''' , lowercase__) __UpperCAmelCase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {}): __UpperCAmelCase : str = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __UpperCAmelCase : Any = config_dict.pop('''feature_extractor_type''' , lowercase__) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''') __UpperCAmelCase : List[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''') if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): __UpperCAmelCase : Any = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __UpperCAmelCase : Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''') logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''') # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ , **lowercase__) # It could be in `config.image_processor_type`` __UpperCAmelCase : str = getattr(lowercase__ , '''image_processor_type''' , lowercase__) if hasattr(lowercase__ , '''auto_map''') and "AutoImageProcessor" in config.auto_map: __UpperCAmelCase : int = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __UpperCAmelCase : str = image_processor_class_from_name(lowercase__) __UpperCAmelCase : Union[str, Any] = image_processor_auto_map is not None __UpperCAmelCase : List[str] = image_processor_class is not None or type(lowercase__) in IMAGE_PROCESSOR_MAPPING __UpperCAmelCase : Optional[int] = resolve_trust_remote_code( lowercase__ , lowercase__ , lowercase__ , lowercase__) if has_remote_code and trust_remote_code: __UpperCAmelCase : List[str] = get_class_from_dynamic_module( lowercase__ , lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = kwargs.pop('''code_revision''' , lowercase__) if os.path.isdir(lowercase__): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase__ , **lowercase__) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase__ , **lowercase__) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase__) in IMAGE_PROCESSOR_MAPPING: __UpperCAmelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(lowercase__)] return image_processor_class.from_dict(lowercase__ , **lowercase__) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}") @staticmethod def A( lowercase__ , lowercase__): IMAGE_PROCESSOR_MAPPING.register(lowercase__ , lowercase__)
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase = logging.get_logger("""transformers.models.encodec""") lowerCAmelCase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } lowerCAmelCase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } lowerCAmelCase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } lowerCAmelCase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } lowerCAmelCase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase = [] lowerCAmelCase = [] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : Dict = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __UpperCAmelCase : int = getattr(lowercase_ , lowercase_ ).shape else: __UpperCAmelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCAmelCase : List[str] = value elif weight_type == "weight_v": __UpperCAmelCase : List[str] = value elif weight_type == "bias": __UpperCAmelCase : Dict = value elif weight_type == "running_mean": __UpperCAmelCase : Optional[Any] = value elif weight_type == "running_var": __UpperCAmelCase : Tuple = value elif weight_type == "num_batches_tracked": __UpperCAmelCase : Any = value elif weight_type == "weight_ih_l0": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_hh_l0": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias_ih_l0": __UpperCAmelCase : List[Any] = value elif weight_type == "bias_hh_l0": __UpperCAmelCase : str = value elif weight_type == "weight_ih_l1": __UpperCAmelCase : Dict = value elif weight_type == "weight_hh_l1": __UpperCAmelCase : str = value elif weight_type == "bias_ih_l1": __UpperCAmelCase : List[str] = value elif weight_type == "bias_hh_l1": __UpperCAmelCase : Optional[int] = value else: __UpperCAmelCase : Union[str, Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCAmelCase : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [] if model_name == "encodec_24khz" or "encodec_32khz": __UpperCAmelCase : Union[str, Any] = MAPPING_24K elif model_name == "encodec_48khz": __UpperCAmelCase : Dict = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(lowercase_ , lowercase_ ): logger.info(f"{name} was ignored" ) continue __UpperCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: __UpperCAmelCase : Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: __UpperCAmelCase : List[str] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue __UpperCAmelCase : Tuple = True if "*" in mapped_key: __UpperCAmelCase : Dict = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Tuple = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : List[Any] = '''weight_v''' elif "weight_ih_l0" in name: __UpperCAmelCase : Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: __UpperCAmelCase : List[Any] = '''weight_hh_l0''' elif "bias_ih_l0" in name: __UpperCAmelCase : str = '''bias_ih_l0''' elif "bias_hh_l0" in name: __UpperCAmelCase : Any = '''bias_hh_l0''' elif "weight_ih_l1" in name: __UpperCAmelCase : Optional[Any] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __UpperCAmelCase : Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __UpperCAmelCase : str = '''bias_ih_l1''' elif "bias_hh_l1" in name: __UpperCAmelCase : Optional[Any] = '''bias_hh_l1''' elif "bias" in name: __UpperCAmelCase : Tuple = '''bias''' elif "weight" in name: __UpperCAmelCase : str = '''weight''' elif "running_mean" in name: __UpperCAmelCase : Any = '''running_mean''' elif "running_var" in name: __UpperCAmelCase : int = '''running_var''' elif "num_batches_tracked" in name: __UpperCAmelCase : Dict = '''num_batches_tracked''' else: __UpperCAmelCase : Optional[Any] = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> Any: '''simple docstring''' if config_path is not None: __UpperCAmelCase : int = EncodecConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __UpperCAmelCase : Optional[int] = [8, 5, 4, 4] __UpperCAmelCase : str = [2.2] __UpperCAmelCase : Optional[int] = 64 __UpperCAmelCase : str = 32000 __UpperCAmelCase : Optional[Any] = 2048 __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Tuple = False elif model_name == "encodec_48khz": __UpperCAmelCase : Tuple = [8, 5, 4, 2] __UpperCAmelCase : str = [3.0, 6.0, 12.0, 24.0] __UpperCAmelCase : str = 48000 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = '''time_group_norm''' __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[int] = 1.0 __UpperCAmelCase : Optional[int] = 0.0_1 else: raise ValueError(f"Unknown model name: {model_name}" ) __UpperCAmelCase : str = EncodecModel(lowercase_ ) __UpperCAmelCase : Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowercase_ ) __UpperCAmelCase : int = torch.load(lowercase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __UpperCAmelCase : Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) model.save_pretrained(lowercase_ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : Tuple = val def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase : Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __UpperCAmelCase : int = value else: __UpperCAmelCase : List[str] = value return new_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = '''''' if is_panoptic: __UpperCAmelCase : List[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Any = in_proj_weight[:256, :] __UpperCAmelCase : Dict = in_proj_bias[:256] __UpperCAmelCase : str = in_proj_weight[256:512, :] __UpperCAmelCase : Any = in_proj_bias[256:512] __UpperCAmelCase : List[str] = in_proj_weight[-256:, :] __UpperCAmelCase : Tuple = in_proj_bias[-256:] def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCAmelCase : Dict = '''resnet101''' if "dc5" in model_name: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[Any] = '''panoptic''' in model_name if is_panoptic: __UpperCAmelCase : Optional[int] = 250 else: __UpperCAmelCase : Dict = 91 __UpperCAmelCase : Optional[Any] = '''huggingface/label-files''' __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Tuple = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Optional[Any] = {int(lowercase_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # load image processor __UpperCAmelCase : Any = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __UpperCAmelCase : str = ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=lowercase_ , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub __UpperCAmelCase : Optional[Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval() __UpperCAmelCase : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCAmelCase : str = '''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Any = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Optional[int] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __UpperCAmelCase : Union[str, Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __UpperCAmelCase : Dict = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __UpperCAmelCase : List[Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : str = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __UpperCAmelCase : List[Any] = conditional_detr(lowercase_ ) __UpperCAmelCase : int = model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence __UpperCAmelCase : Optional[int] = gray_code_sequence_string(lowercase_ ) # # convert them to integers for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = int(sequence[i] , 2 ) return sequence def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCAmelCase : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCAmelCase : Any = gray_code_sequence_string(bit_count - 1 ) __UpperCAmelCase : Optional[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCAmelCase : Any = '''0''' + smaller_sequence[i] sequence.append(lowercase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCAmelCase : List[Any] = '''1''' + smaller_sequence[i] sequence.append(lowercase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=4 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.1 , lowercase__=True , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : int = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = intermediate_multiple_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout __UpperCAmelCase : Any = attention_dropout __UpperCAmelCase : Optional[int] = weight_tying __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : Tuple = scope def A( self): __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def A( self): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[Any] = True return config, input_ids, input_mask, token_labels def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = GPTNeoXJapaneseModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[str] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = GPTNeoXJapaneseModel(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = GPTNeoXJapaneseForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : List[Any] = GPTNeoXJapaneseForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() # first forward pass __UpperCAmelCase : Dict = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __UpperCAmelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1) __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , output_hidden_states=lowercase__) __UpperCAmelCase : Optional[Any] = output_from_no_past['''hidden_states'''][0] __UpperCAmelCase : int = model( lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ , output_hidden_states=lowercase__ , )['''hidden_states'''][0] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self): __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _lowerCAmelCase : List[str] = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Optional[Any] = False def A( self): __UpperCAmelCase : Any = GPTNeoXJapaneseModelTester(self) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__) def A( self): # This regression test was failing with PyTorch < 1.3 __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCAmelCase : str = None self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase__) @slow def A( self): __UpperCAmelCase : List[str] = '''abeja/gpt-neox-japanese-2.7b''' __UpperCAmelCase : Tuple = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __UpperCAmelCase : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __UpperCAmelCase : List[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(lowercase__) __UpperCAmelCase : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(lowercase__) __UpperCAmelCase : Tuple = [] for prompt in prompts: __UpperCAmelCase : Union[str, Any] = tokenizer(lowercase__ , return_tensors='''pt''').input_ids __UpperCAmelCase : Optional[int] = model.generate(lowercase__ , max_length=5_0) __UpperCAmelCase : int = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) predicted_outputs += generated_string self.assertListEqual(lowercase__ , lowercase__)
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) lowerCAmelCase = None def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=lowercase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowercase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : Optional[Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' def remove_articles(lowercase_ ): return ARTICLES_REGEX.sub(''' ''' , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): __UpperCAmelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Optional[Any] = get_tokens(lowercase_ ) __UpperCAmelCase : Union[str, Any] = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) __UpperCAmelCase : List[Any] = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __UpperCAmelCase : str = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowercase_ ) __UpperCAmelCase : List[str] = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCAmelCase : List[Any] = qa['''id'''] __UpperCAmelCase : Optional[int] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __UpperCAmelCase : Union[str, Any] = [''''''] if qid not in preds: print(f"Missing prediction for {qid}" ) continue __UpperCAmelCase : str = preds[qid] # Take max over all gold answers __UpperCAmelCase : Tuple = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) __UpperCAmelCase : str = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = {} for qid, s in scores.items(): __UpperCAmelCase : Tuple = na_probs[qid] > na_prob_thresh if pred_na: __UpperCAmelCase : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: __UpperCAmelCase : List[str] = s return new_scores def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> int: '''simple docstring''' if not qid_list: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __UpperCAmelCase : int = len(lowercase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' for k in new_eval: __UpperCAmelCase : Optional[int] = new_eval[k] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' plt.step(lowercase_ , lowercase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(lowercase_ , lowercase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Dict = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) __UpperCAmelCase : Union[str, Any] = 0.0 __UpperCAmelCase : int = 1.0 __UpperCAmelCase : str = 0.0 __UpperCAmelCase : str = [1.0] __UpperCAmelCase : str = [0.0] __UpperCAmelCase : Union[str, Any] = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __UpperCAmelCase : Dict = true_pos / float(i + 1 ) __UpperCAmelCase : List[Any] = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 100.0 * avg_prec} def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) __UpperCAmelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __UpperCAmelCase : Tuple = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __UpperCAmelCase : Dict = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __UpperCAmelCase : List[str] = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} __UpperCAmelCase : List[str] = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(lowercase_ , lowercase_ , '''pr_exact''' ) merge_eval(lowercase_ , lowercase_ , '''pr_f1''' ) merge_eval(lowercase_ , lowercase_ , '''pr_oracle''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if not qid_list: return __UpperCAmelCase : Tuple = [na_probs[k] for k in qid_list] __UpperCAmelCase : str = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(lowercase_ , f"na_prob_hist_{name}.png" ) ) plt.clf() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __UpperCAmelCase : Any = num_no_ans __UpperCAmelCase : Optional[Any] = cur_score __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: __UpperCAmelCase : Tuple = scores[qid] else: if preds[qid]: __UpperCAmelCase : Optional[Any] = -1 else: __UpperCAmelCase : str = 0 cur_score += diff if cur_score > best_score: __UpperCAmelCase : Optional[int] = cur_score __UpperCAmelCase : int = na_probs[qid] return 100.0 * best_score / len(lowercase_ ), best_thresh def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[int] = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : int = best_exact __UpperCAmelCase : List[Any] = exact_thresh __UpperCAmelCase : Union[str, Any] = best_fa __UpperCAmelCase : Optional[Any] = fa_thresh def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' with open(OPTS.data_file ) as f: __UpperCAmelCase : List[Any] = json.load(lowercase_ ) __UpperCAmelCase : List[Any] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __UpperCAmelCase : str = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __UpperCAmelCase : Optional[int] = json.load(lowercase_ ) else: __UpperCAmelCase : List[str] = {k: 0.0 for k in preds} __UpperCAmelCase : int = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False __UpperCAmelCase : int = [k for k, v in qid_to_has_ans.items() if v] __UpperCAmelCase : List[Any] = [k for k, v in qid_to_has_ans.items() if not v] __UpperCAmelCase : Dict = get_raw_scores(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Optional[Any] = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) __UpperCAmelCase : Any = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: __UpperCAmelCase : Tuple = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''HasAns''' ) if no_ans_qids: __UpperCAmelCase : List[str] = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''mra''' def __init__( self , lowercase__=5_0_2_6_5 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1 , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__="absolute" , lowercase__=4 , lowercase__="full" , lowercase__=0 , lowercase__=0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = position_embedding_type __UpperCAmelCase : List[str] = block_per_row __UpperCAmelCase : Optional[int] = approx_mode __UpperCAmelCase : List[str] = initial_prior_first_n_blocks __UpperCAmelCase : List[Any] = initial_prior_diagonal_n_blocks
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000000 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
from random import randint from tempfile import TemporaryFile import numpy as np def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 if start < end: __UpperCAmelCase : List[str] = randint(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = a[end] __UpperCAmelCase : int = a[pivot] __UpperCAmelCase : List[Any] = temp __UpperCAmelCase : Dict = _in_place_partition(lowercase_ , lowercase_ , lowercase_ ) count += _in_place_quick_sort(lowercase_ , lowercase_ , p - 1 ) count += _in_place_quick_sort(lowercase_ , p + 1 , lowercase_ ) return count def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = randint(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = a[end] __UpperCAmelCase : Any = a[pivot] __UpperCAmelCase : Optional[int] = temp __UpperCAmelCase : List[str] = start - 1 for index in range(lowercase_ , lowercase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __UpperCAmelCase : Optional[int] = new_pivot_index + 1 __UpperCAmelCase : Union[str, Any] = a[new_pivot_index] __UpperCAmelCase : Optional[int] = a[index] __UpperCAmelCase : Optional[int] = temp __UpperCAmelCase : Tuple = a[new_pivot_index + 1] __UpperCAmelCase : Optional[Any] = a[end] __UpperCAmelCase : Optional[int] = temp return new_pivot_index + 1, count lowerCAmelCase = TemporaryFile() lowerCAmelCase = 100 # 1000 elements are to be sorted lowerCAmelCase ,lowerCAmelCase = 0, 1 # mean and standard deviation lowerCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array lowerCAmelCase = np.load(outfile) lowerCAmelCase = len(M) - 1 lowerCAmelCase = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import unittest from transformers import DonutProcessor lowerCAmelCase = """naver-clova-ix/donut-base""" class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : List[str] = DonutProcessor.from_pretrained(lowercase__) def A( self): __UpperCAmelCase : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase : Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase : Dict = self.processor.tokenajson(lowercase__) self.assertDictEqual(lowercase__ , lowercase__)
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : List[str] = None def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ): super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowercase__) != add_prefix_space: __UpperCAmelCase : List[Any] = getattr(lowercase__ , pre_tok_state.pop('''type''')) __UpperCAmelCase : str = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**lowercase__) __UpperCAmelCase : Optional[int] = add_prefix_space def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = kwargs.get('''is_split_into_words''' , lowercase__) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''') return super()._batch_encode_plus(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : Union[str, Any] = kwargs.get('''is_split_into_words''' , lowercase__) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''') return super()._encode_plus(*lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__) + [self.eos_token_id]) if len(lowercase__) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] return input_ids
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = RoCBertTokenizer _lowerCAmelCase : Any = None _lowerCAmelCase : int = False _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = filter_non_english def A( self): super().setUp() __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] __UpperCAmelCase : List[str] = {} __UpperCAmelCase : Union[str, Any] = {} for i, value in enumerate(lowercase__): __UpperCAmelCase : Dict = i __UpperCAmelCase : Dict = i __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file''']) __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.word_shape_file , '''w''' , encoding='''utf-8''') as word_shape_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''') as word_pronunciation_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __UpperCAmelCase : Tuple = tokenizer.tokenize('''你好[SEP]你是谁''') self.assertListEqual(lowercase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowercase__) , [5, 6, 2, 5, 7, 8]) def A( self): __UpperCAmelCase : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') , ['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''h\u00E9llo''']) def A( self): __UpperCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def A( self): __UpperCAmelCase : Any = RoCBertBasicTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : str = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : Any = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A( self): __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__ , never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def A( self): __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase : Dict = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : List[Any] = i __UpperCAmelCase : Optional[Any] = RoCBertWordpieceTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''unwanted running''') , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') , ['''[UNK]''', '''runn''', '''##ing''']) def A( self): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def A( self): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def A( self): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def A( self): __UpperCAmelCase : Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase__) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) if self.test_rust_tokenizer: __UpperCAmelCase : Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowercase__) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) def A( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __UpperCAmelCase : int = tokenizer_r.encode_plus( lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ , ) __UpperCAmelCase : Dict = tokenizer_r.do_lower_case if hasattr(lowercase__ , '''do_lower_case''') else False __UpperCAmelCase : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping''']) def A( self): __UpperCAmelCase : Tuple = ['''的''', '''人''', '''有'''] __UpperCAmelCase : List[Any] = ''''''.join(lowercase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : int = True __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : int = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(lowercase__) __UpperCAmelCase : List[Any] = tokenizer_p.convert_ids_to_tokens(lowercase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) __UpperCAmelCase : int = False __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Tuple = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(lowercase__) __UpperCAmelCase : str = tokenizer_p.convert_ids_to_tokens(lowercase__) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase : Any = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(lowercase__) ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __UpperCAmelCase : Any = tokenizer.encode('''你好''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''你是谁''' , add_special_tokens=lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A( self): __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=lowercase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __UpperCAmelCase : int = '''你好,你是谁''' __UpperCAmelCase : List[str] = tokenizer.tokenize(lowercase__) __UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : str = tokenizer.convert_tokens_to_shape_ids(lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_pronunciation_ids(lowercase__) __UpperCAmelCase : Any = tokenizer.prepare_for_model( lowercase__ , lowercase__ , lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[str] = tokenizer.encode_plus(lowercase__ , add_special_tokens=lowercase__) self.assertEqual(lowercase__ , lowercase__)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = IFPipeline __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _a ( self) -> Optional[Any]: return self._get_dummy_components() def _a ( self , lowercase_ , lowercase_=0) -> Union[str, Any]: if str(lowercase_).startswith('mps'): __snake_case = torch.manual_seed(lowercase_) else: __snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _a ( self) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _a ( self) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def _a ( self) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def _a ( self) -> Dict: self._test_save_load_local() def _a ( self) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def _a ( self) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self) -> Any: # if __snake_case = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa) __snake_case = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=lowercase_ , tokenizer=lowercase_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda') __snake_case , __snake_case = pipe_a.encode_prompt('anime turtle' , device='cuda') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __snake_case = None __snake_case = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(lowercase_ , lowercase_ , lowercase_ , lowercase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __snake_case = IFImgaImgPipeline(**pipe_a.components) __snake_case = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(lowercase_ , lowercase_ , lowercase_ , lowercase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __snake_case = IFInpaintingPipeline(**pipe_a.components) __snake_case = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (6_4, 6_4, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) # pipeline 2 _start_torch_memory_measurement() __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowercase_) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: # pipeline 1 _start_torch_memory_measurement() __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowercase_) __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (6_4, 6_4, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) # pipeline 2 _start_torch_memory_measurement() __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowercase_) __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowercase_) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowercase_) __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(lowercase_) __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (6_4, 6_4, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) # pipeline 2 _start_torch_memory_measurement() __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowercase_) __snake_case = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowercase_) __snake_case = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(lowercase_) __snake_case = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __snake_case = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy') assert_mean_pixel_difference(lowercase_ , lowercase_) def A ( ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __lowercase : def __init__( self , lowercase_) -> Optional[Any]: if isinstance(lowercase_ , lowercase_): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __snake_case = deepcopy(lowercase_) elif os.path.exists(lowercase_): with io.open(lowercase_ , 'r' , encoding='utf-8') as f: __snake_case = json.load(lowercase_) else: try: __snake_case = baseaa.urlsafe_baadecode(lowercase_).decode('utf-8') __snake_case = json.loads(lowercase_) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}") __snake_case = config self.set_stage_and_offload() def _a ( self) -> Tuple: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. __snake_case = self.get_value('zero_optimization.stage' , -1) # offload __snake_case = False if self.is_zeroa() or self.is_zeroa(): __snake_case = set(['cpu', 'nvme']) __snake_case = set( [ self.get_value('zero_optimization.offload_optimizer.device'), self.get_value('zero_optimization.offload_param.device'), ]) if len(offload_devices & offload_devices_valid) > 0: __snake_case = True def _a ( self , lowercase_) -> Optional[int]: __snake_case = self.config # find the config node of interest if it exists __snake_case = ds_key_long.split('.') __snake_case = nodes.pop() for node in nodes: __snake_case = config.get(lowercase_) if config is None: return None, ds_key return config, ds_key def _a ( self , lowercase_ , lowercase_=None) -> Dict: __snake_case , __snake_case = self.find_config_node(lowercase_) if config is None: return default return config.get(lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_=False) -> Optional[Any]: __snake_case = self.config # find the config node of interest if it exists __snake_case = ds_key_long.split('.') for node in nodes: __snake_case = config __snake_case = config.get(lowercase_) if config is None: if must_exist: raise ValueError(F"Can't find {ds_key_long} entry in the config: {self.config}") else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase_) def _a ( self , lowercase_) -> Union[str, Any]: __snake_case = self.get_value(lowercase_) return False if value is None else bool(lowercase_) def _a ( self , lowercase_) -> List[Any]: __snake_case = self.get_value(lowercase_) return False if value is None else not bool(lowercase_) def _a ( self) -> Optional[int]: return self._stage == 2 def _a ( self) -> Optional[int]: return self._stage == 3 def _a ( self) -> int: return self._offload class __lowercase : def __init__( self , lowercase_) -> List[str]: __snake_case = engine def _a ( self , lowercase_ , **lowercase_) -> int: # runs backpropagation and handles mixed precision self.engine.backward(lowercase_ , **lowercase_) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_) -> Dict: super().__init__(lowercase_ , device_placement=lowercase_ , scaler=lowercase_) __snake_case = hasattr(self.optimizer , 'overflow') def _a ( self , lowercase_=None) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _a ( self) -> int: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _a ( self) -> List[Any]: if self.__has_overflow__: return self.optimizer.overflow return False class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_) -> Optional[Any]: super().__init__(lowercase_ , lowercase_) def _a ( self) -> Union[str, Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __lowercase : def __init__( self , lowercase_ , lowercase_=0.001 , lowercase_=0 , **lowercase_) -> Dict: __snake_case = params __snake_case = lr __snake_case = weight_decay __snake_case = kwargs class __lowercase : def __init__( self , lowercase_ , lowercase_=None , lowercase_=0 , **lowercase_) -> Dict: __snake_case = optimizer __snake_case = total_num_steps __snake_case = warmup_num_steps __snake_case = kwargs
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
from __future__ import annotations def A ( snake_case__ : list[float] ) -> bool: '''simple docstring''' if len(snake_case__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __snake_case = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
UpperCAmelCase__ : List[str] = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) UpperCAmelCase__ : int = frozenset(["prompt", "negative_prompt"]) UpperCAmelCase__ : Optional[Any] = frozenset([]) UpperCAmelCase__ : Any = frozenset(["image"]) UpperCAmelCase__ : List[str] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) UpperCAmelCase__ : int = frozenset(["image"]) UpperCAmelCase__ : List[Any] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) UpperCAmelCase__ : Any = frozenset(["prompt", "image", "negative_prompt"]) UpperCAmelCase__ : Dict = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) UpperCAmelCase__ : Any = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) UpperCAmelCase__ : List[Any] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) UpperCAmelCase__ : int = frozenset(["image", "mask_image"]) UpperCAmelCase__ : str = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) UpperCAmelCase__ : Union[str, Any] = frozenset(["example_image", "image", "mask_image"]) UpperCAmelCase__ : str = frozenset(["class_labels"]) UpperCAmelCase__ : Optional[Any] = frozenset(["class_labels"]) UpperCAmelCase__ : List[str] = frozenset(["batch_size"]) UpperCAmelCase__ : List[Any] = frozenset([]) UpperCAmelCase__ : Optional[Any] = frozenset(["batch_size"]) UpperCAmelCase__ : str = frozenset([]) UpperCAmelCase__ : List[Any] = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) UpperCAmelCase__ : Optional[int] = frozenset(["prompt", "negative_prompt"]) UpperCAmelCase__ : Tuple = frozenset(["input_tokens"]) UpperCAmelCase__ : List[str] = frozenset(["input_tokens"])
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Any = 16 UpperCAmelCase__ : List[str] = 32 def A ( snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Optional[int]: '''simple docstring''' __snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) __snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 16 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( snake_case__ , padding='longest' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='pt' , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['train'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) __snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Any = mocked_dataloaders # noqa: F811 def A ( snake_case__ : Any , snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , snake_case__ ) == "1": __snake_case = 2 # New Code # __snake_case = int(args.gradient_accumulation_steps ) # Initialize accelerator __snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['lr'] __snake_case = int(config['num_epochs'] ) __snake_case = int(config['seed'] ) __snake_case = int(config['batch_size'] ) __snake_case = evaluate.load('glue' , 'mrpc' ) set_seed(snake_case__ ) __snake_case , __snake_case = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): __snake_case = model(**snake_case__ ) __snake_case = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**snake_case__ ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case__ ) def A ( ) -> Union[str, Any]: '''simple docstring''' __snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=snake_case__ , default=snake_case__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=snake_case__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __snake_case = parser.parse_args() __snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=1_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Dict: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> int: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> str: __snake_case = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowercase_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = EsmForProteinFolding(config=lowercase_).float() model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def _a ( self) -> Any: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = False __UpperCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () __UpperCAmelCase = () __UpperCAmelCase = {} if is_torch_available() else {} __UpperCAmelCase = False def _a ( self) -> int: __snake_case = EsmFoldModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> Any: self.config_tester.run_common_tests() def _a ( self) -> Dict: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @unittest.skip('Does not support attention outputs') def _a ( self) -> str: pass @unittest.skip def _a ( self) -> Any: pass @unittest.skip('Esm does not support embedding resizing') def _a ( self) -> str: pass @unittest.skip('Esm does not support embedding resizing') def _a ( self) -> Any: pass @unittest.skip('ESMFold does not support passing input embeds!') def _a ( self) -> Any: pass @unittest.skip('ESMFold does not support head pruning.') def _a ( self) -> Optional[int]: pass @unittest.skip('ESMFold does not support head pruning.') def _a ( self) -> Optional[int]: pass @unittest.skip('ESMFold does not support head pruning.') def _a ( self) -> int: pass @unittest.skip('ESMFold does not support head pruning.') def _a ( self) -> List[Any]: pass @unittest.skip('ESMFold does not support head pruning.') def _a ( self) -> Union[str, Any]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.') def _a ( self) -> Any: pass @unittest.skip('ESMfold does not output hidden states in the normal way.') def _a ( self) -> List[Any]: pass @unittest.skip('ESMFold only has one output format.') def _a ( self) -> List[Any]: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality') def _a ( self) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support input chunking.') def _a ( self) -> List[str]: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.') def _a ( self) -> Optional[int]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def _a ( self) -> List[str]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def _a ( self) -> int: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.') def _a ( self) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.') def _a ( self) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _a ( self) -> Union[str, Any]: pass @require_torch class __lowercase ( lowerCamelCase__ ): @slow def _a ( self) -> List[Any]: __snake_case = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1').float() model.eval() __snake_case = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]]) __snake_case = model(lowercase_)['positions'] __snake_case = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowercase_ , atol=1e-4))
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
from collections.abc import Callable import numpy as np def A ( snake_case__ : Callable , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> np.ndarray: '''simple docstring''' __snake_case = int(np.ceil((x_end - xa) / step_size ) ) __snake_case = np.zeros((n + 1,) ) __snake_case = ya __snake_case = xa for k in range(snake_case__ ): __snake_case = y[k] + step_size * ode_func(snake_case__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ : Any = logging.get_logger(__name__) class __lowercase ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 @add_end_docstrings(lowerCamelCase__ ) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''generated''' def __init__( self , *lowercase_ , **lowercase_) -> int: super().__init__(*lowercase_ , **lowercase_) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) def _a ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: __snake_case = {} if truncation is not None: __snake_case = truncation __snake_case = generate_kwargs __snake_case = {} if return_tensors is not None and return_type is None: __snake_case = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __snake_case = return_type if clean_up_tokenization_spaces is not None: __snake_case = clean_up_tokenization_spaces if stop_sequence is not None: __snake_case = self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) if len(lowercase_) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.') __snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Dict: return True def _a ( self , *lowercase_ , lowercase_) -> str: __snake_case = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , lowercase_): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input') __snake_case = ([prefix + arg for arg in args[0]],) __snake_case = True elif isinstance(args[0] , lowercase_): __snake_case = (prefix + args[0],) __snake_case = False else: raise ValueError( F" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`") __snake_case = self.tokenizer(*lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *lowercase_ , **lowercase_) -> Optional[int]: __snake_case = super().__call__(*lowercase_ , **lowercase_) if ( isinstance(args[0] , lowercase_) and all(isinstance(lowercase_ , lowercase_) for el in args[0]) and all(len(lowercase_) == 1 for res in result) ): return [res[0] for res in result] return result def _a ( self , lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_) -> str: __snake_case = self._parse_and_tokenize(lowercase_ , truncation=lowercase_ , **lowercase_) return inputs def _a ( self , lowercase_ , **lowercase_) -> Any: if self.framework == "pt": __snake_case , __snake_case = model_inputs['input_ids'].shape elif self.framework == "tf": __snake_case , __snake_case = tf.shape(model_inputs['input_ids']).numpy() __snake_case = generate_kwargs.get('min_length' , self.model.config.min_length) __snake_case = generate_kwargs.get('max_length' , self.model.config.max_length) self.check_inputs(lowercase_ , generate_kwargs['min_length'] , generate_kwargs['max_length']) __snake_case = self.model.generate(**lowercase_ , **lowercase_) __snake_case = output_ids.shape[0] if self.framework == "pt": __snake_case = output_ids.reshape(lowercase_ , out_b // in_b , *output_ids.shape[1:]) elif self.framework == "tf": __snake_case = tf.reshape(lowercase_ , (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def _a ( self , lowercase_ , lowercase_=ReturnType.TEXT , lowercase_=False) -> List[Any]: __snake_case = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __snake_case = {F"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: __snake_case = { F"{self.return_name}_text": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) } records.append(lowercase_) return records @add_end_docstrings(lowerCamelCase__ ) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''summary''' def __call__( self , *lowercase_ , **lowercase_) -> int: return super().__call__(*lowercase_ , **lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> bool: if max_length < min_length: logger.warning(F"Your min_length={min_length} must be inferior than your max_length={max_length}.") if input_length < max_length: logger.warning( F"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})") @add_end_docstrings(lowerCamelCase__ ) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''translation''' def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Dict: if input_length > 0.9 * max_length: logger.warning( F"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)') return True def _a ( self , *lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_=None , lowercase_=None) -> int: if getattr(self.tokenizer , '_build_translation_inputs' , lowercase_): return self.tokenizer._build_translation_inputs( *lowercase_ , return_tensors=self.framework , truncation=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_) else: return super()._parse_and_tokenize(*lowercase_ , truncation=lowercase_) def _a ( self , lowercase_=None , lowercase_=None , **lowercase_) -> Union[str, Any]: __snake_case , __snake_case , __snake_case = super()._sanitize_parameters(**lowercase_) if src_lang is not None: __snake_case = src_lang if tgt_lang is not None: __snake_case = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __snake_case = kwargs.get('task' , self.task) __snake_case = task.split('_') if task and len(lowercase_) == 4: # translation, XX, to YY __snake_case = items[1] __snake_case = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: return super().__call__(*lowercase_ , **lowercase_)
676
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
1
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Tuple = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = '''maskformer-swin''' __UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase_=2_2_4 , lowercase_=4 , lowercase_=3 , lowercase_=9_6 , lowercase_=[2, 2, 6, 2] , lowercase_=[3, 6, 1_2, 2_4] , lowercase_=7 , lowercase_=4.0 , lowercase_=True , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_="gelu" , lowercase_=False , lowercase_=0.02 , lowercase_=1e-5 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[Any]: super().__init__(**lowercase_) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(lowercase_) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(lowercase_) - 1)) __snake_case = ['stem'] + [F"stage{idx}" for idx in range(1 , len(lowercase_) + 1)] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names)
676
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
1
from collections import deque from math import floor from random import random from time import time class __lowercase : def __init__( self) -> int: __snake_case = {} def _a ( self , lowercase_ , lowercase_ , lowercase_=1) -> str: if self.graph.get(lowercase_): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: __snake_case = [[w, v]] if not self.graph.get(lowercase_): __snake_case = [] def _a ( self) -> int: return list(self.graph) def _a ( self , lowercase_ , lowercase_) -> Optional[Any]: if self.graph.get(lowercase_): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_) def _a ( self , lowercase_=-2 , lowercase_=-1) -> Optional[int]: if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase_) return visited else: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return visited def _a ( self , lowercase_=-1) -> List[Any]: if c == -1: __snake_case = floor(random() * 1_0_0_0_0) + 1_0 for i in range(lowercase_): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __snake_case = floor(random() * c) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1) def _a ( self , lowercase_=-2) -> List[str]: __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] d.append(lowercase_) visited.append(lowercase_) while d: __snake_case = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def _a ( self , lowercase_) -> Any: __snake_case = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _a ( self , lowercase_) -> Dict: return len(self.graph[u]) def _a ( self , lowercase_=-2) -> Union[str, Any]: __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s __snake_case = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return sorted_nodes def _a ( self) -> Optional[Any]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return list(lowercase_) def _a ( self) -> List[Any]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return False def _a ( self , lowercase_=-2 , lowercase_=-1) -> List[Any]: __snake_case = time() self.dfs(lowercase_ , lowercase_) __snake_case = time() return end - begin def _a ( self , lowercase_=-2) -> Dict: __snake_case = time() self.bfs(lowercase_) __snake_case = time() return end - begin class __lowercase : def __init__( self) -> str: __snake_case = {} def _a ( self , lowercase_ , lowercase_ , lowercase_=1) -> str: # check if the u exists if self.graph.get(lowercase_): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist __snake_case = [[w, v]] # add the other way if self.graph.get(lowercase_): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist __snake_case = [[w, u]] def _a ( self , lowercase_ , lowercase_) -> Union[str, Any]: if self.graph.get(lowercase_): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_) # the other way round if self.graph.get(lowercase_): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_) def _a ( self , lowercase_=-2 , lowercase_=-1) -> Tuple: if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase_) return visited else: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return visited def _a ( self , lowercase_=-1) -> Dict: if c == -1: __snake_case = floor(random() * 1_0_0_0_0) + 1_0 for i in range(lowercase_): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __snake_case = floor(random() * c) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1) def _a ( self , lowercase_=-2) -> int: __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] d.append(lowercase_) visited.append(lowercase_) while d: __snake_case = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def _a ( self , lowercase_) -> Union[str, Any]: return len(self.graph[u]) def _a ( self) -> List[str]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return list(lowercase_) def _a ( self) -> int: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return False def _a ( self) -> Tuple: return list(self.graph) def _a ( self , lowercase_=-2 , lowercase_=-1) -> int: __snake_case = time() self.dfs(lowercase_ , lowercase_) __snake_case = time() return end - begin def _a ( self , lowercase_=-2) -> str: __snake_case = time() self.bfs(lowercase_) __snake_case = time() return end - begin
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
1
from datetime import datetime import matplotlib.pyplot as plt import torch def A ( snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): __snake_case = False def A ( ) -> Optional[int]: '''simple docstring''' __snake_case = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __snake_case = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A ( snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' __snake_case = plt.imshow(snake_case__ ) fig.axes.get_xaxis().set_visible(snake_case__ ) fig.axes.get_yaxis().set_visible(snake_case__ ) plt.show() def A ( ) -> Optional[Any]: '''simple docstring''' __snake_case = datetime.now() __snake_case = current_time.strftime('%H:%M:%S' ) return timestamp
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
import functools def A ( snake_case__ : str , snake_case__ : str ) -> int: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) @functools.cache def min_distance(snake_case__ : int , snake_case__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __snake_case = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case__ ) , 1 + min_distance(snake_case__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **lowercase_) -> Optional[int]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __snake_case = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_)) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}") __snake_case = kwargs.pop('torchscript' , self.torchscript) __snake_case = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics) __snake_case = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level) super().__init__(**lowercase_) __UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Trace the models using torchscript'''} ) __UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) __UpperCAmelCase = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def _a ( self) -> Tuple["torch.device", int]: requires_backends(self , ['torch']) logger.info('PyTorch: setting up devices') if not self.cuda: __snake_case = torch.device('cpu') __snake_case = 0 elif is_torch_tpu_available(): __snake_case = xm.xla_device() __snake_case = 0 else: __snake_case = torch.device('cuda' if torch.cuda.is_available() else 'cpu') __snake_case = torch.cuda.device_count() return device, n_gpu @property def _a ( self) -> str: return is_torch_tpu_available() and self.tpu @property def _a ( self) -> int: requires_backends(self , ['torch']) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _a ( self) -> "torch.device": requires_backends(self , ['torch']) return self._setup_devices[0] @property def _a ( self) -> Optional[int]: requires_backends(self , ['torch']) return self._setup_devices[1] @property def _a ( self) -> int: return self.n_gpu > 0
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase__ : Dict = get_tests_dir("fixtures") UpperCAmelCase__ : Optional[int] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCAmelCase__ : str = get_tests_dir("fixtures/dummy-config.json") class __lowercase ( unittest.TestCase ): def _a ( self) -> Union[str, Any]: __snake_case = 0 def _a ( self) -> Optional[int]: __snake_case = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> Optional[Any]: __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_).to_dict() config_dict.pop('feature_extractor_type') __snake_case = WavaVecaFeatureExtractor(**lowercase_) # save in new folder model_config.save_pretrained(lowercase_) config.save_pretrained(lowercase_) __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> List[Any]: __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> List[Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier'): __snake_case = AutoFeatureExtractor.from_pretrained('bert-base') def _a ( self) -> Tuple: with self.assertRaisesRegex( lowercase_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_ , revision='aaaaaa') def _a ( self) -> Tuple: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model') def _a ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_): __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_): __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_) __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_) __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_ , trust_remote_code=lowercase_) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor') def _a ( self) -> Tuple: try: AutoConfig.register('custom' , lowercase_) AutoFeatureExtractor.register(lowercase_ , lowercase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_): AutoFeatureExtractor.register(lowercase_ , lowercase_) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = CustomFeatureExtractor.from_pretrained(lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowercase_) __snake_case = AutoFeatureExtractor.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _a ( self) -> Optional[Any]: class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = True try: AutoConfig.register('custom' , lowercase_) AutoFeatureExtractor.register(lowercase_ , lowercase_) # If remote code is not set, the default is to use local __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub __snake_case = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=lowercase_) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(not hasattr(lowercase_ , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
676
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = 1 @register_to_config def __init__( self , lowercase_ = 2_0_0_0 , lowercase_ = 0.15 , lowercase_ = 0.01 , lowercase_ = 1348.0 , lowercase_ = 1e-5 , lowercase_ = 1 , ) -> List[str]: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ = None) -> torch.FloatTensor: return sample def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None) -> List[Any]: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , lowercase_ , lowercase_ , device=lowercase_) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None) -> List[Any]: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase_ , lowercase_) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(lowercase_) , math.log(lowercase_) , lowercase_)) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def _a ( self , lowercase_ , lowercase_) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device) __snake_case = self.discrete_sigmas[timesteps].to(sample.device) __snake_case = self.get_adjacent_sigma(lowercase_ , lowercase_).to(sample.device) __snake_case = torch.zeros_like(lowercase_) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): __snake_case = diffusion.unsqueeze(-1) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=lowercase_ , device=sample.device , dtype=sample.dtype) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase_ , prev_sample_mean=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase_).to(sample.device) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape) < len(sample.shape): __snake_case = step_size.unsqueeze(-1) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device) __snake_case = self.discrete_sigmas.to(original_samples.device)[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase_) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self) -> Any: return self.config.num_train_timesteps
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCAmelCase__ : Dict = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def A ( snake_case__ : Tuple ) -> str: '''simple docstring''' __snake_case = {} state_dict.pop('pixel_mean' , snake_case__ ) state_dict.pop('pixel_std' , snake_case__ ) __snake_case = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case = key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): __snake_case = int(re.match(snake_case__ , snake_case__ ).group(2 ) ) if layer_nb == 0: __snake_case = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __snake_case = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __snake_case = key.replace('layers.2' , 'proj_out' ) __snake_case = value __snake_case = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def A ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple="ybelkada/segment-anything" ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_download(snake_case__ , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __snake_case = SamConfig() elif "sam_vit_l" in model_name: __snake_case = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __snake_case = SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: __snake_case = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __snake_case = SamConfig( vision_config=snake_case__ , ) __snake_case = torch.load(snake_case__ , map_location='cpu' ) __snake_case = replace_keys(snake_case__ ) __snake_case = SamImageProcessor() __snake_case = SamProcessor(image_processor=snake_case__ ) __snake_case = SamModel(snake_case__ ) hf_model.load_state_dict(snake_case__ ) __snake_case = hf_model.to('cuda' ) __snake_case = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = [[[400, 650]]] __snake_case = [[1]] __snake_case = processor(images=np.array(snake_case__ ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __snake_case = hf_model(**snake_case__ ) __snake_case = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 __snake_case = processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __snake_case = hf_model(**snake_case__ ) __snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 __snake_case = ((75, 275, 1725, 850),) __snake_case = processor(images=np.array(snake_case__ ) , input_boxes=snake_case__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __snake_case = hf_model(**snake_case__ ) __snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. __snake_case = [[[400, 650], [800, 650]]] __snake_case = [[1, 1]] __snake_case = processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __snake_case = hf_model(**snake_case__ ) __snake_case = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": UpperCAmelCase__ : str = argparse.ArgumentParser() UpperCAmelCase__ : Union[str, Any] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) UpperCAmelCase__ : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=2 , lowercase_=9_9 , lowercase_=0 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_2 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_="last" , lowercase_=None , lowercase_=None , ) -> Union[str, Any]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_lengths __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = gelu_activation __snake_case = sinusoidal_embeddings __snake_case = causal __snake_case = asm __snake_case = n_langs __snake_case = vocab_size __snake_case = n_special __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = summary_type __snake_case = use_proj __snake_case = scope def _a ( self) -> Dict: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_input_lengths: __snake_case = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , 2).float() __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self) -> str: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = FlaubertModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , lengths=lowercase_ , langs=lowercase_) __snake_case = model(lowercase_ , langs=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = FlaubertWithLMHeadModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Dict: __snake_case = FlaubertForQuestionAnsweringSimple(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) __snake_case = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: __snake_case = FlaubertForQuestionAnswering(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) __snake_case = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , ) __snake_case = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , ) ((__snake_case) , ) = result_with_labels.to_tuple() __snake_case = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_) ((__snake_case) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: __snake_case = FlaubertForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) __snake_case = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: __snake_case = self.num_labels __snake_case = FlaubertForTokenClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: __snake_case = self.num_choices __snake_case = FlaubertForMultipleChoice(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __snake_case = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __snake_case = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __snake_case = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _a ( self) -> Optional[int]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> str: __snake_case = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) return inputs_dict def _a ( self) -> Optional[int]: __snake_case = FlaubertModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , emb_dim=3_7) def _a ( self) -> Tuple: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_) def _a ( self) -> Tuple: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_) def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_) @slow def _a ( self) -> Optional[int]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = FlaubertModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @slow @require_torch_gpu def _a ( self) -> Optional[int]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __snake_case = True __snake_case = model_class(config=lowercase_) __snake_case = self._prepare_for_class(lowercase_ , lowercase_) __snake_case = torch.jit.trace( lowercase_ , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu'))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_ , os.path.join(lowercase_ , 'traced_model.pt')) __snake_case = torch.jit.load(os.path.join(lowercase_ , 'traced_model.pt') , map_location=lowercase_) loaded(inputs_dict['input_ids'].to(lowercase_) , inputs_dict['attention_mask'].to(lowercase_)) @require_torch class __lowercase ( unittest.TestCase ): @slow def _a ( self) -> List[str]: __snake_case = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased') __snake_case = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) with torch.no_grad(): __snake_case = model(lowercase_)[0] __snake_case = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , lowercase_) __snake_case = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4))
676
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
1
import requests UpperCAmelCase__ : Any = "" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ : List[Any] = "https://api.openweathermap.org/data/2.5/" def A ( snake_case__ : str = "Chicago" , snake_case__ : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A ( snake_case__ : str = "Kolkata, India" , snake_case__ : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A ( snake_case__ : float = 55.68 , snake_case__ : float = 12.57 , snake_case__ : str = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ : List[Any] = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = 2 @register_to_config def __init__( self , lowercase_ = 0.02 , lowercase_ = 1_0_0 , lowercase_ = 1.007 , lowercase_ = 8_0 , lowercase_ = 0.05 , lowercase_ = 5_0 , ) -> Any: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None __snake_case = None __snake_case = None # sigma(t_i) def _a ( self , lowercase_ , lowercase_ = None) -> torch.FloatTensor: return sample def _a ( self , lowercase_ , lowercase_ = None) -> Tuple: __snake_case = num_inference_steps __snake_case = np.arange(0 , self.num_inference_steps)[::-1].copy() __snake_case = torch.from_numpy(lowercase_).to(lowercase_) __snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __snake_case = torch.tensor(lowercase_ , dtype=torch.floataa , device=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ = None) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: __snake_case = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) __snake_case = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase_).to(sample.device) __snake_case = sigma + gamma * sigma __snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[KarrasVeOutput, Tuple]: __snake_case = sample_hat + sigma_hat * model_output __snake_case = (sample_hat - pred_original_sample) / sigma_hat __snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_ , derivative=lowercase_ , pred_original_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[KarrasVeOutput, Tuple]: __snake_case = sample_prev + sigma_prev * model_output __snake_case = (sample_prev - pred_original_sample) / sigma_prev __snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_ , derivative=lowercase_ , pred_original_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: raise NotImplementedError()
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> Union[str, Any]: __snake_case = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class in get_values(lowercase_): __snake_case = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=3_2 , lowercase_=2 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Tuple: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = embedding_size def _a ( self) -> Optional[int]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: __snake_case = TFMobileBertModel(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) __snake_case = [input_ids, input_mask] __snake_case = model(lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = TFMobileBertForMaskedLM(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> int: __snake_case = TFMobileBertForNextSentencePrediction(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = TFMobileBertForPreTraining(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = self.num_labels __snake_case = TFMobileBertForSequenceClassification(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = self.num_choices __snake_case = TFMobileBertForMultipleChoice(config=lowercase_) __snake_case = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1)) __snake_case = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1)) __snake_case = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1)) __snake_case = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Tuple: __snake_case = self.num_labels __snake_case = TFMobileBertForTokenClassification(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: __snake_case = TFMobileBertForQuestionAnswering(config=lowercase_) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = model(lowercase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _a ( self) -> Tuple: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def _a ( self) -> str: __snake_case = TFMobileBertModelTest.TFMobileBertModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> List[str]: self.config_tester.run_common_tests() def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_) def _a ( self) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_) def _a ( self) -> str: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_) def _a ( self) -> Tuple: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_) def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_) def _a ( self) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_) @slow def _a ( self) -> Optional[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __snake_case = TFMobileBertModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_tf class __lowercase ( unittest.TestCase ): @slow def _a ( self) -> Tuple: __snake_case = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') __snake_case = tf.constant([[0, 1, 2, 3, 4, 5]]) __snake_case = model(lowercase_)[0] __snake_case = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , lowercase_) __snake_case = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4)
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = "Hello, World!" UpperCAmelCase__ : Optional[Any] = "en_XX" def A ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ) -> List[Any]: '''simple docstring''' __snake_case = Path('data_bin' ) __snake_case = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(snake_case__ ) __snake_case = xmod.model.encoder.sentence_encoder __snake_case = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __snake_case = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , snake_case__ ) __snake_case = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __snake_case = xmod_sent_encoder.embed_tokens.weight __snake_case = xmod_sent_encoder.embed_positions.weight __snake_case = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __snake_case = xmod_sent_encoder.layernorm_embedding.weight __snake_case = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __snake_case = model.roberta.encoder.layer[i] __snake_case = xmod_sent_encoder.layers[i] # self attention __snake_case = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __snake_case = xmod_layer.self_attn.q_proj.weight __snake_case = xmod_layer.self_attn.q_proj.bias __snake_case = xmod_layer.self_attn.k_proj.weight __snake_case = xmod_layer.self_attn.k_proj.bias __snake_case = xmod_layer.self_attn.v_proj.weight __snake_case = xmod_layer.self_attn.v_proj.bias # self-attention output __snake_case = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __snake_case = xmod_layer.self_attn.out_proj.weight __snake_case = xmod_layer.self_attn.out_proj.bias __snake_case = xmod_layer.self_attn_layer_norm.weight __snake_case = xmod_layer.self_attn_layer_norm.bias # intermediate __snake_case = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __snake_case = xmod_layer.fca.weight __snake_case = xmod_layer.fca.bias # output __snake_case = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __snake_case = xmod_layer.fca.weight __snake_case = xmod_layer.fca.bias __snake_case = xmod_layer.final_layer_norm.weight __snake_case = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __snake_case = xmod_layer.adapter_layer_norm.weight __snake_case = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __snake_case = bert_output.adapter_modules[lang_code] __snake_case = xmod_layer.adapter_modules[lang_code] __snake_case = from_adapter.fca.weight __snake_case = from_adapter.fca.bias __snake_case = from_adapter.fca.weight __snake_case = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __snake_case = xmod_sent_encoder.layer_norm.weight __snake_case = xmod_sent_encoder.layer_norm.bias if classification_head: __snake_case = xmod.model.classification_heads['mnli'].dense.weight __snake_case = xmod.model.classification_heads['mnli'].dense.bias __snake_case = xmod.model.classification_heads['mnli'].out_proj.weight __snake_case = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __snake_case = xmod.model.encoder.lm_head.dense.weight __snake_case = xmod.model.encoder.lm_head.dense.bias __snake_case = xmod.model.encoder.lm_head.layer_norm.weight __snake_case = xmod.model.encoder.lm_head.layer_norm.bias __snake_case = xmod.model.encoder.lm_head.weight __snake_case = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __snake_case = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __snake_case = model(snake_case__ )[0] if classification_head: __snake_case = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case__ ) ) else: __snake_case = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __snake_case = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __snake_case = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase__ : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Dict = logging.get_logger() def A ( snake_case__ : int , snake_case__ : str , snake_case__ : LevitConfig , snake_case__ : Path , snake_case__ : bool = True ) -> Union[str, Any]: '''simple docstring''' print(f"Converting {name}..." ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __snake_case = timm.create_model('levit_128s' , pretrained=snake_case__ ) else: __snake_case = timm.create_model('levit_128' , pretrained=snake_case__ ) if hidden_sizes == 192: __snake_case = timm.create_model('levit_192' , pretrained=snake_case__ ) if hidden_sizes == 256: __snake_case = timm.create_model('levit_256' , pretrained=snake_case__ ) if hidden_sizes == 384: __snake_case = timm.create_model('levit_384' , pretrained=snake_case__ ) from_model.eval() __snake_case = LevitForImageClassificationWithTeacher(snake_case__ ).eval() __snake_case = OrderedDict() __snake_case = from_model.state_dict() __snake_case = list(from_model.state_dict().keys() ) __snake_case = list(our_model.state_dict().keys() ) print(len(snake_case__ ) , len(snake_case__ ) ) for i in range(len(snake_case__ ) ): __snake_case = weights[og_keys[i]] our_model.load_state_dict(snake_case__ ) __snake_case = torch.randn((2, 3, 224, 224) ) __snake_case = from_model(snake_case__ ) __snake_case = our_model(snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ ), "The model logits don't match the original one." __snake_case = name print(snake_case__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __snake_case = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"Pushed {checkpoint_name}" ) def A ( snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ) -> List[Any]: '''simple docstring''' __snake_case = 'imagenet-1k-id2label.json' __snake_case = 1000 __snake_case = (1, num_labels) __snake_case = 'huggingface/label-files' __snake_case = num_labels __snake_case = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) __snake_case = {int(snake_case__ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) __snake_case = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } __snake_case = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) UpperCAmelCase__ : List[str] = parser.parse_args() UpperCAmelCase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase__ : Union[str, Any] = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def A ( snake_case__ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case = test_results.split(' ' ) __snake_case = 0 __snake_case = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __snake_case = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(snake_case__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A ( snake_case__ : Optional[int] ) -> Any: '''simple docstring''' __snake_case = {} __snake_case = None __snake_case = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , snake_case__ ): __snake_case = True __snake_case = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): __snake_case = line __snake_case = False return failures class __lowercase : def __init__( self , lowercase_ , lowercase_) -> int: __snake_case = title __snake_case = doc_test_results['time_spent'].split(',')[0] __snake_case = doc_test_results['success'] __snake_case = doc_test_results['failures'] __snake_case = self.n_success + self.n_failures # Failures and success of the modeling tests __snake_case = doc_test_results @property def _a ( self) -> str: __snake_case = [self._time_spent] __snake_case = 0 for time in time_spent: __snake_case = time.split(':') # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase_) == 1: __snake_case = [0, 0, time_parts[0]] __snake_case , __snake_case , __snake_case = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds __snake_case , __snake_case , __snake_case = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F"{int(lowercase_)}h{int(lowercase_)}m{int(lowercase_)}s" @property def _a ( self) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _a ( self) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _a ( self) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" F" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _a ( self) -> Dict: __snake_case = 4_0 __snake_case = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase_ , lowercase_)} __snake_case = '' for category, failures in category_failures.items(): if len(lowercase_) == 0: continue if report != "": report += "\n\n" report += F"*{category} failures*:".ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(lowercase_) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"The following examples had failures:\n\n\n{report}\n", }, } @property def _a ( self) -> str: __snake_case = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(lowercase_) @staticmethod def _a ( ) -> List[str]: __snake_case = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('Sending the following payload') print(json.dumps({'blocks': json.loads(lowercase_)})) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase_ , ) def _a ( self) -> List[Any]: print('Sending the following payload') print(json.dumps({'blocks': json.loads(self.payload)})) __snake_case = F"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else 'All tests passed.' __snake_case = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: __snake_case = '' for key, value in failures.items(): __snake_case = value[:2_0_0] + ' [Truncated]' if len(lowercase_) > 2_5_0 else value failures_text += F"*{key}*\n_{value}_\n\n" __snake_case = job_name __snake_case = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: __snake_case = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _a ( self) -> Tuple: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.') __snake_case = self.doc_test_results.pop('job_link') self.doc_test_results.pop('failures') self.doc_test_results.pop('success') self.doc_test_results.pop('time_spent') __snake_case = sorted(self.doc_test_results.items() , key=lambda lowercase_: t[0]) for job, job_result in sorted_dict: if len(job_result['failures']): __snake_case = F"*Num failures* :{len(job_result['failed'])} \n" __snake_case = job_result['failures'] __snake_case = self.get_reply_blocks(lowercase_ , lowercase_ , lowercase_ , text=lowercase_) print('Sending the following reply') print(json.dumps({'blocks': blocks})) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"Results for {job}" , blocks=lowercase_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1) def A ( ) -> Dict: '''simple docstring''' __snake_case = os.environ['GITHUB_RUN_ID'] __snake_case = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __snake_case = requests.get(snake_case__ ).json() __snake_case = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) __snake_case = math.ceil((result['total_count'] - 100) / 100 ) for i in range(snake_case__ ): __snake_case = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , snake_case__ ) return {} def A ( snake_case__ : str ) -> Tuple: '''simple docstring''' __snake_case = {} if os.path.exists(snake_case__ ): __snake_case = os.listdir(snake_case__ ) for file in files: try: with open(os.path.join(snake_case__ , snake_case__ ) , encoding='utf-8' ) as f: __snake_case = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(snake_case__ , snake_case__ )}." ) from e return _artifact def A ( ) -> List[Any]: '''simple docstring''' class __lowercase : def __init__( self , lowercase_) -> int: __snake_case = name __snake_case = [] def __str__( self) -> List[Any]: return self.name def _a ( self , lowercase_) -> int: self.paths.append({'name': self.name, 'path': path}) __snake_case = {} __snake_case = filter(os.path.isdir , os.listdir() ) for directory in directories: __snake_case = directory if artifact_name not in _available_artifacts: __snake_case = Artifact(snake_case__ ) _available_artifacts[artifact_name].add_path(snake_case__ ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase__ : int = get_job_links() UpperCAmelCase__ : Tuple = retrieve_available_artifacts() UpperCAmelCase__ : List[Any] = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase__ : str = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase__ : str = github_actions_job_links.get("run_doctests") UpperCAmelCase__ : Optional[int] = available_artifacts["doc_tests_gpu_test_reports"].paths[0] UpperCAmelCase__ : Any = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = handle_test_results(artifact["stats"]) UpperCAmelCase__ : Tuple = failed UpperCAmelCase__ : str = success UpperCAmelCase__ : Optional[Any] = time_spent[1:-1] + ", " UpperCAmelCase__ : int = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): UpperCAmelCase__ : Union[str, Any] = line.replace("FAILED ", "") UpperCAmelCase__ : Optional[int] = line.split()[0].replace("\n", "") if "::" in line: UpperCAmelCase__ , UpperCAmelCase__ : Any = line.split("::") else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase__ : str = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase__ : Any = all_failures[test] if test in all_failures else "N/A" UpperCAmelCase__ : Tuple = failure break UpperCAmelCase__ : Dict = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "spiece.model"} UpperCAmelCase__ : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<sep>" , lowercase_="<pad>" , lowercase_="<cls>" , lowercase_="<mask>" , lowercase_=["<eop>", "<eod>"] , lowercase_ = None , **lowercase_ , ) -> None: __snake_case = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) __snake_case = 3 __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase_) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.') __snake_case = jieba __snake_case = str.maketrans(' \n' , '\u2582\u2583') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a ( self) -> Dict: return len(self.sp_model) def _a ( self) -> List[str]: __snake_case = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Dict: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self , lowercase_) -> Dict: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _a ( self , lowercase_) -> List[str]: if self.remove_space: __snake_case = ' '.join(inputs.strip().split()) else: __snake_case = inputs __snake_case = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case = unicodedata.normalize('NFKD' , lowercase_) __snake_case = ''.join([c for c in outputs if not unicodedata.combining(lowercase_)]) if self.do_lower_case: __snake_case = outputs.lower() return outputs def _a ( self , lowercase_) -> List[str]: __snake_case = self.preprocess_text(lowercase_) __snake_case = self.sp_model.encode(lowercase_ , out_type=lowercase_) __snake_case = [] for piece in pieces: if len(lowercase_) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case = cur_pieces[1:] else: __snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowercase_) else: new_pieces.append(lowercase_) return new_pieces def _a ( self , lowercase_) -> Optional[Any]: return self.sp_model.PieceToId(lowercase_) def _a ( self , lowercase_) -> Any: return self.sp_model.IdToPiece(lowercase_) def _a ( self , lowercase_) -> Dict: __snake_case = ''.join(lowercase_).replace(lowercase_ , ' ').strip() return out_string def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is not None: return ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1, 1] return ([0] * len(lowercase_)) + [1, 1] def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not os.path.isdir(lowercase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __snake_case = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , 'wb') as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,) def _a ( self , *lowercase_ , **lowercase_) -> Optional[Any]: __snake_case = super()._decode(*lowercase_ , **lowercase_) __snake_case = text.replace(' ' , '').replace('\u2582' , ' ').replace('\u2583' , '\n') return text
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) def A ( snake_case__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(snake_case__ , np.ndarray ): return list(tensor.shape ) __snake_case = tf.shape(snake_case__ ) if tensor.shape == tf.TensorShape(snake_case__ ): return dynamic __snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case__ )] def A ( snake_case__ : tf.Tensor , snake_case__ : Optional[int] = None , snake_case__ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=snake_case__ , name=snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=1e-5 , snake_case__ : List[str]=-1 ) -> List[Any]: '''simple docstring''' # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case__ , snake_case__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __snake_case , __snake_case = tf.nn.moments(snake_case__ , axes=[axis] , keepdims=snake_case__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __snake_case = [1] * inputs.shape.rank __snake_case = shape_list(snake_case__ )[axis] __snake_case = tf.reshape(snake_case__ , snake_case__ ) __snake_case = tf.reshape(snake_case__ , snake_case__ ) # Compute layer normalization using the batch_normalization # function. __snake_case = tf.nn.batch_normalization( snake_case__ , snake_case__ , snake_case__ , offset=snake_case__ , scale=snake_case__ , variance_epsilon=snake_case__ , ) return outputs def A ( snake_case__ : Any , snake_case__ : str=0 , snake_case__ : str=-1 ) -> Optional[int]: '''simple docstring''' # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __snake_case = tf.shape(snake_case__ ) __snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case__ , snake_case__ ) def A ( snake_case__ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(snake_case__ , tf.Tensor ): __snake_case = tf.convert_to_tensor(snake_case__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __snake_case = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( snake_case__ : tf.Tensor , snake_case__ : int , snake_case__ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( snake_case__ , tf.cast(snake_case__ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case__ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : str ) -> Tuple: '''simple docstring''' __snake_case = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __snake_case = [x for x in data if len(snake_case__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) __snake_case = np.asarray(snake_case__ ) __snake_case = 1 __snake_case = np.array_split(snake_case__ , snake_case__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __snake_case = np.array_split(snake_case__ , snake_case__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case__ ): __snake_case = chunk_data else: __snake_case = data def A ( snake_case__ : Optional[int] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' if name in group.attrs: __snake_case = [n.decode('utf8' ) if hasattr(snake_case__ , 'decode' ) else n for n in group.attrs[name]] else: __snake_case = [] __snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(snake_case__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def A ( snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' def _expand_single_ad_tensor(snake_case__ : List[Any] ): if isinstance(snake_case__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case__ )
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class __lowercase : def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = question_encoder __snake_case = generator __snake_case = self.question_encoder def _a ( self , lowercase_) -> List[str]: if os.path.isfile(lowercase_): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = os.path.join(lowercase_ , 'question_encoder_tokenizer') __snake_case = os.path.join(lowercase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(lowercase_) self.generator.save_pretrained(lowercase_) @classmethod def _a ( cls , lowercase_ , **lowercase_) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __snake_case = kwargs.pop('config' , lowercase_) if config is None: __snake_case = RagConfig.from_pretrained(lowercase_) __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=lowercase_ , generator=lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> Tuple: return self.current_tokenizer(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.generator.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.generator.decode(*lowercase_ , **lowercase_) def _a ( self) -> int: __snake_case = self.question_encoder def _a ( self) -> Optional[int]: __snake_case = self.generator def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase_ , ) if max_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) __snake_case = labels['input_ids'] return model_inputs
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : List[str] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
676
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
1
from __future__ import annotations from math import pi def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
676
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' # Initialise PyTorch model __snake_case = BertConfig.from_json_file(snake_case__ ) print(f"Building PyTorch model from configuration: {config}" ) __snake_case = BertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
676
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = BertJapaneseTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def _a ( self) -> List[Any]: super().setUp() __snake_case = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _a ( self , lowercase_) -> Union[str, Any]: __snake_case = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def _a ( self , lowercase_) -> Dict: __snake_case , __snake_case = self.get_input_output_texts(lowercase_) __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) __snake_case = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_) return text, ids def _a ( self) -> Optional[int]: pass # TODO add if relevant def _a ( self) -> List[str]: pass # TODO add if relevant def _a ( self) -> Optional[Any]: pass # TODO add if relevant def _a ( self) -> int: __snake_case = self.tokenizer_class(self.vocab_file) __snake_case = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。') self.assertListEqual(lowercase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def _a ( self) -> List[str]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab') self.assertIsNotNone(lowercase_) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(lowercase_ , 'wb') as handle: pickle.dump(lowercase_ , lowercase_) with open(lowercase_ , 'rb') as handle: __snake_case = pickle.load(lowercase_) __snake_case = tokenizer_new.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _a ( self) -> List[str]: __snake_case = MecabTokenizer(mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _a ( self) -> List[Any]: try: __snake_case = MecabTokenizer(mecab_dic='unidic_lite') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _a ( self) -> Any: try: __snake_case = MecabTokenizer(mecab_dic='unidic') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _a ( self) -> Union[str, Any]: __snake_case = MecabTokenizer(do_lower_case=lowercase_ , mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _a ( self) -> int: try: __snake_case = MecabTokenizer( do_lower_case=lowercase_ , normalize_text=lowercase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def _a ( self) -> Any: __snake_case = MecabTokenizer(normalize_text=lowercase_ , mecab_dic='ipadic') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def _a ( self) -> List[str]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi') self.assertIsNotNone(lowercase_) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(lowercase_ , 'wb') as handle: pickle.dump(lowercase_ , lowercase_) with open(lowercase_ , 'rb') as handle: __snake_case = pickle.load(lowercase_) __snake_case = tokenizer_new.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) @require_sudachi def _a ( self) -> Optional[Any]: __snake_case = SudachiTokenizer(sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def _a ( self) -> Tuple: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国', '人', '参政', '権']) @require_sudachi def _a ( self) -> Any: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国人', '参政権']) @require_sudachi def _a ( self) -> Optional[int]: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C') self.assertListEqual(tokenizer.tokenize('外国人参政権') , ['外国人参政権']) @require_sudachi def _a ( self) -> Union[str, Any]: __snake_case = SudachiTokenizer(do_lower_case=lowercase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def _a ( self) -> List[Any]: __snake_case = SudachiTokenizer(normalize_text=lowercase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def _a ( self) -> str: __snake_case = SudachiTokenizer(trim_whitespace=lowercase_ , sudachi_dict_type='core') self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def _a ( self) -> List[Any]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp') self.assertIsNotNone(lowercase_) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin') with open(lowercase_ , 'wb') as handle: pickle.dump(lowercase_ , lowercase_) with open(lowercase_ , 'rb') as handle: __snake_case = pickle.load(lowercase_) __snake_case = tokenizer_new.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) @require_jumanpp def _a ( self) -> Any: __snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _a ( self) -> List[str]: __snake_case = JumanppTokenizer(do_lower_case=lowercase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _a ( self) -> int: __snake_case = JumanppTokenizer(normalize_text=lowercase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _a ( self) -> List[str]: __snake_case = JumanppTokenizer(trim_whitespace=lowercase_) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ') , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def _a ( self) -> int: __snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。') , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def _a ( self) -> int: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] __snake_case = {} for i, token in enumerate(lowercase_): __snake_case = i __snake_case = WordpieceTokenizer(vocab=lowercase_ , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('こんにちは') , ['こんにちは']) self.assertListEqual(tokenizer.tokenize('こんばんは') , ['こん', '##ばんは']) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは') , ['こん', '##ばんは', '[UNK]', 'こんにちは']) def _a ( self) -> Optional[int]: __snake_case = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp') __snake_case = tokenizer.subword_tokenizer __snake_case = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。') self.assertListEqual(lowercase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。']) __snake_case = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは') self.assertListEqual(lowercase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは']) def _a ( self) -> Union[str, Any]: __snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese') __snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=lowercase_) __snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=lowercase_) __snake_case = tokenizer.build_inputs_with_special_tokens(lowercase_) __snake_case = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = BertJapaneseTokenizer __UpperCAmelCase = False def _a ( self) -> Optional[int]: super().setUp() __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _a ( self , **lowercase_) -> Union[str, Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowercase_) def _a ( self , lowercase_) -> Any: __snake_case = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def _a ( self) -> List[Any]: pass # TODO add if relevant def _a ( self) -> Dict: pass # TODO add if relevant def _a ( self) -> List[str]: pass # TODO add if relevant def _a ( self) -> str: __snake_case = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character') __snake_case = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。') self.assertListEqual( lowercase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def _a ( self) -> Optional[Any]: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case = {} for i, token in enumerate(lowercase_): __snake_case = i __snake_case = CharacterTokenizer(vocab=lowercase_ , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('こんにちは') , ['こ', 'ん', 'に', 'ち', 'は']) self.assertListEqual(tokenizer.tokenize('こんにちほ') , ['こ', 'ん', 'に', 'ち', '[UNK]']) def _a ( self) -> Union[str, Any]: __snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char') __snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=lowercase_) __snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=lowercase_) __snake_case = tokenizer.build_inputs_with_special_tokens(lowercase_) __snake_case = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( unittest.TestCase ): def _a ( self) -> Union[str, Any]: __snake_case = 'cl-tohoku/bert-base-japanese' __snake_case = AutoTokenizer.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) class __lowercase ( unittest.TestCase ): def _a ( self) -> Dict: __snake_case = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING') as cm: BertTokenizer.from_pretrained(lowercase_) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.')) __snake_case = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING') as cm: BertJapaneseTokenizer.from_pretrained(lowercase_) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.'))
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ : str = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''esm''' def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0_2_6 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_="absolute" , lowercase_=True , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = emb_layer_norm_before __snake_case = token_dropout __snake_case = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.') __snake_case = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_): __snake_case = EsmFoldConfig(**lowercase_) __snake_case = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!') __snake_case = get_default_vocab_list() else: __snake_case = vocab_list else: __snake_case = None __snake_case = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowercase_): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!') def _a ( self) -> List[Any]: __snake_case = super().to_dict() if isinstance(self.esmfold_config , lowercase_): __snake_case = self.esmfold_config.to_dict() return output @dataclass class __lowercase : __UpperCAmelCase = None __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = 0 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = 128 __UpperCAmelCase = None def _a ( self) -> int: if self.trunk is None: __snake_case = TrunkConfig() elif isinstance(self.trunk , lowercase_): __snake_case = TrunkConfig(**self.trunk) def _a ( self) -> Optional[Any]: __snake_case = asdict(self) __snake_case = self.trunk.to_dict() return output @dataclass class __lowercase : __UpperCAmelCase = 48 __UpperCAmelCase = 1_024 __UpperCAmelCase = 128 __UpperCAmelCase = 32 __UpperCAmelCase = 32 __UpperCAmelCase = 32 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = False __UpperCAmelCase = 4 __UpperCAmelCase = 128 __UpperCAmelCase = None def _a ( self) -> int: if self.structure_module is None: __snake_case = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_): __snake_case = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}.") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F" {self.sequence_state_dim} and {self.sequence_state_dim}.") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}.") __snake_case = self.sequence_state_dim // self.sequence_head_width __snake_case = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.") if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.") if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}.") def _a ( self) -> str: __snake_case = asdict(self) __snake_case = self.structure_module.to_dict() return output @dataclass class __lowercase : __UpperCAmelCase = 384 __UpperCAmelCase = 128 __UpperCAmelCase = 16 __UpperCAmelCase = 128 __UpperCAmelCase = 12 __UpperCAmelCase = 4 __UpperCAmelCase = 8 __UpperCAmelCase = 0.1 __UpperCAmelCase = 8 __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 7 __UpperCAmelCase = 10 __UpperCAmelCase = 1e-8 __UpperCAmelCase = 1e5 def _a ( self) -> Dict: return asdict(self) def A ( ) -> Any: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A ( snake_case__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def A ( snake_case__ : Tuple ) -> int: '''simple docstring''' class __lowercase : def __init__( self , lowercase_) -> Optional[Any]: __snake_case = metric_id class __lowercase : __UpperCAmelCase = [MetricMock(lowerCamelCase__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def _a ( self) -> str: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def A ( snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if "tmp_path" in args: __snake_case = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(snake_case__ , match='https://huggingface.co/docs/evaluate' ): func(*snake_case__ )
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''input_features''', '''attention_mask'''] def __init__( self , lowercase_=8_0 , lowercase_=1_6_0_0_0 , lowercase_=8_0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_=True , **lowercase_ , ) -> Optional[int]: super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_) __snake_case = num_mel_bins __snake_case = do_ceptral_normalize __snake_case = normalize_means __snake_case = normalize_vars __snake_case = True def _a ( self , lowercase_ , ) -> np.ndarray: __snake_case = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __snake_case = torch.from_numpy(lowercase_).unsqueeze(0) __snake_case = ta_kaldi.fbank(lowercase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def _a ( lowercase_ , lowercase_ , lowercase_ = True , lowercase_ = True , lowercase_ = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: __snake_case = x[:input_length].mean(axis=0) __snake_case = np.subtract(lowercase_ , lowercase_) if normalize_vars: __snake_case = x[:input_length].std(axis=0) __snake_case = np.divide(lowercase_ , lowercase_) if input_length < x.shape[0]: __snake_case = padding_value # make sure array is in float32 __snake_case = x.astype(np.floataa) return x def _a ( self , lowercase_ , lowercase_ = None) -> List[np.ndarray]: __snake_case = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase_ , lowercase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase_ , lowercase_) ] def __call__( self , lowercase_ , lowercase_ = False , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" F" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __snake_case = isinstance(lowercase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __snake_case = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __snake_case = [np.asarray(lowercase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray): __snake_case = np.asarray(lowercase_ , dtype=np.floataa) elif isinstance(lowercase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __snake_case = raw_speech.astype(np.floataa) # always return batch if not is_batched: __snake_case = [raw_speech] # extract fbank features __snake_case = [self._extract_fbank_features(lowercase_) for waveform in raw_speech] # convert into correct format for padding __snake_case = BatchFeature({'input_features': features}) __snake_case = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format __snake_case = padded_inputs.get('input_features') if isinstance(input_features[0] , lowercase_): __snake_case = [np.asarray(lowercase_ , dtype=np.floataa) for feature in input_features] __snake_case = padded_inputs.get('attention_mask') if attention_mask is not None: __snake_case = [np.asarray(lowercase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __snake_case = ( np.array(lowercase_ , dtype=np.intaa) if self._get_padding_strategies(lowercase_ , max_length=lowercase_) is not PaddingStrategy.DO_NOT_PAD else None ) __snake_case = self.normalize( padded_inputs['input_features'] , attention_mask=lowercase_) if return_tensors is not None: __snake_case = padded_inputs.convert_to_tensors(lowercase_) return padded_inputs
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Any = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = 3_2 , lowercase_=PILImageResampling.BILINEAR , lowercase_ = True , **lowercase_ , ) -> None: __snake_case = do_resize __snake_case = do_rescale __snake_case = size_divisor __snake_case = resample super().__init__(**lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: __snake_case , __snake_case = get_image_size(lowercase_) # Rounds the height and width down to the closest multiple of size_divisor __snake_case = height // size_divisor * size_divisor __snake_case = width // size_divisor * size_divisor __snake_case = resize(lowercase_ , (new_h, new_w) , resample=lowercase_ , data_format=lowercase_ , **lowercase_) return image def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(image=lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> BatchFeature: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = size_divisor if size_divisor is not None else self.size_divisor __snake_case = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing') __snake_case = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError('Invalid image(s)') # All transformations expect numpy arrays. __snake_case = [to_numpy_array(lowercase_) for img in images] if do_resize: __snake_case = [self.resize(lowercase_ , size_divisor=lowercase_ , resample=lowercase_) for image in images] if do_rescale: __snake_case = [self.rescale(lowercase_ , scale=1 / 2_5_5) for image in images] __snake_case = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
676
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
1
UpperCAmelCase__ : List[Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''CLIPImageProcessor''' __UpperCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Dict: __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) __snake_case = kwargs.pop('feature_extractor') __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> List[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __snake_case = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if images is not None: __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> Any: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _a ( self) -> Dict: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = IFInpaintingPipeline __UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _a ( self) -> Optional[Any]: return self._get_dummy_components() def _a ( self , lowercase_ , lowercase_=0) -> Any: if str(lowercase_).startswith('mps'): __snake_case = torch.manual_seed(lowercase_) else: __snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_) __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_) __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def _a ( self) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _a ( self) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def _a ( self) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def _a ( self) -> Optional[Any]: self._test_save_load_local() def _a ( self) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
676
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
1
UpperCAmelCase__ : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def A ( snake_case__ : str , snake_case__ : str , snake_case__ : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __snake_case = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(snake_case__ )}" ) raise ValueError(snake_case__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , lowercase_ = 7_6_8 , ) -> str: super().__init__() __snake_case = nn.Parameter(torch.zeros(1 , lowercase_)) __snake_case = nn.Parameter(torch.ones(1 , lowercase_)) def _a ( self , lowercase_ = None , lowercase_ = None , ) -> Optional[Any]: __snake_case = nn.Parameter(self.mean.to(lowercase_).to(lowercase_)) __snake_case = nn.Parameter(self.std.to(lowercase_).to(lowercase_)) return self def _a ( self , lowercase_) -> List[str]: __snake_case = (embeds - self.mean) * 1.0 / self.std return embeds def _a ( self , lowercase_) -> int: __snake_case = (embeds * self.std) + self.mean return embeds
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : List[Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''beit''' def __init__( self , lowercase_=8_1_9_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=2_2_4 , lowercase_=1_6 , lowercase_=3 , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=0.1 , lowercase_=0.1 , lowercase_=True , lowercase_=[3, 5, 7, 1_1] , lowercase_=[1, 2, 3, 6] , lowercase_=True , lowercase_=0.4 , lowercase_=2_5_6 , lowercase_=1 , lowercase_=False , lowercase_=2_5_5 , **lowercase_ , ) -> str: super().__init__(**lowercase_) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = use_mask_token __snake_case = use_absolute_position_embeddings __snake_case = use_relative_position_bias __snake_case = use_shared_relative_position_bias __snake_case = layer_scale_init_value __snake_case = drop_path_rate __snake_case = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case = out_indices __snake_case = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case = use_auxiliary_head __snake_case = auxiliary_loss_weight __snake_case = auxiliary_channels __snake_case = auxiliary_num_convs __snake_case = auxiliary_concat_input __snake_case = semantic_loss_ignore_index class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def _a ( self) -> float: return 1e-4
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM __snake_case = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowercase_ , scheduler=lowercase_) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowercase_): __snake_case = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __snake_case = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowercase_ , lowercase_) and len(lowercase_) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowercase_)}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators.") __snake_case = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowercase_) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output __snake_case = self.unet(lowercase_ , lowercase_).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_).prev_sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) __snake_case = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_)
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) def A ( snake_case__ : List[Any] , snake_case__ : Any=False ) -> str: '''simple docstring''' __snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def A ( snake_case__ : List[str] , snake_case__ : str , snake_case__ : Any=False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __snake_case = '' else: __snake_case = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) __snake_case = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[ : config.hidden_size, : ] __snake_case = in_proj_bias[: config.hidden_size] __snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case = in_proj_weight[ -config.hidden_size :, : ] __snake_case = in_proj_bias[-config.hidden_size :] def A ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Dict: '''simple docstring''' __snake_case = dct.pop(snake_case__ ) __snake_case = val def A ( ) -> str: '''simple docstring''' __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def A ( snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __snake_case = DeiTConfig() # all deit models have fine-tuned heads __snake_case = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __snake_case = 1000 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-1k-id2label.json' __snake_case = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) __snake_case = {int(snake_case__ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = int(deit_name[-6:-4] ) __snake_case = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __snake_case = 192 __snake_case = 768 __snake_case = 12 __snake_case = 3 elif deit_name[9:].startswith('small' ): __snake_case = 384 __snake_case = 1536 __snake_case = 12 __snake_case = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __snake_case = 1024 __snake_case = 4096 __snake_case = 24 __snake_case = 16 # load original model from timm __snake_case = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __snake_case = timm_model.state_dict() __snake_case = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ ) # load HuggingFace model __snake_case = DeiTForImageClassificationWithTeacher(snake_case__ ).eval() model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by DeiTImageProcessor __snake_case = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __snake_case = DeiTImageProcessor(size=snake_case__ , crop_size=config.image_size ) __snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) __snake_case = encoding['pixel_values'] __snake_case = model(snake_case__ ) __snake_case = timm_model(snake_case__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1e-3 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase__ : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''new-model''' if is_tf_available(): class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = NewModelConfig @require_tf class __lowercase ( unittest.TestCase ): @slow def _a ( self) -> List[Any]: __snake_case = 'bert-base-cased' __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Any: __snake_case = 'bert-base-cased' __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForPreTraining.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Any: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForCausalLM.from_pretrained(lowercase_) __snake_case , __snake_case = TFAutoModelForCausalLM.from_pretrained(lowercase_ , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForMaskedLM.from_pretrained(lowercase_) __snake_case , __snake_case = TFAutoModelForMaskedLM.from_pretrained(lowercase_ , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Tuple: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_) __snake_case , __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForSequenceClassification.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow def _a ( self) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForQuestionAnswering.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) @slow @require_tensorflow_probability def _a ( self) -> str: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case = AutoConfig.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase_) __snake_case , __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase_ , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=lowercase_) , 1_4_4_1_0) def _a ( self) -> str: __snake_case = TFAutoModelWithLMHead.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual(model.num_parameters() , 1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=lowercase_) , 1_4_4_1_0) def _a ( self) -> int: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __snake_case = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny') self.assertIsInstance(lowercase_ , lowercase_) __snake_case = copy.deepcopy(model.config) __snake_case = ['FunnelBaseModel'] __snake_case = TFAutoModel.from_config(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_) __snake_case = TFAutoModel.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _a ( self) -> Union[str, Any]: try: AutoConfig.register('new-model' , lowercase_) __snake_case = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(lowercase_): auto_class.register(lowercase_ , lowercase_) auto_class.register(lowercase_ , lowercase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_): auto_class.register(lowercase_ , lowercase_) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = BertModelTester(self).get_config() __snake_case = NewModelConfig(**tiny_config.to_dict()) __snake_case = auto_class.from_config(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_) __snake_case = auto_class.from_pretrained(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _a ( self) -> List[str]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier'): __snake_case = TFAutoModel.from_pretrained('bert-base') def _a ( self) -> Any: with self.assertRaisesRegex( lowercase_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case = TFAutoModel.from_pretrained(lowercase_ , revision='aaaaaa') def _a ( self) -> Optional[Any]: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __snake_case = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model') def _a ( self) -> List[Any]: with self.assertRaisesRegex(lowercase_ , 'Use `from_pt=True` to load this model'): __snake_case = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only') def _a ( self) -> int: # Make sure we have cached the model. __snake_case = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint __snake_case = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
def A ( snake_case__ : list ) -> list: '''simple docstring''' __snake_case = len(snake_case__ ) for _ in range(snake_case__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase__ : List[str] = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
from __future__ import annotations import numpy as np def A ( snake_case__ : list[float] ) -> Any: '''simple docstring''' return np.maximum(0 , snake_case__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''informer''' __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_ = "student_t" , lowercase_ = "nll" , lowercase_ = 1 , lowercase_ = None , lowercase_ = "mean" , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = 6_4 , lowercase_ = 3_2 , lowercase_ = 3_2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = True , lowercase_ = "gelu" , lowercase_ = 0.05 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 1_0_0 , lowercase_ = 0.02 , lowercase_=True , lowercase_ = "prob" , lowercase_ = 5 , lowercase_ = True , **lowercase_ , ) -> Optional[int]: # time series specific configuration __snake_case = prediction_length __snake_case = context_length or prediction_length __snake_case = distribution_output __snake_case = loss __snake_case = input_size __snake_case = num_time_features __snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __snake_case = scaling __snake_case = num_dynamic_real_features __snake_case = num_static_real_features __snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') __snake_case = cardinality else: __snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowercase_) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') __snake_case = embedding_dimension else: __snake_case = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] __snake_case = num_parallel_samples # Transformer architecture configuration __snake_case = input_size * len(self.lags_sequence) + self._number_of_features __snake_case = d_model __snake_case = encoder_attention_heads __snake_case = decoder_attention_heads __snake_case = encoder_ffn_dim __snake_case = decoder_ffn_dim __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = activation_function __snake_case = init_std __snake_case = use_cache # Informer __snake_case = attention_type __snake_case = sampling_factor __snake_case = distil super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
676
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
676
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
1
from math import isqrt def A ( snake_case__ : int ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__ ) + 1 ) ) def A ( snake_case__ : int = 10**6 ) -> int: '''simple docstring''' __snake_case = 0 __snake_case = 1 __snake_case = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
676
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
1
from __future__ import annotations UpperCAmelCase__ : List[Any] = 1.6_021e-19 # units = C def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ) -> tuple[str, float]: '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
1
from __future__ import annotations from random import choice def A ( snake_case__ : Any ) -> List[str]: '''simple docstring''' return choice(snake_case__ ) def A ( snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = random_pivot(snake_case__ ) # partition based on pivot # linear time __snake_case = [e for e in lst if e < pivot] __snake_case = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case__ ) < k - 1: return kth_number(snake_case__ , k - len(snake_case__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase__ : int = TypeVar("T") class __lowercase ( Generic[T] ): def __init__( self , lowercase_ , lowercase_) -> None: __snake_case = None __snake_case = len(lowercase_) __snake_case = [any_type for _ in range(self.N)] + arr __snake_case = fnc self.build() def _a ( self) -> None: for p in range(self.N - 1 , 0 , -1): __snake_case = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _a ( self , lowercase_ , lowercase_) -> None: p += self.N __snake_case = v while p > 1: __snake_case = p // 2 __snake_case = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _a ( self , lowercase_ , lowercase_) -> T | None: # noqa: E741 __snake_case , __snake_case = l + self.N, r + self.N __snake_case = None while l <= r: if l % 2 == 1: __snake_case = self.st[l] if res is None else self.fn(lowercase_ , self.st[l]) if r % 2 == 0: __snake_case = self.st[r] if res is None else self.fn(lowercase_ , self.st[r]) __snake_case , __snake_case = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase__ : Optional[Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase__ : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase__ : Optional[Any] = SegmentTree(test_array, min) UpperCAmelCase__ : str = SegmentTree(test_array, max) UpperCAmelCase__ : List[Any] = SegmentTree(test_array, lambda a, b: a + b) def A ( ) -> None: '''simple docstring''' for i in range(len(snake_case__ ) ): for j in range(snake_case__ , len(snake_case__ ) ): __snake_case = reduce(snake_case__ , test_array[i : j + 1] ) __snake_case = reduce(snake_case__ , test_array[i : j + 1] ) __snake_case = reduce(lambda snake_case__ , snake_case__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(snake_case__ , snake_case__ ) assert max_range == max_segment_tree.query(snake_case__ , snake_case__ ) assert sum_range == sum_segment_tree.query(snake_case__ , snake_case__ ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase__ : List[str] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase__ : Optional[int] = "pt" elif is_tf_available(): UpperCAmelCase__ : int = "tf" else: UpperCAmelCase__ : Union[str, Any] = "jax" class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def _a ( self) -> List[Any]: super().setUp() __snake_case = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def _a ( self) -> Union[str, Any]: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver') def _a ( self , **lowercase_) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_) def _a ( self , lowercase_ , lowercase_=False , lowercase_=2_0 , lowercase_=5) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case = [] for i in range(len(lowercase_)): try: __snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_) except UnicodeDecodeError: pass toks.append((i, tok)) __snake_case = list(filter(lambda lowercase_: re.match(r'^[ a-zA-Z]+$' , t[1]) , lowercase_)) __snake_case = list(filter(lambda lowercase_: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase_) , lowercase_)) if max_length is not None and len(lowercase_) > max_length: __snake_case = toks[:max_length] if min_length is not None and len(lowercase_) < min_length and len(lowercase_) > 0: while len(lowercase_) < min_length: __snake_case = toks + toks # toks_str = [t[1] for t in toks] __snake_case = [t[0] for t in toks] # Ensure consistency __snake_case = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_) if " " not in output_txt and len(lowercase_) > 1: __snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_) ) if with_prefix_space: __snake_case = ' ' + output_txt __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) return output_txt, output_ids def _a ( self) -> Optional[Any]: __snake_case = self.perceiver_tokenizer __snake_case = 'Unicode €.' __snake_case = tokenizer(lowercase_) __snake_case = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , lowercase_) # decoding __snake_case = tokenizer.decode(lowercase_) self.assertEqual(lowercase_ , '[CLS]Unicode €.[SEP]') __snake_case = tokenizer('e è é ê ë') __snake_case = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , lowercase_) # decoding __snake_case = tokenizer.decode(lowercase_) self.assertEqual(lowercase_ , '[CLS]e è é ê ë[SEP]') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , '[CLS]e è é ê ë[SEP]') def _a ( self) -> int: __snake_case = self.perceiver_tokenizer __snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __snake_case = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_) self.assertIsInstance(lowercase_ , lowercase_) if FRAMEWORK != "jax": __snake_case = list(batch.input_ids.numpy()[0]) else: __snake_case = list(batch.input_ids.tolist()[0]) self.assertListEqual(lowercase_ , lowercase_) self.assertEqual((2, 3_8) , batch.input_ids.shape) self.assertEqual((2, 3_8) , batch.attention_mask.shape) def _a ( self) -> List[Any]: __snake_case = self.perceiver_tokenizer __snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowercase_) self.assertIn('attention_mask' , lowercase_) self.assertNotIn('decoder_input_ids' , lowercase_) self.assertNotIn('decoder_attention_mask' , lowercase_) def _a ( self) -> str: __snake_case = self.perceiver_tokenizer __snake_case = [ 'Summary of the text.', 'Another summary.', ] __snake_case = tokenizer( text_target=lowercase_ , max_length=3_2 , padding='max_length' , truncation=lowercase_ , return_tensors=lowercase_) self.assertEqual(3_2 , targets['input_ids'].shape[1]) def _a ( self) -> List[str]: # safety check on max_len default value so we are sure the test works __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length , 4_2) # Now let's start the test __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ' He is very happy, UNwant\u00E9d,running' __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) tokenizer.save_pretrained(lowercase_) __snake_case = tokenizer.__class__.from_pretrained(lowercase_) __snake_case = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) self.assertListEqual(lowercase_ , lowercase_) shutil.rmtree(lowercase_) __snake_case = self.get_tokenizers(model_max_length=4_2) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) __snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) tokenizer.save_pretrained(lowercase_) __snake_case = tokenizer.__class__.from_pretrained(lowercase_) __snake_case = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) self.assertListEqual(lowercase_ , lowercase_) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 4_2) __snake_case = tokenizer.__class__.from_pretrained(lowercase_ , model_max_length=4_3) self.assertEqual(tokenizer.model_max_length , 4_3) shutil.rmtree(lowercase_) def _a ( self) -> Optional[int]: __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_) with open(os.path.join(lowercase_ , 'special_tokens_map.json') , encoding='utf-8') as json_file: __snake_case = json.load(lowercase_) with open(os.path.join(lowercase_ , 'tokenizer_config.json') , encoding='utf-8') as json_file: __snake_case = json.load(lowercase_) __snake_case = [F"<extra_id_{i}>" for i in range(1_2_5)] __snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase_ , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(lowercase_ , lowercase_) with open(os.path.join(lowercase_ , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(lowercase_ , lowercase_) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case = tokenizer_class.from_pretrained( lowercase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowercase_)] __snake_case = tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def _a ( self) -> Union[str, Any]: __snake_case = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8]) , '�') def _a ( self) -> Optional[int]: pass def _a ( self) -> int: pass def _a ( self) -> Union[str, Any]: pass def _a ( self) -> List[Any]: pass def _a ( self) -> Optional[int]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __snake_case = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case = tokenizer.convert_tokens_to_string(lowercase_) self.assertIsInstance(lowercase_ , lowercase_)
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''altclip_text_model''' def __init__( self , lowercase_=2_5_0_0_0_2 , lowercase_=1_0_2_4 , lowercase_=2_4 , lowercase_=1_6 , lowercase_=4_0_9_6 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_4 , lowercase_=1 , lowercase_=0.02 , lowercase_=0.02 , lowercase_=1e-05 , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_="absolute" , lowercase_=True , lowercase_=7_6_8 , **lowercase_ , ) -> int: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = initializer_factor __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = project_dim class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''altclip_vision_model''' def __init__( self , lowercase_=7_6_8 , lowercase_=3_0_7_2 , lowercase_=5_1_2 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3 , lowercase_=2_2_4 , lowercase_=3_2 , lowercase_="quick_gelu" , lowercase_=1e-5 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , **lowercase_ , ) -> List[str]: super().__init__(**lowercase_) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = num_channels __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = initializer_factor __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act @classmethod def _a ( cls , lowercase_ , **lowercase_) -> "PretrainedConfig": cls._set_token_in_kwargs(lowercase_) __snake_case , __snake_case = cls.get_config_dict(lowercase_ , **lowercase_) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type') == "altclip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase_ , **lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''altclip''' __UpperCAmelCase = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=7_6_8 , lowercase_=2.6592 , **lowercase_) -> List[str]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __snake_case = kwargs.pop('text_config_dict' , lowercase_) __snake_case = kwargs.pop('vision_config_dict' , lowercase_) super().__init__(**lowercase_) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __snake_case = {} # This is the complete result when using `text_config_dict`. __snake_case = AltCLIPTextConfig(**lowercase_).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __snake_case = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __snake_case = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(lowercase_) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: __snake_case = {} # This is the complete result when using `vision_config_dict`. __snake_case = AltCLIPVisionConfig(**lowercase_).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __snake_case = { str(lowercase_): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __snake_case = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __snake_case = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(lowercase_) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: __snake_case = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.') if vision_config is None: __snake_case = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.') __snake_case = AltCLIPTextConfig(**lowercase_) __snake_case = AltCLIPVisionConfig(**lowercase_) __snake_case = projection_dim __snake_case = logit_scale_init_value __snake_case = 1.0 @classmethod def _a ( cls , lowercase_ , lowercase_ , **lowercase_) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_) def _a ( self) -> Any: __snake_case = copy.deepcopy(self.__dict__) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
676
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''yolos''' def __init__( self , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=[5_1_2, 8_6_4] , lowercase_=1_6 , lowercase_=3 , lowercase_=True , lowercase_=1_0_0 , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Tuple: super().__init__(**lowercase_) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias __snake_case = num_detection_tokens __snake_case = use_mid_position_embeddings __snake_case = auxiliary_loss # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def _a ( self) -> float: return 1e-4 @property def _a ( self) -> int: return 1_2
676
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) UpperCAmelCase__ : Dict = logging.getLogger(__name__) def A ( snake_case__ : str ) -> List[str]: '''simple docstring''' __snake_case = git.Repo(search_parent_directories=snake_case__ ) __snake_case = { 'repo_id': str(snake_case__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(snake_case__ , 'git_log.json' ) , 'w' ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def A ( snake_case__ : Optional[Any] ) -> Tuple: '''simple docstring''' if params.n_gpu <= 0: __snake_case = 0 __snake_case = -1 __snake_case = True __snake_case = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case = int(os.environ['WORLD_SIZE'] ) __snake_case = int(os.environ['N_GPU_NODE'] ) __snake_case = int(os.environ['RANK'] ) # number of nodes / node ID __snake_case = params.world_size // params.n_gpu_per_node __snake_case = params.global_rank // params.n_gpu_per_node __snake_case = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case = 1 __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 1 __snake_case = 1 __snake_case = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case = params.node_id == 0 and params.local_rank == 0 __snake_case = params.n_nodes > 1 # summary __snake_case = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def A ( snake_case__ : Dict ) -> Tuple: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import math import random def A ( snake_case__ : float , snake_case__ : bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCAmelCase__ : List[str] = 0.02 def A ( snake_case__ : int , snake_case__ : int ) -> float: '''simple docstring''' __snake_case = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation __snake_case = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __snake_case = (expected / 100) - layer_a # Error delta __snake_case = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Dict = int(input("Expected value: ")) UpperCAmelCase__ : Optional[Any] = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
def A ( snake_case__ : List[str] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(snake_case__ ): for j in range(snake_case__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def A ( snake_case__ : Dict , snake_case__ : List[Any] ) -> int: '''simple docstring''' __snake_case = [[float('inf' ) for _ in range(snake_case__ )] for _ in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): __snake_case = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(snake_case__ ): # looping through rows of graph array for i in range(snake_case__ ): # looping through columns of graph array for j in range(snake_case__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __snake_case = dist[i][k] + dist[k][j] _print_dist(snake_case__ , snake_case__ ) return dist, v if __name__ == "__main__": UpperCAmelCase__ : List[Any] = int(input("Enter number of vertices: ")) UpperCAmelCase__ : int = int(input("Enter number of edges: ")) UpperCAmelCase__ : Optional[int] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase__ : List[str] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCAmelCase__ : Dict = int(input("Enter source:")) UpperCAmelCase__ : Optional[int] = int(input("Enter destination:")) UpperCAmelCase__ : List[str] = float(input("Enter weight:")) UpperCAmelCase__ : Optional[int] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
676
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A ( snake_case__ : Optional[int] ) -> Any: '''simple docstring''' __snake_case = [False] * len(snake_case__ ) __snake_case = [-1] * len(snake_case__ ) def dfs(snake_case__ : Tuple , snake_case__ : Optional[int] ): __snake_case = True __snake_case = c for u in graph[v]: if not visited[u]: dfs(snake_case__ , 1 - c ) for i in range(len(snake_case__ ) ): if not visited[i]: dfs(snake_case__ , 0 ) for i in range(len(snake_case__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase__ : Any = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): @slow def _a ( self) -> List[str]: __snake_case = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') __snake_case = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case = model(lowercase_)['last_hidden_state'] __snake_case = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape , lowercase_) # compare the actual values for a slice. __snake_case = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ : Dict = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def A ( snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case = args.pruning_method __snake_case = args.threshold __snake_case = args.model_name_or_path.rstrip('/' ) __snake_case = args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) __snake_case = torch.load(os.path.join(snake_case__ , 'pytorch_model.bin' ) ) __snake_case = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __snake_case = tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: __snake_case = tensor print(f"Copied layer {name}" ) elif "bias" in name: __snake_case = tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": __snake_case = MagnitudeBinarizer.apply(inputs=snake_case__ , threshold=snake_case__ ) __snake_case = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue __snake_case = name[:-6] __snake_case = model[f"{prefix_}mask_scores"] __snake_case = TopKBinarizer.apply(snake_case__ , snake_case__ ) __snake_case = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __snake_case = name[:-6] __snake_case = model[f"{prefix_}mask_scores"] __snake_case = ThresholdBinarizer.apply(snake_case__ , snake_case__ , snake_case__ ) __snake_case = tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue __snake_case = name[:-6] __snake_case = model[f"{prefix_}mask_scores"] __snake_case , __snake_case = -0.1, 1.1 __snake_case = torch.sigmoid(snake_case__ ) __snake_case = s * (r - l) + l __snake_case = s_bar.clamp(min=0.0 , max=1.0 ) __snake_case = tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: __snake_case = os.path.join( os.path.dirname(snake_case__ ) , f"bertarized_{os.path.basename(snake_case__ )}" ) if not os.path.isdir(snake_case__ ): shutil.copytree(snake_case__ , snake_case__ ) print(f"\nCreated folder {target_model_path}" ) torch.save(snake_case__ , os.path.join(snake_case__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) UpperCAmelCase__ : List[str] = parser.parse_args() main(args)
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
from __future__ import annotations def A ( snake_case__ : int ) -> list[int]: '''simple docstring''' __snake_case = [True] * limit __snake_case = False __snake_case = False __snake_case = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __snake_case = i * 2 while index < limit: __snake_case = False __snake_case = index + i __snake_case = [2] for i in range(3 , snake_case__ , 2 ): if is_prime[i]: primes.append(snake_case__ ) return primes def A ( snake_case__ : int = 100_0000 ) -> int: '''simple docstring''' __snake_case = prime_sieve(snake_case__ ) __snake_case = 0 __snake_case = 0 for i in range(len(snake_case__ ) ): for j in range(i + length , len(snake_case__ ) ): __snake_case = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __snake_case = j - i __snake_case = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase__ : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def A ( snake_case__ : Dict="no" , snake_case__ : str = default_json_config_file , snake_case__ : bool = False ) -> Optional[int]: '''simple docstring''' __snake_case = Path(snake_case__ ) path.parent.mkdir(parents=snake_case__ , exist_ok=snake_case__ ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False __snake_case = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) __snake_case = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() __snake_case = num_gpus __snake_case = False if num_gpus > 1: __snake_case = 'MULTI_GPU' else: __snake_case = 'NO' elif is_xpu_available() and use_xpu: __snake_case = torch.xpu.device_count() __snake_case = num_xpus __snake_case = False if num_xpus > 1: __snake_case = 'MULTI_XPU' else: __snake_case = 'NO' elif is_npu_available(): __snake_case = torch.npu.device_count() __snake_case = num_npus __snake_case = False if num_npus > 1: __snake_case = 'MULTI_NPU' else: __snake_case = 'NO' else: __snake_case = 0 __snake_case = True __snake_case = 1 __snake_case = 'NO' __snake_case = ClusterConfig(**snake_case__ ) config.to_json_file(snake_case__ ) return path def A ( snake_case__ : Dict , snake_case__ : Dict ) -> Any: '''simple docstring''' __snake_case = parser.add_parser('default' , parents=snake_case__ , help=snake_case__ , formatter_class=snake_case__ ) parser.add_argument( '--config_file' , default=snake_case__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=snake_case__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=snake_case__ ) return parser def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
import functools from typing import Any def A ( snake_case__ : str , snake_case__ : list[str] ) -> bool: '''simple docstring''' # Validation if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(snake_case__ , snake_case__ ) or not all( isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie __snake_case = {} __snake_case = 'WORD_KEEPER' for word in words: __snake_case = trie for c in word: if c not in trie_node: __snake_case = {} __snake_case = trie_node[c] __snake_case = True __snake_case = len(snake_case__ ) # Dynamic programming method @functools.cache def is_breakable(snake_case__ : int ) -> bool: if index == len_string: return True __snake_case = trie for i in range(snake_case__ , snake_case__ ): __snake_case = trie_node.get(string[i] , snake_case__ ) if trie_node is None: return False if trie_node.get(snake_case__ , snake_case__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''trocr''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , lowercase_=5_0_2_6_5 , lowercase_=1_0_2_4 , lowercase_=1_2 , lowercase_=1_6 , lowercase_=4_0_9_6 , lowercase_="gelu" , lowercase_=5_1_2 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=2 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , **lowercase_ , ) -> int: __snake_case = vocab_size __snake_case = d_model __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = activation_function __snake_case = max_position_embeddings __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = init_std __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = scale_embedding __snake_case = use_learned_position_embeddings __snake_case = layernorm_embedding super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCAmelCase__ : List[str] = logging.getLogger(__name__) def A ( ) -> Optional[int]: '''simple docstring''' __snake_case = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=snake_case__ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=snake_case__ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=snake_case__ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=snake_case__ , default='data/dump' , help='The dump file prefix.' ) __snake_case = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": __snake_case = BertTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['cls_token'] # `[CLS]` __snake_case = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __snake_case = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['cls_token'] # `<s>` __snake_case = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __snake_case = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __snake_case = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __snake_case = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: __snake_case = fp.readlines() logger.info('Start encoding' ) logger.info(f"{len(snake_case__ )} examples to process." ) __snake_case = [] __snake_case = 0 __snake_case = 1_0000 __snake_case = time.time() for text in data: __snake_case = f"{bos} {text.strip()} {sep}" __snake_case = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) rslt.append(snake_case__ ) iter += 1 if iter % interval == 0: __snake_case = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) __snake_case = time.time() logger.info('Finished binarization' ) logger.info(f"{len(snake_case__ )} examples processed." ) __snake_case = f"{args.dump_file}.{args.tokenizer_name}.pickle" __snake_case = tokenizer.vocab_size if vocab_size < (1 << 16): __snake_case = [np.uintaa(snake_case__ ) for d in rslt] else: __snake_case = [np.intaa(snake_case__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(rslt_ , snake_case__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1