code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__SCREAMING_SNAKE_CASE , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = parse_args() # Import training_script as a module. __UpperCAmelCase : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCAmelCase : Tuple = script_fpath.stem __UpperCAmelCase : Union[str, Any] = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv __UpperCAmelCase : int = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Optional[int] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Any = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) class lowerCamelCase ( metaclass=_UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''flax''', '''transformers'''])
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class lowerCamelCase ( __lowercase ): _lowerCAmelCase : List[Any] = '''owlvit_text_model''' def __init__( self , lowercase__=4_9_4_0_8 , lowercase__=5_1_2 , lowercase__=2_0_4_8 , lowercase__=1_2 , lowercase__=8 , lowercase__=1_6 , lowercase__="quick_gelu" , lowercase__=1e-5 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , lowercase__=0 , lowercase__=4_9_4_0_6 , lowercase__=4_9_4_0_7 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Tuple = initializer_factor @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(lowercase__) __UpperCAmelCase : List[str] = cls.get_config_dict(lowercase__ , **lowercase__) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''') == "owlvit": __UpperCAmelCase : Any = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase__ , **lowercase__) class lowerCamelCase ( __lowercase ): _lowerCAmelCase : int = '''owlvit_vision_model''' def __init__( self , lowercase__=7_6_8 , lowercase__=3_0_7_2 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3 , lowercase__=7_6_8 , lowercase__=3_2 , lowercase__="quick_gelu" , lowercase__=1e-5 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : int = initializer_range __UpperCAmelCase : str = initializer_factor @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(lowercase__) __UpperCAmelCase : Union[str, Any] = cls.get_config_dict(lowercase__ , **lowercase__) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''') == "owlvit": __UpperCAmelCase : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase__ , **lowercase__) class lowerCamelCase ( __lowercase ): _lowerCAmelCase : Dict = '''owlvit''' _lowerCAmelCase : Optional[int] = True def __init__( self , lowercase__=None , lowercase__=None , lowercase__=5_1_2 , lowercase__=2.6_5_9_2 , lowercase__=True , **lowercase__ , ): super().__init__(**lowercase__) if text_config is None: __UpperCAmelCase : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''') if vision_config is None: __UpperCAmelCase : str = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''') __UpperCAmelCase : List[str] = OwlViTTextConfig(**lowercase__) __UpperCAmelCase : str = OwlViTVisionConfig(**lowercase__) __UpperCAmelCase : Tuple = projection_dim __UpperCAmelCase : int = logit_scale_init_value __UpperCAmelCase : List[str] = return_dict __UpperCAmelCase : Optional[int] = 1.0 @classmethod def A( cls , lowercase__ , **lowercase__): cls._set_token_in_kwargs(lowercase__) __UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase__ , **lowercase__) if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowercase__ , **lowercase__) @classmethod def A( cls , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : List[str] = {} __UpperCAmelCase : List[str] = text_config __UpperCAmelCase : str = vision_config return cls.from_dict(lowercase__ , **lowercase__) def A( self): __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__) __UpperCAmelCase : List[Any] = self.text_config.to_dict() __UpperCAmelCase : str = self.vision_config.to_dict() __UpperCAmelCase : Tuple = self.__class__.model_type return output class lowerCamelCase ( __lowercase ): @property def A( self): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ]) @property def A( self): return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ]) @property def A( self): return 1e-4 def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = None , ): __UpperCAmelCase : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowercase__ , seq_length=lowercase__ , framework=lowercase__) __UpperCAmelCase : List[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=lowercase__ , framework=lowercase__) return {**text_input_dict, **image_input_dict} @property def A( self): return 1_4
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
from math import factorial, pi def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 30 ) -> Union[str, Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) __UpperCAmelCase : Dict = float(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : int = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 30 ) -> Tuple: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) __UpperCAmelCase : Optional[Any] = float(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = question_encoder __UpperCAmelCase : Dict = generator __UpperCAmelCase : Any = self.question_encoder def A( self , lowercase__): if os.path.isfile(lowercase__): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowercase__ , exist_ok=lowercase__) __UpperCAmelCase : Any = os.path.join(lowercase__ , '''question_encoder_tokenizer''') __UpperCAmelCase : List[Any] = os.path.join(lowercase__ , '''generator_tokenizer''') self.question_encoder.save_pretrained(lowercase__) self.generator.save_pretrained(lowercase__) @classmethod def A( cls , lowercase__ , **lowercase__): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __UpperCAmelCase : Optional[int] = kwargs.pop('''config''' , lowercase__) if config is None: __UpperCAmelCase : str = RagConfig.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( lowercase__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( lowercase__ , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=lowercase__ , generator=lowercase__) def __call__( self , *lowercase__ , **lowercase__): return self.current_tokenizer(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.generator.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.generator.decode(*lowercase__ , **lowercase__) def A( self): __UpperCAmelCase : Optional[Any] = self.question_encoder def A( self): __UpperCAmelCase : List[Any] = self.generator def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = "longest" , lowercase__ = None , lowercase__ = True , **lowercase__ , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , lowercase__ , ) if max_length is None: __UpperCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length __UpperCAmelCase : Union[str, Any] = self( lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , max_length=lowercase__ , padding=lowercase__ , truncation=lowercase__ , **lowercase__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __UpperCAmelCase : List[str] = self.current_tokenizer.model_max_length __UpperCAmelCase : List[Any] = self( text_target=lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , **lowercase__ , ) __UpperCAmelCase : List[Any] = labels["""input_ids"""] return model_inputs
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : float = a __UpperCAmelCase : float = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: __UpperCAmelCase : Optional[int] = mid else: __UpperCAmelCase : Any = mid __UpperCAmelCase : Any = start + (end - start) / 2.0 return mid def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( lowercase_ = 1 , lowercase_ = 1000 ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : str = 0 for divide_by_number in range(lowercase_ , digit + 1 ): __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Dict = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase_ ): __UpperCAmelCase : Dict = len(lowercase_ ) __UpperCAmelCase : Optional[int] = divide_by_number else: has_been_divided.append(lowercase_ ) __UpperCAmelCase : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 1 __UpperCAmelCase : int = 2 for i in range(2 , max_n + 1 ): __UpperCAmelCase : str = pre_numerator __UpperCAmelCase : List[str] = 2 * i // 3 if i % 3 == 0 else 1 __UpperCAmelCase : int = cur_numerator __UpperCAmelCase : Union[str, Any] = e_cont * pre_numerator + temp return sum_digits(__lowerCAmelCase ) if __name__ == "__main__": print(F'{solution() = }')
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str | Literal[False]: '''simple docstring''' __UpperCAmelCase : Any = list(a_ ) __UpperCAmelCase : Optional[int] = list(a_ ) __UpperCAmelCase : Union[str, Any] = 0 for i in range(len(a_ ) ): if lista[i] != lista[i]: count += 1 __UpperCAmelCase : str = '''_''' if count > 1: return False else: return "".join(a_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[str]: '''simple docstring''' __UpperCAmelCase : Tuple = [] while True: __UpperCAmelCase : Optional[int] = ['''$'''] * len(a_ ) __UpperCAmelCase : str = [] for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): __UpperCAmelCase : Union[str, Any] = compare_string(binary[i] , binary[j] ) if k is False: __UpperCAmelCase : Tuple = '''*''' __UpperCAmelCase : List[str] = '''*''' temp.append('''X''' ) for i in range(len(a_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a_ ) == 0: return pi __UpperCAmelCase : List[Any] = list(set(a_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]: '''simple docstring''' __UpperCAmelCase : List[str] = [] for minterm in minterms: __UpperCAmelCase : List[Any] = '''''' for _ in range(a_ ): __UpperCAmelCase : Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(a_ ) return temp def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = list(a_ ) __UpperCAmelCase : List[str] = list(a_ ) __UpperCAmelCase : List[Any] = 0 for i in range(len(a_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Dict = [0] * len(a_ ) for i in range(len(chart[0] ) ): __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Optional[int] = -1 for j in range(len(a_ ) ): if chart[j][i] == 1: count += 1 __UpperCAmelCase : List[str] = j if count == 1: __UpperCAmelCase : Optional[Any] = 1 for i in range(len(a_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a_ ) ): __UpperCAmelCase : Tuple = 0 temp.append(prime_implicants[i] ) while True: __UpperCAmelCase : str = 0 __UpperCAmelCase : Union[str, Any] = -1 __UpperCAmelCase : Any = 0 for i in range(len(a_ ) ): __UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: __UpperCAmelCase : Dict = count_n __UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a_ ) ): __UpperCAmelCase : Dict = 0 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : Tuple = [[0 for x in range(len(a_ ) )] for x in range(len(a_ ) )] for i in range(len(a_ ) ): __UpperCAmelCase : Optional[int] = prime_implicants[i].count('''_''' ) for j in range(len(a_ ) ): if is_for_table(prime_implicants[i] , binary[j] , a_ ): __UpperCAmelCase : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : str = int(input('''Enter the no. of variables\n''' ) ) __UpperCAmelCase : Union[str, Any] = [ float(a_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] __UpperCAmelCase : Optional[int] = decimal_to_binary(a_ , a_ ) __UpperCAmelCase : Tuple = check(a_ ) print('''Prime Implicants are:''' ) print(a_ ) __UpperCAmelCase : Optional[Any] = prime_implicant_chart(a_ , a_ ) __UpperCAmelCase : int = selection(a_ , a_ ) print('''Essential Prime Implicants are:''' ) print(a_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class lowerCamelCase ( datasets.BuilderConfig ): _lowerCAmelCase : List[str] = None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , ) -> Tuple: '''simple docstring''' import pyspark def generate_fn(): __UpperCAmelCase : Union[str, Any] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: __UpperCAmelCase : Optional[Any] = df_with_partition_id.select('''*''' ).where(f"part_id = {partition_id}" ).drop('''part_id''' ) __UpperCAmelCase : int = partition_df.collect() __UpperCAmelCase : Union[str, Any] = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class lowerCamelCase ( _BaseExamplesIterable ): def __init__( self , lowercase__ , lowercase__=None , ): __UpperCAmelCase : Union[str, Any] = df __UpperCAmelCase : str = partition_order or range(self.df.rdd.getNumPartitions()) __UpperCAmelCase : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order) def __iter__( self): yield from self.generate_examples_fn() def A( self , lowercase__): __UpperCAmelCase : Optional[int] = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(_A) return SparkExamplesIterable(self.df , partition_order=_A) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Dict = self.split_shard_indices_by_worker(_A , _A) return SparkExamplesIterable(self.df , partition_order=_A) @property def A( self): return len(self.partition_order) class lowerCamelCase ( datasets.DatasetBuilder ): _lowerCAmelCase : str = SparkConfig def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , **lowercase__ , ): import pyspark __UpperCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.getOrCreate() __UpperCAmelCase : Dict = df __UpperCAmelCase : List[Any] = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash()) , **_A , ) def A( self): # Returns the path of the created file. def create_cache_and_write_probe(lowercase__): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A) __UpperCAmelCase : Optional[int] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , '''a''') return [probe_file] if self._spark.conf.get('''spark.master''' , '''''').startswith('''local'''): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __UpperCAmelCase : Union[str, Any] = ( self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(_A).collect() ) if os.path.isfile(probe[0]): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''') def A( self): return datasets.DatasetInfo(features=self.config.features) def A( self , lowercase__): return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def A( self , lowercase__): import pyspark def get_arrow_batch_size(lowercase__): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]}) __UpperCAmelCase : str = self.df.count() __UpperCAmelCase : str = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __UpperCAmelCase : Optional[Any] = ( self.df.limit(_A) .repartition(1) .mapInArrow(_A , '''batch_bytes: long''') .agg(pyspark.sql.functions.sum('''batch_bytes''').alias('''sample_bytes''')) .collect()[0] .sample_bytes / sample_num_rows ) __UpperCAmelCase : Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __UpperCAmelCase : str = min(_A , int(approx_total_size / max_shard_size)) __UpperCAmelCase : Dict = self.df.repartition(_A) def A( self , lowercase__ , lowercase__ , lowercase__ , ): import pyspark __UpperCAmelCase : Union[str, Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter __UpperCAmelCase : List[str] = os.path.join(self._working_dir , os.path.basename(_A)) if self._working_dir else fpath __UpperCAmelCase : Any = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __UpperCAmelCase : Optional[Any] = self.config.features __UpperCAmelCase : Optional[Any] = self._writer_batch_size __UpperCAmelCase : List[str] = self._fs.storage_options def write_arrow(lowercase__): # Within the same SparkContext, no two task attempts will share the same attempt ID. __UpperCAmelCase : int = pyspark.TaskContext().taskAttemptId() __UpperCAmelCase : Dict = next(_A , _A) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __UpperCAmelCase : int = 0 __UpperCAmelCase : Any = writer_class( features=_A , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __UpperCAmelCase : Tuple = pa.Table.from_batches([first_batch]) writer.write_table(_A) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __UpperCAmelCase , __UpperCAmelCase : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __UpperCAmelCase : Any = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) __UpperCAmelCase : Optional[int] = pa.Table.from_batches([batch]) writer.write_table(_A) if writer._num_bytes > 0: __UpperCAmelCase , __UpperCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A)): __UpperCAmelCase : Optional[int] = os.path.join(os.path.dirname(_A) , os.path.basename(_A)) shutil.move(_A , _A) __UpperCAmelCase : Tuple = ( self.df.mapInArrow(_A , '''task_id: long, num_examples: long, num_bytes: long''') .groupBy('''task_id''') .agg( pyspark.sql.functions.sum('''num_examples''').alias('''total_num_examples''') , pyspark.sql.functions.sum('''num_bytes''').alias('''total_num_bytes''') , pyspark.sql.functions.count('''num_bytes''').alias('''num_shards''') , pyspark.sql.functions.collect_list('''num_examples''').alias('''shard_lengths''') , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def A( self , lowercase__ , lowercase__ = "arrow" , lowercase__ = None , lowercase__ = None , **lowercase__ , ): self._validate_cache_dir() __UpperCAmelCase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(_A) __UpperCAmelCase : List[Any] = not is_remote_filesystem(self._fs) __UpperCAmelCase : List[str] = os.path.join if is_local else posixpath.join __UpperCAmelCase : Union[str, Any] = '''-TTTTT-SSSSS-of-NNNNN''' __UpperCAmelCase : Union[str, Any] = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" __UpperCAmelCase : Tuple = path_join(self._output_dir , _A) __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = [] for task_id, content in self._prepare_split_single(_A , _A , _A): ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(_A) __UpperCAmelCase : Optional[Any] = total_num_examples __UpperCAmelCase : int = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards.") if total_shards > 1: __UpperCAmelCase : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __UpperCAmelCase : int = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowercase__ , lowercase__ , lowercase__ , ): rename( _A , fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , fpath.replace('''TTTTT-SSSSS''' , F"{global_shard_id:05d}").replace('''NNNNN''' , F"{total_shards:05d}") , ) __UpperCAmelCase : Any = [] __UpperCAmelCase : List[Any] = 0 for i in range(len(_A)): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = task_id_and_num_shards[i] for shard_id in range(_A): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A)).map(lambda lowercase__: _rename_shard(*_A)).collect() else: # don't use any pattern __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , fpath.replace(_A , '''''') , ) def A( self , lowercase__ , ): return SparkExamplesIterable(self.df)
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = filter(lambda lowercase_ : p.requires_grad , model.parameters() ) __UpperCAmelCase : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if metric == "rouge2": __UpperCAmelCase : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCAmelCase : Optional[int] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCAmelCase : Any = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __UpperCAmelCase : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ''' function.''' ) __UpperCAmelCase : Union[str, Any] = ModelCheckpoint( dirpath=UpperCAmelCase__ , filename=UpperCAmelCase__ , monitor=f"val_{metric}" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=UpperCAmelCase__ , verbose=UpperCAmelCase__ , ) class lowerCamelCase ( pl.Callback ): def A( self , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = {F"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__UpperCamelCase) @rank_zero_only def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=True): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****") __UpperCAmelCase : Any = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results __UpperCAmelCase : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": __UpperCAmelCase : Optional[int] = od / '''test_results.txt''' __UpperCAmelCase : List[str] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCAmelCase : int = od / F"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCAmelCase : Optional[int] = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=__UpperCamelCase) generations_file.parent.mkdir(exist_ok=__UpperCamelCase) with open(__UpperCamelCase , '''a+''') as writer: for key in sorted(__UpperCamelCase): if key in ["log", "progress_bar", "preds"]: continue __UpperCAmelCase : List[str] = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor): __UpperCAmelCase : int = val.item() __UpperCAmelCase : Tuple = F"{key}: {val:.6f}\n" writer.write(__UpperCamelCase) if not save_generations: return if "preds" in metrics: __UpperCAmelCase : Tuple = '''\n'''.join(metrics['''preds''']) generations_file.open('''w+''').write(__UpperCamelCase) @rank_zero_only def A( self , lowercase__ , lowercase__): try: __UpperCAmelCase : int = pl_module.model.model.num_parameters() except AttributeError: __UpperCAmelCase : int = pl_module.model.num_parameters() __UpperCAmelCase : int = count_trainable_parameters(__UpperCamelCase) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6}) @rank_zero_only def A( self , lowercase__ , lowercase__): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''') @rank_zero_only def A( self , lowercase__ , lowercase__): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
from ...processing_utils import ProcessorMixin class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = """SpeechT5FeatureExtractor""" _lowerCAmelCase : str = """SpeechT5Tokenizer""" def __init__( self , lowercase__ , lowercase__): super().__init__(lowercase__ , lowercase__) def __call__( self , *lowercase__ , **lowercase__): __UpperCAmelCase : int = kwargs.pop('''audio''' , lowercase__) __UpperCAmelCase : Optional[int] = kwargs.pop('''text''' , lowercase__) __UpperCAmelCase : Union[str, Any] = kwargs.pop('''text_target''' , lowercase__) __UpperCAmelCase : Optional[Any] = kwargs.pop('''audio_target''' , lowercase__) __UpperCAmelCase : Dict = kwargs.pop('''sampling_rate''' , lowercase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: __UpperCAmelCase : Any = self.feature_extractor(lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__) elif text is not None: __UpperCAmelCase : int = self.tokenizer(lowercase__ , **lowercase__) else: __UpperCAmelCase : Tuple = None if audio_target is not None: __UpperCAmelCase : str = self.feature_extractor(audio_target=lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__) __UpperCAmelCase : Union[str, Any] = targets['''input_values'''] elif text_target is not None: __UpperCAmelCase : str = self.tokenizer(lowercase__ , **lowercase__) __UpperCAmelCase : Any = targets['''input_ids'''] else: __UpperCAmelCase : Dict = None if inputs is None: return targets if targets is not None: __UpperCAmelCase : List[str] = labels __UpperCAmelCase : Union[str, Any] = targets.get('''attention_mask''') if decoder_attention_mask is not None: __UpperCAmelCase : Optional[Any] = decoder_attention_mask return inputs def A( self , *lowercase__ , **lowercase__): __UpperCAmelCase : int = kwargs.pop('''input_values''' , lowercase__) __UpperCAmelCase : List[Any] = kwargs.pop('''input_ids''' , lowercase__) __UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , lowercase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: __UpperCAmelCase : Union[str, Any] = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__) elif input_ids is not None: __UpperCAmelCase : Dict = self.tokenizer.pad(lowercase__ , **lowercase__) else: __UpperCAmelCase : Optional[int] = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase__ , lowercase__) and "input_ids" in labels[0]): __UpperCAmelCase : Any = self.tokenizer.pad(lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = targets['''input_ids'''] else: __UpperCAmelCase : Optional[Any] = self.feature_extractor.feature_size __UpperCAmelCase : Optional[int] = self.feature_extractor.num_mel_bins __UpperCAmelCase : Dict = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = feature_size_hack __UpperCAmelCase : int = targets['''input_values'''] else: __UpperCAmelCase : Dict = None if inputs is None: return targets if targets is not None: __UpperCAmelCase : Tuple = labels __UpperCAmelCase : Optional[Any] = targets.get('''attention_mask''') if decoder_attention_mask is not None: __UpperCAmelCase : int = decoder_attention_mask return inputs def A( self , *lowercase__ , **lowercase__): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.decode(*lowercase__ , **lowercase__)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
class lowerCamelCase : def __init__( self , lowercase__ = "" , lowercase__ = False): __UpperCAmelCase : Tuple = {} # A node will be a leaf if the tree contains its word __UpperCAmelCase : str = is_leaf __UpperCAmelCase : Optional[int] = prefix def A( self , lowercase__): __UpperCAmelCase : Optional[int] = 0 for q, w in zip(self.prefix , lowercase__): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A( self , lowercase__): for word in words: self.insert(lowercase__) def A( self , lowercase__): if self.prefix == word: __UpperCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __UpperCAmelCase : List[Any] = RadixNode(prefix=lowercase__ , is_leaf=lowercase__) else: __UpperCAmelCase : int = self.nodes[word[0]] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match( lowercase__) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowercase__) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __UpperCAmelCase : List[Any] = remaining_prefix __UpperCAmelCase : Union[str, Any] = self.nodes[matching_string[0]] __UpperCAmelCase : int = RadixNode(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = aux_node if remaining_word == "": __UpperCAmelCase : str = True else: self.nodes[matching_string[0]].insert(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Tuple = self.nodes.get(word[0] , lowercase__) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = incoming_node.match( lowercase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowercase__) def A( self , lowercase__): __UpperCAmelCase : str = self.nodes.get(word[0] , lowercase__) if not incoming_node: return False else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match( lowercase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowercase__) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: __UpperCAmelCase : List[Any] = list(self.nodes.values())[0] __UpperCAmelCase : int = merging_node.is_leaf self.prefix += merging_node.prefix __UpperCAmelCase : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: __UpperCAmelCase : Optional[Any] = False # If there is 1 edge, we merge it with its child else: __UpperCAmelCase : List[str] = list(incoming_node.nodes.values())[0] __UpperCAmelCase : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __UpperCAmelCase : Any = merging_node.nodes return True def A( self , lowercase__ = 0): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''') for value in self.nodes.values(): value.print_tree(height + 1) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = '''banana bananas bandana band apple all beast'''.split() __UpperCAmelCase : Union[str, Any] = RadixNode() root.insert_many(lowercase_ ) assert all(root.find(lowercase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' assert test_trie() def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = RadixNode() __UpperCAmelCase : List[str] = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(lowercase_ ) print('''Words:''' , lowercase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = abs(snake_case_ ) __UpperCAmelCase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = abs(snake_case_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' return sum(int(snake_case_ ) for c in str(abs(snake_case_ ) ) ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ , lowercase_ ) -> None: __UpperCAmelCase : Tuple = f"{func.__name__}({value})" __UpperCAmelCase : Tuple = timeit(f"__main__.{call}" , setup='''import __main__''' ) print(f"{call:56} = {func(snake_case_ )} -- {timing:.4f} seconds" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case_ , snake_case_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> str: '''simple docstring''' __UpperCAmelCase : int = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True , lowercase_="pt" ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = {'''add_prefix_space''': True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(''' ''' ) else {} __UpperCAmelCase : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding='''max_length''' if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__="train" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="" , ): super().__init__() __UpperCAmelCase : Optional[int] = Path(lowercase__).joinpath(type_path + '''.source''') __UpperCAmelCase : Any = Path(lowercase__).joinpath(type_path + '''.target''') __UpperCAmelCase : Tuple = self.get_char_lens(self.src_file) __UpperCAmelCase : str = max_source_length __UpperCAmelCase : List[Any] = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __UpperCAmelCase : int = tokenizer __UpperCAmelCase : List[Any] = prefix if n_obs is not None: __UpperCAmelCase : Dict = self.src_lens[:n_obs] __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : List[str] = tgt_lang def __len__( self): return len(self.src_lens) def __getitem__( self , lowercase__): __UpperCAmelCase : int = index + 1 # linecache starts at 1 __UpperCAmelCase : Dict = self.prefix + linecache.getline(str(self.src_file) , lowercase__).rstrip('''\n''') __UpperCAmelCase : List[str] = linecache.getline(str(self.tgt_file) , lowercase__).rstrip('''\n''') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase__): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCAmelCase : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase__) else self.tokenizer ) __UpperCAmelCase : List[str] = self.tokenizer.generator if isinstance(self.tokenizer , lowercase__) else self.tokenizer __UpperCAmelCase : str = encode_line(lowercase__ , lowercase__ , self.max_source_length , '''right''') __UpperCAmelCase : Dict = encode_line(lowercase__ , lowercase__ , self.max_target_length , '''right''') __UpperCAmelCase : Any = source_inputs['''input_ids'''].squeeze() __UpperCAmelCase : List[Any] = target_inputs['''input_ids'''].squeeze() __UpperCAmelCase : Tuple = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A( lowercase__): return [len(lowercase__) for x in Path(lowercase__).open().readlines()] def A( self , lowercase__): __UpperCAmelCase : Tuple = torch.stack([x['''input_ids'''] for x in batch]) __UpperCAmelCase : Optional[Any] = torch.stack([x['''attention_mask'''] for x in batch]) __UpperCAmelCase : Any = torch.stack([x['''decoder_input_ids'''] for x in batch]) __UpperCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase__) else self.tokenizer.pad_token_id ) __UpperCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase__) else self.tokenizer.pad_token_id ) __UpperCAmelCase : Optional[int] = trim_batch(lowercase__ , lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = trim_batch(lowercase__ , lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[str] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : List[Any] = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , '''git_log.json''' ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=4 , **lowercase_ ) -> Any: '''simple docstring''' with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = git.Repo(search_parent_directories=lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = { '''repo_id''': str(lowerCamelCase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List: '''simple docstring''' return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' with open(lowerCamelCase__ , '''wb''' ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' def remove_articles(lowercase_ ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , lowerCamelCase__ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): __UpperCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = normalize_answer(lowerCamelCase__ ).split() __UpperCAmelCase : str = normalize_answer(lowerCamelCase__ ).split() __UpperCAmelCase : Any = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) __UpperCAmelCase : str = sum(common.values() ) if num_same == 0: return 0 __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowerCamelCase__ ) __UpperCAmelCase : str = 1.0 * num_same / len(lowerCamelCase__ ) __UpperCAmelCase : Any = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' return model_prefix.startswith('''rag''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCAmelCase : int = '''dropout_rate''' for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue __UpperCAmelCase : Optional[Any] = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __A ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import torch from diffusers import StableDiffusionPipeline lowerCAmelCase = """path-to-your-trained-model""" lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCAmelCase = """A photo of sks dog in a bucket""" lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = ['''image_processor''', '''tokenizer'''] _lowerCAmelCase : Optional[int] = '''LayoutLMv2ImageProcessor''' _lowerCAmelCase : str = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , lowercase__=None , lowercase__=None , **lowercase__): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase : List[Any] = kwargs.pop('''feature_extractor''') __UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase__ , lowercase__) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''') # first, apply the image processor __UpperCAmelCase : str = self.image_processor(images=lowercase__ , return_tensors=lowercase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Optional[int] = features['''words'''] __UpperCAmelCase : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __UpperCAmelCase : int = features.pop('''pixel_values''') if return_overflowing_tokens is True: __UpperCAmelCase : str = self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping''']) __UpperCAmelCase : int = images return encoded_inputs def A( self , lowercase__ , lowercase__): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __UpperCAmelCase : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(lowercase__) != len(lowercase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowercase__)} and {len(lowercase__)}") return images_with_overflow def A( self , *lowercase__ , **lowercase__): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.decode(*lowercase__ , **lowercase__) @property def A( self): return ["input_ids", "bbox", "attention_mask", "image"] @property def A( self): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def A( self): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def A( self , lowercase__=0): __UpperCAmelCase : List[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowercase__)) __UpperCAmelCase : Tuple = np.random.RandomState(lowercase__) __UpperCAmelCase : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def A( self): __UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = self.get_dummy_inputs() __UpperCAmelCase : List[Any] = pipe(**lowercase__).images __UpperCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : str = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) # warmup pass to apply optimizations __UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs()) __UpperCAmelCase : Any = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**lowercase__).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Optional[Any] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[int] = self.get_dummy_inputs() __UpperCAmelCase : Tuple = pipe(**lowercase__).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Tuple = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() __UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : Any = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def A( self): __UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') __UpperCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() __UpperCAmelCase : Union[str, Any] = pipe(**lowercase__).images __UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __UpperCAmelCase : str = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): @property def A( self): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A( self): __UpperCAmelCase : Optional[Any] = ort.SessionOptions() __UpperCAmelCase : int = False return options def A( self): __UpperCAmelCase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Optional[Any] = init_image.resize((7_6_8, 5_1_2)) # using the PNDM scheduler by default __UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : List[Any] = np.random.RandomState(0) __UpperCAmelCase : List[Any] = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __UpperCAmelCase : Optional[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def A( self): __UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2)) __UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''') __UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : Optional[int] = np.random.RandomState(0) __UpperCAmelCase : str = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __UpperCAmelCase : Tuple = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=2 , lowercase__=3 , lowercase__=1_6 , lowercase__=[1, 2, 1] , lowercase__=[2, 2, 4] , lowercase__=2 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=True , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=1_0 , lowercase__=8 , ): __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[str] = embed_dim __UpperCAmelCase : int = depths __UpperCAmelCase : Optional[int] = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : Tuple = qkv_bias __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : int = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : str = is_training __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : Tuple = encoder_stride def A( self): __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def A( self): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = SwinvaModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Tuple = model(lowercase__) __UpperCAmelCase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = SwinvaForMaskedImageModeling(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = SwinvaForMaskedImageModeling(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : Dict = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = self.type_sequence_label_size __UpperCAmelCase : int = SwinvaForImageClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A( self): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Any = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase : Union[str, Any] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Dict = False _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = False def A( self): __UpperCAmelCase : str = SwinvaModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , embed_dim=3_7) def A( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''') def A( self): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(lowercase__) __UpperCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Tuple = outputs.attentions __UpperCAmelCase : Dict = len(self.model_tester.depths) self.assertEqual(len(lowercase__) , lowercase__) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : Optional[Any] = config.window_size**2 __UpperCAmelCase : Tuple = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(lowercase__) , lowercase__) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : int = len(lowercase__) # Check attention is always last and order is fine __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : int = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) if hasattr(self.model_tester , '''num_hidden_states_types'''): __UpperCAmelCase : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : List[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowercase__)) __UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(lowercase__) , lowercase__) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Optional[int] = outputs.hidden_states __UpperCAmelCase : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(lowercase__) , lowercase__) # Swinv2 has a different seq_length __UpperCAmelCase : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(lowercase__) , lowercase__) __UpperCAmelCase : Any = reshaped_hidden_states[0].shape __UpperCAmelCase : Union[str, Any] = ( reshaped_hidden_states[0].view(lowercase__ , lowercase__ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def A( self): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Any = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width)) def A( self): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) @slow def A( self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = SwinvaModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = _config_zero_init(lowercase__) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=lowercase__) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''') if is_vision_available() else None ) @slow def A( self): __UpperCAmelCase : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to( lowercase__) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __UpperCAmelCase : List[Any] = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**lowercase__) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = cn.convert_to_negative(lowercase_ ) # assert negative_img array for at least one True assert negative_img.any() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase_ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCAmelCase : Optional[Any] = canny.canny(lowercase_ ) # assert canny array for at least one True assert canny_array.any() def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' assert gg.gaussian_filter(lowercase_ , 5 , sigma=0.9 ).all() def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) __UpperCAmelCase : Optional[Any] = conv.img_convolve(lowercase_ , lowercase_ ).astype(lowercase_ ) assert res.any() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' assert med.median_filter(lowercase_ , 3 ).any() def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = sob.sobel_filter(lowercase_ ) assert grad.any() and theta.any() def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = sp.make_sepia(lowercase_ , 20 ) assert sepia.all() def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = bs.Burkes(imread(lowercase_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : str = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __UpperCAmelCase : Any = imread(lowercase_ , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[Any] = image[x_coordinate][y_coordinate] __UpperCAmelCase : str = lbp.get_neighbors_pixel( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCAmelCase : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCAmelCase : Union[str, Any] = lbp.local_binary_value(lowercase_ , lowercase_ , lowercase_ ) assert lbp_image.any()
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : int = [1] for i in range(2 , lowercase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Any = [] __UpperCAmelCase : List[Any] = list(range(lowercase_ ) ) # Find permutation while factorials: __UpperCAmelCase : Optional[Any] = factorials.pop() __UpperCAmelCase : Union[str, Any] = divmod(lowercase_ , lowercase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = OpenAIGPTTokenizer _lowerCAmelCase : int = OpenAIGPTTokenizerFast _lowerCAmelCase : Dict = True _lowerCAmelCase : List[str] = False def A( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(lowercase__)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(lowercase__)) def A( self , lowercase__): return "lower newer", "lower newer" def A( self): __UpperCAmelCase : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) __UpperCAmelCase : str = '''lower''' __UpperCAmelCase : Optional[Any] = ['''low''', '''er</w>'''] __UpperCAmelCase : str = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) __UpperCAmelCase : List[str] = tokens + ['''<unk>'''] __UpperCAmelCase : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__) def A( self , lowercase__=1_5): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) # Simple input __UpperCAmelCase : List[str] = '''This is a simple input''' __UpperCAmelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase : str = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase : str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Simple input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Simple input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Pair input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , ) def A( self): pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase ( _UpperCamelCase ): pass
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( ) -> Iterator[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = 2 while True: if is_prime(lowercase_ ): yield num num += 1 def __SCREAMING_SNAKE_CASE ( lowercase_ = 2000000 ) -> int: '''simple docstring''' return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
from ...configuration_utils import PretrainedConfig lowerCAmelCase = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''tapas''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0_2_4 , lowercase__=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__=1_0.0 , lowercase__=0 , lowercase__=1.0 , lowercase__=None , lowercase__=1.0 , lowercase__=False , lowercase__=None , lowercase__=1.0 , lowercase__=1.0 , lowercase__=False , lowercase__=False , lowercase__="ratio" , lowercase__=None , lowercase__=None , lowercase__=6_4 , lowercase__=3_2 , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=None , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_sizes __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters __UpperCAmelCase : Union[str, Any] = positive_label_weight __UpperCAmelCase : int = num_aggregation_labels __UpperCAmelCase : str = aggregation_loss_weight __UpperCAmelCase : Dict = use_answer_as_supervision __UpperCAmelCase : Any = answer_loss_importance __UpperCAmelCase : Union[str, Any] = use_normalized_answer_loss __UpperCAmelCase : int = huber_loss_delta __UpperCAmelCase : Optional[int] = temperature __UpperCAmelCase : List[Any] = aggregation_temperature __UpperCAmelCase : List[str] = use_gumbel_for_cells __UpperCAmelCase : List[str] = use_gumbel_for_aggregation __UpperCAmelCase : List[str] = average_approximation_function __UpperCAmelCase : Union[str, Any] = cell_selection_preference __UpperCAmelCase : List[str] = answer_loss_cutoff __UpperCAmelCase : str = max_num_rows __UpperCAmelCase : int = max_num_columns __UpperCAmelCase : Tuple = average_logits_per_cell __UpperCAmelCase : Union[str, Any] = select_one_column __UpperCAmelCase : List[str] = allow_empty_column_selection __UpperCAmelCase : Optional[int] = init_cell_selection_weights_to_zero __UpperCAmelCase : Any = reset_position_index_per_cell __UpperCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters __UpperCAmelCase : Optional[Any] = aggregation_labels __UpperCAmelCase : int = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase__): __UpperCAmelCase : Optional[Any] = {int(lowercase__): v for k, v in aggregation_labels.items()}
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase = False class lowerCamelCase ( unittest.TestCase ): def A( self , lowercase__=3_2): set_seed(0) __UpperCAmelCase : Dict = UNetaDModel(sample_size=lowercase__ , in_channels=3 , out_channels=3) __UpperCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A( self): __UpperCAmelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __UpperCAmelCase : Any = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) __UpperCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) __UpperCAmelCase : str = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowercase__) for _ in range(4)] __UpperCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2)).to(lowercase__) for _ in range(4)] __UpperCAmelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowercase__) for _ in range(4)] # train with a DDPM scheduler __UpperCAmelCase : Optional[int] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Dict = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : Dict = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __UpperCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Union[str, Any] = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : str = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=3 , lowercase__=4 , lowercase__=[1_0, 2_0, 3_0, 4_0] , lowercase__=[2, 2, 3, 2] , lowercase__=True , lowercase__=True , lowercase__=3_7 , lowercase__="gelu" , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=["stage2", "stage3", "stage4"] , lowercase__=3 , lowercase__=None , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Optional[Any] = num_stages __UpperCAmelCase : Union[str, Any] = hidden_sizes __UpperCAmelCase : Optional[int] = depths __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = out_features __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Optional[Any] = num_stages def A( self): __UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def A( self): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A( self): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = UperNetForSemanticSegmentation(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : str = model(lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Optional[Any] = config_and_inputs __UpperCAmelCase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowerCAmelCase : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowerCAmelCase : int = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : int = False _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : Dict = UperNetModelTester(self) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7) def A( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A( self): return def A( self): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(lowercase__) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def A( self): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def A( self): pass @unittest.skip(reason='''UperNet does not have a base model''') def A( self): pass @unittest.skip(reason='''UperNet does not have a base model''') def A( self): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def A( self): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A( self): pass def A( self): def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(lowercase__) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = _config_zero_init(lowercase__) __UpperCAmelCase : Any = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=lowercase__) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason='''UperNet does not have tied weights''') def A( self): pass @slow def A( self): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __UpperCAmelCase : Tuple = Image.open(lowercase_ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') __UpperCAmelCase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(lowercase__) __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[Any] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) with torch.no_grad(): __UpperCAmelCase : Tuple = model(**lowercase__) __UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4)) def A( self): __UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(lowercase__) __UpperCAmelCase : Tuple = prepare_img() __UpperCAmelCase : List[str] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) with torch.no_grad(): __UpperCAmelCase : str = model(**lowercase__) __UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4))
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 512} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = set() __UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char __UpperCAmelCase : Union[str, Any] = set(lowercase_ ) return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="__start__" , lowercase__="__end__" , lowercase__="__unk__" , lowercase__="__null__" , **lowercase__ , ): super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : str = json.load(lowercase__) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[Any] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split()) for merge in merges] __UpperCAmelCase : List[str] = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Tuple = {} @property def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub('''([.,!?()])''' , r''' \1''' , lowercase__) __UpperCAmelCase : Optional[int] = re.sub('''(\')''' , r''' \1 ''' , lowercase__) __UpperCAmelCase : List[Any] = re.sub(r'''\s{2,}''' , ''' ''' , lowercase__) if "\n" in token: __UpperCAmelCase : int = token.replace('''\n''' , ''' __newln__''') __UpperCAmelCase : str = token.split(''' ''') __UpperCAmelCase : Any = [] for token in tokens: if not len(lowercase__): continue __UpperCAmelCase : List[str] = token.lower() __UpperCAmelCase : Tuple = tuple(lowercase__) __UpperCAmelCase : int = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) __UpperCAmelCase : List[str] = get_pairs(lowercase__) if not pairs: words.append(lowercase__) continue while True: __UpperCAmelCase : Optional[Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[Any] = 0 while i < len(lowercase__): try: __UpperCAmelCase : Optional[int] = word.index(lowercase__ , lowercase__) new_word.extend(word[i:j]) __UpperCAmelCase : List[Any] = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : List[Any] = tuple(lowercase__) __UpperCAmelCase : List[Any] = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Dict = get_pairs(lowercase__) __UpperCAmelCase : Union[str, Any] = '''@@ '''.join(lowercase__) __UpperCAmelCase : Any = word[:-4] __UpperCAmelCase : Union[str, Any] = word words.append(lowercase__) return " ".join(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = re.findall(r'''\S+\n?''' , lowercase__) for token in words: split_tokens.extend(list(self.bpe(lowercase__).split(''' '''))) return split_tokens def A( self , lowercase__): __UpperCAmelCase : Any = token.lower() return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__ , self.unk_token) def A( self , lowercase__): __UpperCAmelCase : List[str] = ''' '''.join(lowercase__).replace('''@@ ''' , '''''').strip() return out_string def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : int = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : List[str] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : List[str] = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : List[Any] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
from __future__ import annotations import bisect def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int: '''simple docstring''' if hi < 0: __UpperCAmelCase : Any = len(lowercase_ ) while lo < hi: __UpperCAmelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase : Optional[Any] = mid + 1 else: __UpperCAmelCase : Optional[int] = mid return lo def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int: '''simple docstring''' if hi < 0: __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) while lo < hi: __UpperCAmelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase : Optional[Any] = mid + 1 else: __UpperCAmelCase : List[Any] = mid return lo def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) - 1 while left <= right: __UpperCAmelCase : Dict = left + (right - left) // 2 __UpperCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase : Optional[int] = midpoint - 1 else: __UpperCAmelCase : Any = midpoint + 1 return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' __UpperCAmelCase : int = bisect.bisect_left(lowercase_ , lowercase_ ) if index != len(lowercase_ ) and sorted_collection[index] == item: return index return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' if right < left: return None __UpperCAmelCase : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase_ , lowercase_ , midpoint + 1 , lowercase_ ) if __name__ == "__main__": lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase = sorted(int(item) for item in user_input.split(""",""")) lowerCAmelCase = int(input("""Enter a single number to be found in the list:\n""")) lowerCAmelCase = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
lowerCAmelCase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils) __UpperCAmelCase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py''']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCAmelCase : str = test_metrics @require_cpu def A( self): debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def A( self): debug_launcher(self.test_metrics.main) @require_single_gpu def A( self): self.test_metrics.main() @require_multi_gpu def A( self): print(F"Found {torch.cuda.device_count()} devices.") __UpperCAmelCase : Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase__ , env=os.environ.copy())
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = (DEISMultistepScheduler,) _lowerCAmelCase : List[Any] = (('''num_inference_steps''', 2_5),) def A( self , **lowercase__): __UpperCAmelCase : Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase__) return config def A( self , lowercase__=0 , **lowercase__): __UpperCAmelCase : List[str] = dict(self.forward_default_kwargs) __UpperCAmelCase : Optional[int] = kwargs.pop('''num_inference_steps''' , lowercase__) __UpperCAmelCase : int = self.dummy_sample __UpperCAmelCase : Union[str, Any] = 0.1 * sample __UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : int = scheduler_class(**lowercase__) scheduler.set_timesteps(lowercase__) # copy over dummy past residuals __UpperCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__) __UpperCAmelCase : str = scheduler_class.from_pretrained(lowercase__) new_scheduler.set_timesteps(lowercase__) # copy over dummy past residuals __UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase : Optional[int] = sample, sample for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1): __UpperCAmelCase : Any = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : Optional[Any] = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A( self): pass def A( self , lowercase__=0 , **lowercase__): __UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs) __UpperCAmelCase : List[str] = kwargs.pop('''num_inference_steps''' , lowercase__) __UpperCAmelCase : Tuple = self.dummy_sample __UpperCAmelCase : str = 0.1 * sample __UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) scheduler.set_timesteps(lowercase__) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__) __UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(lowercase__) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase : Tuple = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : str = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A( self , lowercase__=None , **lowercase__): if scheduler is None: __UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] __UpperCAmelCase : List[Any] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : int = scheduler_class(**lowercase__) __UpperCAmelCase : List[str] = 1_0 __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase__) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase : Dict = model(lowercase__ , lowercase__) __UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample return sample def A( self): __UpperCAmelCase : Any = dict(self.forward_default_kwargs) __UpperCAmelCase : Any = kwargs.pop('''num_inference_steps''' , lowercase__) for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) __UpperCAmelCase : Tuple = self.dummy_sample __UpperCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps'''): scheduler.set_timesteps(lowercase__) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps'''): __UpperCAmelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] __UpperCAmelCase : List[str] = scheduler.timesteps[5] __UpperCAmelCase : str = scheduler.timesteps[6] __UpperCAmelCase : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : List[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def A( self): # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCAmelCase : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config()) __UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=lowercase__) __UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 __UpperCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config) __UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : Tuple = self.full_loop(scheduler=lowercase__) __UpperCAmelCase : str = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 def A( self): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__) def A( self): self.check_over_configs(thresholding=lowercase__) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , algorithm_type='''deis''' , solver_order=lowercase__ , solver_type=lowercase__ , ) def A( self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__) def A( self): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) __UpperCAmelCase : str = self.full_loop( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) assert not torch.isnan(lowercase__).any(), "Samples have nan numbers" def A( self): self.check_over_configs(lower_order_final=lowercase__) self.check_over_configs(lower_order_final=lowercase__) def A( self): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase__ , time_step=0) def A( self): __UpperCAmelCase : Any = self.full_loop() __UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 def A( self): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type='''v_prediction''') __UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.0_9_1) < 1e-3 def A( self): __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : Any = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0) __UpperCAmelCase : Dict = scheduler_class(**lowercase__) __UpperCAmelCase : str = 1_0 __UpperCAmelCase : Union[str, Any] = self.dummy_model() __UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase__) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase : Optional[Any] = model(lowercase__ , lowercase__) __UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample assert sample.dtype == torch.floataa
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format __UpperCAmelCase : int = PipelineDataFormat.from_str( format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase_ , lowercase_ ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = nlp __UpperCAmelCase : Any = reader @staticmethod def A( lowercase__): __UpperCAmelCase : Optional[int] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''') run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''') run_parser.add_argument('''--input''' , type=lowercase__ , help='''Path to the file to use for inference''') run_parser.add_argument('''--output''' , type=lowercase__ , help='''Path to the file that will be used post to write results.''') run_parser.add_argument('''--model''' , type=lowercase__ , help='''Name or path to the model to instantiate.''') run_parser.add_argument('''--config''' , type=lowercase__ , help='''Name or path to the model\'s config to instantiate.''') run_parser.add_argument( '''--tokenizer''' , type=lowercase__ , help='''Name of the tokenizer to use. (default: same as the model name)''') run_parser.add_argument( '''--column''' , type=lowercase__ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=lowercase__ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=lowercase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''') run_parser.set_defaults(func=lowercase__) def A( self): __UpperCAmelCase : List[Any] = self._nlp, [] for entry in self._reader: __UpperCAmelCase : Tuple = nlp(**lowercase__) if self._reader.is_multi_columns else nlp(lowercase__) if isinstance(lowercase__ , lowercase__): outputs.append(lowercase__) else: outputs += output # Saving data if self._nlp.binary_output: __UpperCAmelCase : Tuple = self._reader.save_binary(lowercase__) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}") else: self._reader.save(lowercase__)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __A ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''deformable_detr''' _lowerCAmelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=3_0_0 , lowercase__=1_0_2_4 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=2_5_6 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , lowercase__=True , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=4 , lowercase__=4 , lowercase__=4 , lowercase__=False , lowercase__=3_0_0 , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , lowercase__=0.2_5 , lowercase__=False , **lowercase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCAmelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = backbone_config.get('''model_type''') __UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(lowercase__) __UpperCAmelCase : List[Any] = use_timm_backbone __UpperCAmelCase : Union[str, Any] = backbone_config __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[str] = num_queries __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : List[str] = encoder_ffn_dim __UpperCAmelCase : str = encoder_layers __UpperCAmelCase : Union[str, Any] = encoder_attention_heads __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : Union[str, Any] = decoder_attention_heads __UpperCAmelCase : int = dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : List[str] = activation_dropout __UpperCAmelCase : Union[str, Any] = activation_function __UpperCAmelCase : List[Any] = init_std __UpperCAmelCase : Optional[int] = init_xavier_std __UpperCAmelCase : Union[str, Any] = encoder_layerdrop __UpperCAmelCase : List[str] = auxiliary_loss __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : List[str] = backbone __UpperCAmelCase : Union[str, Any] = use_pretrained_backbone __UpperCAmelCase : List[Any] = dilation # deformable attributes __UpperCAmelCase : List[Any] = num_feature_levels __UpperCAmelCase : Optional[Any] = encoder_n_points __UpperCAmelCase : str = decoder_n_points __UpperCAmelCase : Any = two_stage __UpperCAmelCase : int = two_stage_num_proposals __UpperCAmelCase : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCAmelCase : Dict = class_cost __UpperCAmelCase : List[Any] = bbox_cost __UpperCAmelCase : Union[str, Any] = giou_cost # Loss coefficients __UpperCAmelCase : Tuple = mask_loss_coefficient __UpperCAmelCase : List[Any] = dice_loss_coefficient __UpperCAmelCase : int = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Any = eos_coefficient __UpperCAmelCase : List[Any] = focal_alpha __UpperCAmelCase : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase__ , **lowercase__) @property def A( self): return self.encoder_attention_heads @property def A( self): return self.d_model def A( self): __UpperCAmelCase : int = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __UpperCAmelCase : List[str] = self.backbone_config.to_dict() __UpperCAmelCase : int = self.__class__.model_type return output
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase = get_logger(__name__) lowerCAmelCase = R""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowerCamelCase : @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCamelCase : @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCamelCase ( _UpperCamelCase ): @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): for processor in self: __UpperCAmelCase : str = inspect.signature(processor.__call__).parameters if len(lowercase__) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys())} for " F"{processor.__class__} are passed to the logits processor.") __UpperCAmelCase : Optional[Any] = processor(lowercase__ , lowercase__ , lowercase__ , **lowercase__) else: __UpperCAmelCase : str = processor(lowercase__ , lowercase__ , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): if not isinstance(lowercase__ , lowercase__) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}") __UpperCAmelCase : Optional[int] = temperature def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = scores / self.temperature return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1): if not isinstance(lowercase__ , lowercase__) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(lowercase__ , lowercase__) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") __UpperCAmelCase : str = top_p __UpperCAmelCase : Optional[int] = filter_value __UpperCAmelCase : Optional[int] = min_tokens_to_keep def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = lax.top_k(lowercase__ , scores.shape[-1]) __UpperCAmelCase : Optional[int] = jnp.full_like(lowercase__ , self.filter_value) __UpperCAmelCase : Union[str, Any] = jax.nn.softmax(lowercase__ , axis=-1).cumsum(axis=-1) __UpperCAmelCase : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase : List[str] = jnp.roll(lowercase__ , 1) score_mask |= score_mask.at[:, 0].set(lowercase__) # min tokens to keep __UpperCAmelCase : List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase__) __UpperCAmelCase : Tuple = jnp.where(lowercase__ , lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(lowercase__ , lowercase__)[-1] return next_scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1): if not isinstance(lowercase__ , lowercase__) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}") __UpperCAmelCase : List[str] = max(lowercase__ , lowercase__) __UpperCAmelCase : Union[str, Any] = filter_value def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = scores.shape __UpperCAmelCase : Optional[Any] = jnp.full(batch_size * vocab_size , self.filter_value) __UpperCAmelCase : int = min(self.top_k , scores.shape[-1]) # Safety check __UpperCAmelCase : Optional[Any] = lax.top_k(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = jnp.broadcast_to((jnp.arange(lowercase__) * vocab_size)[:, None] , (batch_size, topk)).flatten() __UpperCAmelCase : Optional[Any] = topk_scores.flatten() __UpperCAmelCase : str = topk_indices.flatten() + shift __UpperCAmelCase : int = next_scores_flat.at[topk_indices_flat].set(lowercase__) __UpperCAmelCase : List[Any] = next_scores_flat.reshape(lowercase__ , lowercase__) return next_scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Dict = bos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = jnp.full(scores.shape , -float('''inf''')) __UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - 1) __UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.bos_token_id].set(0) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = max_length __UpperCAmelCase : str = eos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = jnp.full(scores.shape , -float('''inf''')) __UpperCAmelCase : int = 1 - jnp.bool_(cur_len - self.max_length + 1) __UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.eos_token_id].set(0) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): if not isinstance(lowercase__ , lowercase__) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(lowercase__ , lowercase__) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}") __UpperCAmelCase : List[Any] = min_length __UpperCAmelCase : Optional[int] = eos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): # create boolean flag to decide if min length penalty should be applied __UpperCAmelCase : List[str] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) __UpperCAmelCase : List[str] = jnp.where(lowercase__ , scores.at[:, self.eos_token_id].set(-float('''inf''')) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : int = list(lowercase__) __UpperCAmelCase : str = begin_index def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - self.begin_index) __UpperCAmelCase : Optional[Any] = jnp.where(lowercase__ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''')) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('''inf''')) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Any = dict(lowercase__) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase : List[str] = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(lowercase__) __UpperCAmelCase : Optional[int] = jnp.intaa(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__): def _force_token(lowercase__): __UpperCAmelCase : Optional[Any] = scores.shape[0] __UpperCAmelCase : Dict = self.force_token_array[generation_idx] __UpperCAmelCase : Union[str, Any] = jnp.ones_like(lowercase__ , dtype=scores.dtype) * -float('''inf''') __UpperCAmelCase : Tuple = jnp.zeros((batch_size, 1) , dtype=scores.dtype) __UpperCAmelCase : Any = lax.dynamic_update_slice(lowercase__ , lowercase__ , (0, current_token)) return new_scores __UpperCAmelCase : Tuple = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase__) , lambda: scores , ) , ) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = generate_config.eos_token_id __UpperCAmelCase : str = generate_config.no_timestamps_token_id __UpperCAmelCase : Optional[int] = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowercase__ , '''max_initial_timestamp_index'''): __UpperCAmelCase : Optional[int] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase : Optional[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase : Dict = model_config.vocab_size def __call__( self , lowercase__ , lowercase__ , lowercase__): # suppress <|notimestamps|> which is handled by without_timestamps __UpperCAmelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''')) def handle_pairs(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , lowercase__ , lowercase__) __UpperCAmelCase : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase__ , ) __UpperCAmelCase : Dict = jnp.where((cur_len - self.begin_index) < 2 , lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase__ , lowercase__ , ) return jnp.where( lowercase__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''')) , scores_k.at[: self.eos_token_id].set(-float('''inf''')) , ) , lowercase__ , ) __UpperCAmelCase : Any = jax.vmap(lowercase__)(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jnp.where(cur_len == self.begin_index , lowercase__ , lowercase__) __UpperCAmelCase : str = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase__ , ) __UpperCAmelCase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase : Union[str, Any] = jnp.where( lowercase__ , scores.at[:, last_allowed + 1 :].set(-float('''inf''')) , lowercase__ , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase : Dict = jax.nn.log_softmax(lowercase__ , axis=-1) def handle_cumulative_probs(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) __UpperCAmelCase : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''')) , lowercase__ , ) __UpperCAmelCase : int = jax.vmap(lowercase__)(lowercase__ , lowercase__) return scores
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=0 ) -> Optional[int]: '''simple docstring''' return sorted(lowercase_ , key=lambda lowercase_ : x[column] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Any: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowercase_ ): __UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Any = current_dis return min_dis def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Optional[int]: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowercase_ ): for j in range(max(0 , i - 6 ) , lowercase_ ): __UpperCAmelCase : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCAmelCase : Dict = current_dis return min_dis def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowercase_ , lowercase_ ) # recursion __UpperCAmelCase : int = points_counts // 2 __UpperCAmelCase : Tuple = closest_pair_of_points_sqr( lowercase_ , points_sorted_on_y[:mid] , lowercase_ ) __UpperCAmelCase : Optional[int] = closest_pair_of_points_sqr( lowercase_ , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCAmelCase : int = min(lowercase_ , lowercase_ ) __UpperCAmelCase : str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowercase_ ) __UpperCAmelCase : Dict = dis_between_closest_in_strip( lowercase_ , len(lowercase_ ) , lowercase_ ) return min(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = column_based_sort(lowercase_ , column=0 ) __UpperCAmelCase : Any = column_based_sort(lowercase_ , column=1 ) return ( closest_pair_of_points_sqr( lowercase_ , lowercase_ , lowercase_ ) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""YolosFeatureExtractor"""] lowerCAmelCase = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase : list[list[int]] = [] __UpperCAmelCase : list[int] = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = sum(lowercase_ ) create_state_space_tree(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return result def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> None: '''simple docstring''' if sum(lowercase_ ) > max_sum or (remaining_nums_sum + sum(lowercase_ )) < max_sum: return if sum(lowercase_ ) == max_sum: result.append(lowercase_ ) return for index in range(lowercase_ , len(lowercase_ ) ): create_state_space_tree( lowercase_ , lowercase_ , index + 1 , [*path, nums[index]] , lowercase_ , remaining_nums_sum - nums[index] , ) lowerCAmelCase = [3, 34, 4, 12, 5, 2] lowerCAmelCase = 9 lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
from math import sqrt def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 for i in range(1 , int(sqrt(lowercase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase_ ): total += i + n // i elif i == sqrt(lowercase_ ): total += i return total - n def __SCREAMING_SNAKE_CASE ( lowercase_ = 10000 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = sum( i for i in range(1 , lowercase_ ) if sum_of_divisors(sum_of_divisors(lowercase_ ) ) == i and sum_of_divisors(lowercase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ) -> tuple[list[int], int]: '''simple docstring''' __UpperCAmelCase : Any = [randint(-1000 , 1000 ) for i in range(10 )] __UpperCAmelCase : Union[str, Any] = randint(-5000 , 5000 ) return (arr, r) lowerCAmelCase = make_dataset() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(lowercase_ , 3 ): if sum(lowercase_ ) == target: return tuple(sorted(lowercase_ ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() __UpperCAmelCase : Tuple = len(lowercase_ ) for i in range(n - 1 ): __UpperCAmelCase : Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ) -> tuple[float, float]: '''simple docstring''' __UpperCAmelCase : List[Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __UpperCAmelCase : Union[str, Any] = ''' triplet_sum1(*dataset) ''' __UpperCAmelCase : Tuple = ''' triplet_sum2(*dataset) ''' __UpperCAmelCase : List[Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) __UpperCAmelCase : Union[str, Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) return (min(lowercase_ ), min(lowercase_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import os def __SCREAMING_SNAKE_CASE ( lowercase_ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(lowercase_ ) , lowercase_ ) ) as in_file: __UpperCAmelCase : Any = in_file.read() __UpperCAmelCase : Tuple = [[int(lowercase_ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] __UpperCAmelCase : Optional[int] = [[0 for cell in row] for row in grid] __UpperCAmelCase : Dict = len(grid[0] ) __UpperCAmelCase : Optional[int] = [[0 for i in range(lowercase_ )] for j in range(lowercase_ )] __UpperCAmelCase : Any = grid[0][0] for i in range(1 , lowercase_ ): __UpperCAmelCase : str = grid[0][i] + dp[0][i - 1] for i in range(1 , lowercase_ ): __UpperCAmelCase : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , lowercase_ ): for j in range(1 , lowercase_ ): __UpperCAmelCase : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import qiskit def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCAmelCase : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : List[str] = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __UpperCAmelCase : Tuple = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase : _lowerCAmelCase : int _lowerCAmelCase : TreeNode | None = None _lowerCAmelCase : TreeNode | None = None lowerCAmelCase = namedtuple("""CoinsDistribResult""", """moves excess""") def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(lowercase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __UpperCAmelCase : Union[str, Any] = get_distrib(node.left ) __UpperCAmelCase : Any = get_distrib(node.right ) __UpperCAmelCase : Optional[Any] = 1 - left_distrib_excess __UpperCAmelCase : Union[str, Any] = 1 - right_distrib_excess __UpperCAmelCase : str = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) __UpperCAmelCase : Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A( self): __UpperCAmelCase : Union[str, Any] = self.dummy_uncond_unet __UpperCAmelCase : int = PNDMScheduler() __UpperCAmelCase : List[str] = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__) pndm.to(lowercase__) pndm.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = torch.manual_seed(0) __UpperCAmelCase : Any = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''').images __UpperCAmelCase : Optional[int] = torch.manual_seed(0) __UpperCAmelCase : Dict = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''' , return_dict=lowercase__)[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = '''google/ddpm-cifar10-32''' __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained(lowercase__) __UpperCAmelCase : str = PNDMScheduler() __UpperCAmelCase : Any = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__) pndm.to(lowercase__) pndm.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0) __UpperCAmelCase : List[Any] = pndm(generator=lowercase__ , output_type='''numpy''').images __UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : List[Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def __SCREAMING_SNAKE_CASE ( lowercase_=True ) -> List[str]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_UpperCamelCase ) ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = None _lowerCAmelCase : List[str] = None def A( self , lowercase__ , lowercase__): with TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Tuple = dataset_module_factory(lowercase__ , cache_dir=lowercase__) __UpperCAmelCase : Optional[int] = import_main_class(dataset_module.module_path , dataset=lowercase__) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase__ , config_name=lowercase__ , hash=dataset_module.hash , ) __UpperCAmelCase : str = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase__).replace(os.sep , '''/'''), config.DATASET_INFO_FILENAME, ]) __UpperCAmelCase : List[str] = cached_path(lowercase__ , cache_dir=lowercase__) self.assertTrue(os.path.exists(lowercase__)) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' __UpperCAmelCase : Tuple = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ ) __UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path ) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __UpperCAmelCase : str = None builder_instance.download_and_prepare() __UpperCAmelCase : int = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ ) __UpperCAmelCase : Tuple = import_main_class(dataset_module.module_path , dataset=lowercase_ ) __UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) __UpperCAmelCase : List[str] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase_ , lowercase_ ) assert "train" in ds assert isinstance(ds['''train'''] , lowercase_ ) assert next(iter(ds['''train'''] ) )
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
lowerCAmelCase = tuple[float, float, float] lowerCAmelCase = tuple[float, float, float] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = end_pointa[0] - end_pointa[0] __UpperCAmelCase : Union[str, Any] = end_pointa[1] - end_pointa[1] __UpperCAmelCase : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i __UpperCAmelCase : str = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __UpperCAmelCase : str = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' return tuple(round(lowercase_ , lowercase_ ) for x in vector ) == (0, 0, 0) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 10 ) -> bool: '''simple docstring''' __UpperCAmelCase : Tuple = create_vector(lowercase_ , lowercase_ ) __UpperCAmelCase : str = create_vector(lowercase_ , lowercase_ ) return is_zero_vector(get_ad_vectors_cross(lowercase_ , lowercase_ ) , lowercase_ )
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = AutoConfig.from_pretrained(lowercase_ , **lowercase_ ) __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_config(lowercase_ ) model.save_pretrained(lowercase_ ) AutoTokenizer.from_pretrained(lowercase_ ).save_pretrained(lowercase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv2FeatureExtractor"""] lowerCAmelCase = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowerCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = {} with open(lowercase_ , '''r''' ) as file: for line_number, line in enumerate(lowercase_ ): __UpperCAmelCase : Any = line.strip() if line: __UpperCAmelCase : Optional[int] = line.split() __UpperCAmelCase : Union[str, Any] = line_number __UpperCAmelCase : str = words[0] __UpperCAmelCase : int = value return result def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : Any = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): __UpperCAmelCase : str = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase : Optional[Any] = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase : Optional[int] = getattr(lowercase_ , lowercase_ ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase : Tuple = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = shape_pointer.shape # let's reduce dimension __UpperCAmelCase : List[str] = value[0] else: __UpperCAmelCase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : int = value elif weight_type == "weight_g": __UpperCAmelCase : Any = value elif weight_type == "weight_v": __UpperCAmelCase : Dict = value elif weight_type == "bias": __UpperCAmelCase : List[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase : Optional[Any] = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : str = value else: __UpperCAmelCase : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): __UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase : List[Any] = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase : Tuple = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase : List[Any] = '''.'''.join([key, hf_param_name] ) else: __UpperCAmelCase : Tuple = key __UpperCAmelCase : str = value if '''lm_head''' in full_key else value[0] lowerCAmelCase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase : str = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase : List[str] = True if "*" in mapped_key: __UpperCAmelCase : Dict = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Tuple = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : List[str] = '''weight_v''' elif "bias" in name: __UpperCAmelCase : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : int = '''weight''' else: __UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return is_used return is_used def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Any = fairseq_model.state_dict() __UpperCAmelCase : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : Union[str, Any] = True else: __UpperCAmelCase : Optional[Any] = load_wavaveca_layer(lowercase_ , lowercase_ , lowercase_ ) if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : Optional[int] = name.split('''.''' ) __UpperCAmelCase : Any = int(items[0] ) __UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCAmelCase : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False ) -> Dict: '''simple docstring''' if config_path is not None: __UpperCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : Optional[int] = WavaVecaConfig() if is_seq_class: __UpperCAmelCase : str = read_txt_into_dict(lowercase_ ) __UpperCAmelCase : Union[str, Any] = idalabel __UpperCAmelCase : Dict = WavaVecaForSequenceClassification(lowercase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) feature_extractor.save_pretrained(lowercase_ ) elif is_finetuned: if dict_path: __UpperCAmelCase : List[Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : str = target_dict.pad_index __UpperCAmelCase : Optional[Any] = target_dict.bos_index __UpperCAmelCase : Optional[Any] = target_dict.eos_index __UpperCAmelCase : Dict = len(target_dict.symbols ) __UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , '''vocab.json''' ) if not os.path.isdir(lowercase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) __UpperCAmelCase : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = 1 with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , ) __UpperCAmelCase : List[str] = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) __UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaForCTC(lowercase_ ) else: __UpperCAmelCase : Optional[int] = WavaVecaForPreTraining(lowercase_ ) if is_finetuned or is_seq_class: __UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase : Dict = argparse.Namespace(task='''audio_pretraining''' ) __UpperCAmelCase : Optional[Any] = fairseq.tasks.setup_task(lowercase_ ) __UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase_ ) __UpperCAmelCase : Dict = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : List[str] = str(id_) __UpperCAmelCase : str = None __UpperCAmelCase : Any = None __UpperCAmelCase : str = [] __UpperCAmelCase : Union[str, Any] = {} # {vertex:distance} def __lt__( self , lowercase__): return self.key < other.key def __repr__( self): return self.id def A( self , lowercase__): self.neighbors.append(lowercase__) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : int = weight def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : int = [] for u in graph: __UpperCAmelCase : List[str] = math.inf __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = graph[:] while q: __UpperCAmelCase : Any = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase : List[Any] = u __UpperCAmelCase : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Iterator[tuple]: '''simple docstring''' for u in graph: __UpperCAmelCase : Any = math.inf __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Any = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __UpperCAmelCase : Union[str, Any] = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase : Any = u __UpperCAmelCase : Dict = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : str = set() __UpperCAmelCase : Any = [] def parse_line(lowercase_ ): for line in fp: if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : List[Any] = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowercase_ ) > 0: __UpperCAmelCase : Any = '''\n'''.join(lowercase_ ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(lowercase_ ) buffer.clear() continue else: __UpperCAmelCase : str = line.strip() buffer.append(lowercase_ ) if from_gh: for filename in os.listdir(lowercase_ ): __UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with open(lowercase_ ) as fp: parse_line(lowercase_ ) else: try: with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase_ ) as fp: parse_line(lowercase_ ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : Optional[Any] = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' return values.split(''',''' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=1024 , lowercase_=1024 , lowercase_=False , **lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ ) __UpperCAmelCase : Optional[Any] = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''train''' , **lowercase_ ) __UpperCAmelCase : int = tok.pad_token_id def get_lens(lowercase_ ): __UpperCAmelCase : Tuple = tqdm( DataLoader(lowercase_ , batch_size=512 , num_workers=8 , shuffle=lowercase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __UpperCAmelCase : Any = [] for batch in dl: __UpperCAmelCase : str = batch['''input_ids'''].ne(lowercase_ ).sum(1 ).tolist() __UpperCAmelCase : List[str] = batch['''labels'''].ne(lowercase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase_ , lowercase_ ): max_lens.append(max(lowercase_ , lowercase_ ) ) else: max_lens.extend(lowercase_ ) return max_lens __UpperCAmelCase : List[Any] = get_lens(lowercase_ ) __UpperCAmelCase : Tuple = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''val''' , **lowercase_ ) __UpperCAmelCase : str = get_lens(lowercase_ ) pickle_save(lowercase_ , train_ds.len_file ) pickle_save(lowercase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __UpperCAmelCase : Optional[int] = 6 __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Union[str, Any] = 1901 __UpperCAmelCase : Dict = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __UpperCAmelCase : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __UpperCAmelCase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 __UpperCAmelCase : Dict = day - days_per_month[month - 2] if month > 12: year += 1 __UpperCAmelCase : str = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] lowerCAmelCase = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''rougeLsum''' __UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k] __UpperCAmelCase : str = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k] assert score > score_no_sep def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = ['''rouge1''', '''rouge2''', '''rougeL'''] __UpperCAmelCase : Optional[Any] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ ) __UpperCAmelCase : Any = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ ) assert score_sep == score_no_sep def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __UpperCAmelCase : List[str] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ ) == calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ ) def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __UpperCAmelCase : List[Any] = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __UpperCAmelCase : Union[str, Any] = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] , newline_sep=lowercase_ )['''rougeLsum'''] __UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __UpperCAmelCase : Dict = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=lowercase_ ) assert isinstance(lowercase_ , lowercase_ )
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from __future__ import annotations from typing import Any class lowerCamelCase : def __init__( self , lowercase__ = 6): __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None self.create_linked_list(lowercase__) def A( self , lowercase__): __UpperCAmelCase : int = Node() __UpperCAmelCase : int = current_node __UpperCAmelCase : Optional[int] = current_node __UpperCAmelCase : Optional[Any] = current_node for _ in range(1 , lowercase__): __UpperCAmelCase : Any = Node() __UpperCAmelCase : Union[str, Any] = current_node __UpperCAmelCase : Any = previous_node __UpperCAmelCase : Any = current_node __UpperCAmelCase : Optional[Any] = self.front __UpperCAmelCase : Optional[int] = previous_node def A( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A( self): self.check_can_perform_operation() return self.front.data if self.front else None def A( self , lowercase__): if self.rear is None: return self.check_is_full() if not self.is_empty(): __UpperCAmelCase : List[Any] = self.rear.next if self.rear: __UpperCAmelCase : str = data def A( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __UpperCAmelCase : Tuple = self.front.data __UpperCAmelCase : Dict = None return data __UpperCAmelCase : int = self.front __UpperCAmelCase : Dict = old_front.next __UpperCAmelCase : Union[str, Any] = old_front.data __UpperCAmelCase : Dict = None return data def A( self): if self.is_empty(): raise Exception('''Empty Queue''') def A( self): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''') class lowerCamelCase : def __init__( self): __UpperCAmelCase : Any | None = None __UpperCAmelCase : Node | None = None __UpperCAmelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase = """src/transformers""" lowerCAmelCase = """docs/source/en/tasks""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase : int = f.readlines() # Find the start prompt. __UpperCAmelCase : str = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 __UpperCAmelCase : str = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowercase_ , set() ) __UpperCAmelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = _find_text_in_file( filename=os.path.join(lowercase_ , lowercase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __UpperCAmelCase : int = get_model_list_for_task(lowercase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ''' to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''M-CLIP''' def __init__( self , lowercase__=1_0_2_4 , lowercase__=7_6_8 , **lowercase__): __UpperCAmelCase : Optional[int] = transformerDimSize __UpperCAmelCase : Optional[int] = imageDimSize super().__init__(**lowercase__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = MCLIPConfig def __init__( self , lowercase__ , *lowercase__ , **lowercase__): super().__init__(lowercase__ , *lowercase__ , **lowercase__) __UpperCAmelCase : int = XLMRobertaModel(lowercase__) __UpperCAmelCase : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = self.transformer(input_ids=lowercase__ , attention_mask=lowercase__)[0] __UpperCAmelCase : Any = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowercase__), embs
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
from torch import nn class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__): super().__init__() __UpperCAmelCase : str = class_size __UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCAmelCase : List[str] = nn.Linear(lowercase__ , lowercase__) def A( self , lowercase__): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __UpperCAmelCase : Union[str, Any] = self.mlp(lowercase__) return logits
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Tuple = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : Dict = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Dict = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase : Tuple = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowercase__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowercase__)) __UpperCAmelCase : List[str] = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCAmelCase : Any = os.path.join(self.tmpdirname , lowercase__) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase__ , lowercase__) def A( self , **lowercase__): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__) def A( self , **lowercase__): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__) def A( self): shutil.rmtree(self.tmpdirname) def A( self): __UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1)) for x in image_inputs] return image_inputs def A( self): __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_slow.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__) __UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) processor_fast.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase__) self.assertIsInstance(processor_fast.tokenizer , lowercase__) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase__) self.assertIsInstance(processor_fast.image_processor , lowercase__) def A( self): __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=lowercase__) __UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase__) def A( self): __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''np''') __UpperCAmelCase : Tuple = processor(images=lowercase__ , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def A( self): __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : List[str] = '''lower newer''' __UpperCAmelCase : Dict = processor(text=lowercase__ , return_tensors='''np''') __UpperCAmelCase : Optional[int] = tokenizer(lowercase__ , return_tensors='''np''') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def A( self): __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Union[str, Any] = '''lower newer''' __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=lowercase__ , images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Dict = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Any = 1_6 self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[str] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = [['''cat''', '''nasa badge'''], ['''person''']] __UpperCAmelCase : Any = processor(text=lowercase__) __UpperCAmelCase : int = 1_6 __UpperCAmelCase : int = len(lowercase__) __UpperCAmelCase : int = max([len(lowercase__) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : List[Any] = '''google/owlvit-base-patch32''' __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__) __UpperCAmelCase : Optional[int] = ['''cat''', '''nasa badge'''] __UpperCAmelCase : List[Any] = processor(text=lowercase__) __UpperCAmelCase : Optional[int] = 1_6 __UpperCAmelCase : Optional[Any] = inputs['''input_ids'''] __UpperCAmelCase : str = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''']) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : str = self.prepare_image_inputs() __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : int = processor(images=lowercase__ , query_images=lowercase__) self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase__): processor() def A( self): __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase__) self.assertListEqual(lowercase__ , lowercase__)
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCamelCase : _lowerCAmelCase : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments,) ) (__UpperCAmelCase ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowercase_ , decoder_config=lowercase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __UpperCAmelCase : Tuple = decoder_config.decoder_start_token_id __UpperCAmelCase : str = decoder_config.pad_token_id if decoder_start_token_id is None: __UpperCAmelCase : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: __UpperCAmelCase : Any = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __UpperCAmelCase : Any = decoder_config.eos_token_id __UpperCAmelCase : Dict = decoder_start_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = GPTSanJapaneseTokenizer _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = {'''do_clean_text''': False, '''add_prefix_space''': False} def A( self): super().setUp() # fmt: off __UpperCAmelCase : Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : str = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __UpperCAmelCase : Union[str, Any] = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.emoji_file , '''w''') as emoji_writer: emoji_writer.write(json.dumps(lowercase__)) def A( self , **lowercase__): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__) def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' __UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def A( self , lowercase__): __UpperCAmelCase : Optional[Any] = self.get_input_output_texts(lowercase__) __UpperCAmelCase : Tuple = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : Dict = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) return text, ids def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : Any = '''こんにちは、世界。 こんばんは、㔺界。''' __UpperCAmelCase : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids without special tokens __UpperCAmelCase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) # Testing conversion to ids with special tokens __UpperCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token] __UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(lowercase__) self.assertListEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : str = self.get_tokenizer() # Testing tokenization __UpperCAmelCase : List[str] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __UpperCAmelCase : Optional[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' __UpperCAmelCase : Any = tokenizer.encode(lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Dict = '''こんにちは、世界。''' __UpperCAmelCase : List[str] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀''' __UpperCAmelCase : Optional[Any] = tokenizer.encode(prefix_text + input_text) __UpperCAmelCase : int = tokenizer.encode('''''' , prefix_text=prefix_text + input_text) __UpperCAmelCase : List[Any] = tokenizer.encode(lowercase__ , prefix_text=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(lowercase__) __UpperCAmelCase : Tuple = tokenizer.decode(lowercase__) __UpperCAmelCase : Optional[Any] = tokenizer.decode(lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) self.assertEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization __UpperCAmelCase : Tuple = '''こんにちは、世界。''' __UpperCAmelCase : List[Any] = '''こんばんは、㔺界。😀''' __UpperCAmelCase : Union[str, Any] = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : Tuple = len(tokenizer.encode(lowercase__)) - 2 __UpperCAmelCase : int = [1] + [0] * (len_prefix + len_text + 1) __UpperCAmelCase : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] __UpperCAmelCase : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCAmelCase : List[Any] = tokenizer(prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer('''''' , prefix_text=prefix_text + input_text).token_type_ids __UpperCAmelCase : int = tokenizer(lowercase__ , prefix_text=lowercase__).token_type_ids self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , lowercase__) @slow def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''あンいワ''') __UpperCAmelCase : str = tokenizer.encode('''''' , prefix_text='''あンいワ''') __UpperCAmelCase : Optional[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''') self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__)) self.assertNotEqual(lowercase__ , lowercase__) self.assertNotEqual(lowercase__ , lowercase__) self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token @slow def A( self): __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') __UpperCAmelCase : List[str] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __UpperCAmelCase : List[Any] = tokenizer(lowercase__ , padding=lowercase__) __UpperCAmelCase : Tuple = tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__) # fmt: off __UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __UpperCAmelCase : List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase__) self.assertListEqual(x_token.token_type_ids , lowercase__) self.assertListEqual(x_token.attention_mask , lowercase__) self.assertListEqual(x_token_a.input_ids , lowercase__) self.assertListEqual(x_token_a.token_type_ids , lowercase__) self.assertListEqual(x_token_a.attention_mask , lowercase__) def A( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def A( self): # tokenizer has no padding token pass
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ = 50000000 ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : int = int((limit - 24) ** (1 / 2) ) __UpperCAmelCase : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase_ ) ) ) for primea in primes: __UpperCAmelCase : List[Any] = primea * primea for primea in primes: __UpperCAmelCase : List[str] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __UpperCAmelCase : Dict = primea * primea * primea * primea __UpperCAmelCase : Optional[Any] = square + cube + tetr if total >= limit: break ret.add(lowercase_ ) return len(lowercase_ ) if __name__ == "__main__": print(F'{solution() = }')
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=0 , ): __UpperCAmelCase : Any = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : int = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : List[str] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : int = num_choices __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : List[str] = projection_dim def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Tuple = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : int = None __UpperCAmelCase : int = None __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) __UpperCAmelCase : int = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = TFDPRContextEncoder(config=lowercase__) __UpperCAmelCase : Any = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Any = model(lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = TFDPRQuestionEncoder(config=lowercase__) __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : str = model(lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = TFDPRReader(config=lowercase__) __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : List[Any] = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCAmelCase : Tuple = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCAmelCase : List[str] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Tuple = False def A( self): __UpperCAmelCase : int = TFDPRModelTester(self) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase__) @slow def A( self): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = TFDPRContextEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TFDPRContextEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = TFDPRQuestionEncoder.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = TFDPRReader.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') __UpperCAmelCase : List[Any] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]]) # [CLS] hello, is my dog cute? [SEP] __UpperCAmelCase : Dict = model(lowercase__)[0] # embedding shape = (1, 768) # compare the actual values for a slice. __UpperCAmelCase : Dict = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ]) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1e-4))
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
import os import sys import unittest lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase = os.path.join(git_repo_path, """src""", """transformers""") lowerCAmelCase = """ {0} = None """ lowerCAmelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowerCAmelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowercase__) __UpperCAmelCase : Any = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowercase__ , '''tokenizers''') __UpperCAmelCase : Dict = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowercase__ , '''tensorflow_text''') __UpperCAmelCase : Optional[Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers''') __UpperCAmelCase : Optional[int] = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tensorflow_text''') __UpperCAmelCase : List[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers_and_vision''') def A( self): __UpperCAmelCase : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowercase__) self.assertIn('''tensorflow_text''' , lowercase__) self.assertIn('''sentencepiece_and_tokenizers''' , lowercase__) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def A( self): __UpperCAmelCase : int = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowercase__ , '''\nCONSTANT = None\n''') __UpperCAmelCase : List[str] = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowercase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') __UpperCAmelCase : str = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : List[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __UpperCAmelCase : Union[str, Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowercase__)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() __UpperCAmelCase : List[Any] = value_function __UpperCAmelCase : List[Any] = unet __UpperCAmelCase : Optional[Any] = scheduler __UpperCAmelCase : int = env __UpperCAmelCase : Optional[int] = env.get_dataset() __UpperCAmelCase : List[Any] = {} for key in self.data.keys(): try: __UpperCAmelCase : Union[str, Any] = self.data[key].mean() except: # noqa: E722 pass __UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: __UpperCAmelCase : List[Any] = self.data[key].std() except: # noqa: E722 pass __UpperCAmelCase : Tuple = env.observation_space.shape[0] __UpperCAmelCase : List[str] = env.action_space.shape[0] def A( self , lowercase__ , lowercase__): return (x_in - self.means[key]) / self.stds[key] def A( self , lowercase__ , lowercase__): return x_in * self.stds[key] + self.means[key] def A( self , lowercase__): if type(lowercase__) is dict: return {k: self.to_torch(lowercase__) for k, v in x_in.items()} elif torch.is_tensor(lowercase__): return x_in.to(self.unet.device) return torch.tensor(lowercase__ , device=self.unet.device) def A( self , lowercase__ , lowercase__ , lowercase__): for key, val in cond.items(): __UpperCAmelCase : Optional[int] = val.clone() return x_in def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = x.shape[0] __UpperCAmelCase : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model __UpperCAmelCase : Dict = torch.full((batch_size,) , lowercase__ , device=self.unet.device , dtype=torch.long) for _ in range(lowercase__): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __UpperCAmelCase : Optional[int] = self.value_function(x.permute(0 , 2 , 1) , lowercase__).sample __UpperCAmelCase : Dict = torch.autograd.grad([y.sum()] , [x])[0] __UpperCAmelCase : Union[str, Any] = self.scheduler._get_variance(lowercase__) __UpperCAmelCase : str = torch.exp(0.5 * posterior_variance) __UpperCAmelCase : Tuple = model_std * grad __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : List[Any] = x.detach() __UpperCAmelCase : Dict = x + scale * grad __UpperCAmelCase : str = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : int = self.unet(x.permute(0 , 2 , 1) , lowercase__).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg __UpperCAmelCase : List[Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , predict_epsilon=lowercase__)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) __UpperCAmelCase : List[Any] = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : Dict = self.to_torch(lowercase__) return x, y def __call__( self , lowercase__ , lowercase__=6_4 , lowercase__=3_2 , lowercase__=2 , lowercase__=0.1): # normalize the observations and create batch dimension __UpperCAmelCase : Any = self.normalize(lowercase__ , '''observations''') __UpperCAmelCase : Any = obs[None].repeat(lowercase__ , axis=0) __UpperCAmelCase : Optional[Any] = {0: self.to_torch(lowercase__)} __UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __UpperCAmelCase : Any = randn_tensor(lowercase__ , device=self.unet.device) __UpperCAmelCase : Any = self.reset_xa(lowercase__ , lowercase__ , self.action_dim) __UpperCAmelCase : List[Any] = self.to_torch(lowercase__) # run the diffusion process __UpperCAmelCase : Optional[int] = self.run_diffusion(lowercase__ , lowercase__ , lowercase__ , lowercase__) # sort output trajectories by value __UpperCAmelCase : Dict = y.argsort(0 , descending=lowercase__).squeeze() __UpperCAmelCase : str = x[sorted_idx] __UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] __UpperCAmelCase : int = actions.detach().cpu().numpy() __UpperCAmelCase : Tuple = self.de_normalize(lowercase__ , key='''actions''') # select the action with the highest value if y is not None: __UpperCAmelCase : Tuple = 0 else: # if we didn't run value guiding, select a random action __UpperCAmelCase : str = np.random.randint(0 , lowercase__) __UpperCAmelCase : Union[str, Any] = denorm_actions[selected_index, 0] return denorm_actions
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(lowercase_ , lowercase_ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
718
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase = logging.get_logger(__name__) # General docstring lowerCAmelCase = """MobileNetV1Config""" # Base docstring lowerCAmelCase = """google/mobilenet_v1_1.0_224""" lowerCAmelCase = [1, 1_024, 7, 7] # Image classification docstring lowerCAmelCase = """google/mobilenet_v1_1.0_224""" lowerCAmelCase = """tabby, tabby cat""" lowerCAmelCase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = {} if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Dict = model.mobilenet_va else: __UpperCAmelCase : List[str] = model __UpperCAmelCase : Union[str, Any] = '''MobilenetV1/Conv2d_0/''' __UpperCAmelCase : Union[str, Any] = backbone.conv_stem.convolution.weight __UpperCAmelCase : Optional[Any] = backbone.conv_stem.normalization.bias __UpperCAmelCase : Tuple = backbone.conv_stem.normalization.weight __UpperCAmelCase : Optional[int] = backbone.conv_stem.normalization.running_mean __UpperCAmelCase : int = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCAmelCase : List[str] = i + 1 __UpperCAmelCase : Optional[int] = i * 2 __UpperCAmelCase : Any = backbone.layer[pt_index] __UpperCAmelCase : Optional[Any] = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" __UpperCAmelCase : List[Any] = pointer.convolution.weight __UpperCAmelCase : Any = pointer.normalization.bias __UpperCAmelCase : List[str] = pointer.normalization.weight __UpperCAmelCase : Tuple = pointer.normalization.running_mean __UpperCAmelCase : Optional[int] = pointer.normalization.running_var __UpperCAmelCase : Union[str, Any] = backbone.layer[pt_index + 1] __UpperCAmelCase : str = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" __UpperCAmelCase : int = pointer.convolution.weight __UpperCAmelCase : List[str] = pointer.normalization.bias __UpperCAmelCase : int = pointer.normalization.weight __UpperCAmelCase : int = pointer.normalization.running_mean __UpperCAmelCase : List[Any] = pointer.normalization.running_var if isinstance(lowercase_ , lowercase_ ): __UpperCAmelCase : Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCAmelCase : Any = model.classifier.weight __UpperCAmelCase : Optional[Any] = model.classifier.bias return tf_to_pt_map def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCAmelCase : Any = tf.train.list_variables(lowercase_ ) __UpperCAmelCase : Union[str, Any] = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) __UpperCAmelCase : Optional[int] = tf.train.load_variable(lowercase_ , lowercase_ ) __UpperCAmelCase : Any = array # Build TF to PyTorch weights loading map __UpperCAmelCase : Optional[int] = _build_tf_to_pytorch_map(lowercase_ , lowercase_ , lowercase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue __UpperCAmelCase : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCAmelCase : List[Any] = np.transpose(lowercase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCAmelCase : Optional[Any] = array.squeeze().transpose() else: __UpperCAmelCase : str = np.transpose(lowercase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) __UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ ) tf_weights.pop(lowercase_ , lowercase_ ) tf_weights.pop(name + '''/RMSProp''' , lowercase_ ) tf_weights.pop(name + '''/RMSProp_1''' , lowercase_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowercase_ ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> torch.Tensor: '''simple docstring''' __UpperCAmelCase : Optional[int] = features.shape[-2:] __UpperCAmelCase : Union[str, Any] = conv_layer.stride __UpperCAmelCase : Any = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCAmelCase : str = max(kernel_height - stride_height , 0 ) else: __UpperCAmelCase : List[str] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCAmelCase : List[Any] = max(kernel_width - stride_width , 0 ) else: __UpperCAmelCase : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCAmelCase : Union[str, Any] = pad_along_width // 2 __UpperCAmelCase : str = pad_along_width - pad_left __UpperCAmelCase : List[Any] = pad_along_height // 2 __UpperCAmelCase : Union[str, Any] = pad_along_height - pad_top __UpperCAmelCase : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase_ , lowercase_ , '''constant''' , 0.0 ) class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , lowercase__ = 1 , lowercase__ = False , lowercase__ = True , lowercase__ = True , ): super().__init__() __UpperCAmelCase : int = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") __UpperCAmelCase : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2) __UpperCAmelCase : List[str] = nn.Convad( in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=lowercase__ , groups=lowercase__ , bias=lowercase__ , padding_mode='''zeros''' , ) if use_normalization: __UpperCAmelCase : Any = nn.BatchNormad( num_features=lowercase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowercase__ , track_running_stats=lowercase__ , ) else: __UpperCAmelCase : Optional[Any] = None if use_activation: if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowercase__): __UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __UpperCAmelCase : Optional[int] = config.hidden_act else: __UpperCAmelCase : List[Any] = None def A( self , lowercase__): if self.config.tf_padding: __UpperCAmelCase : Optional[int] = apply_tf_padding(lowercase__ , self.convolution) __UpperCAmelCase : Dict = self.convolution(lowercase__) if self.normalization is not None: __UpperCAmelCase : int = self.normalization(lowercase__) if self.activation is not None: __UpperCAmelCase : str = self.activation(lowercase__) return features class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Dict = MobileNetVaConfig _lowerCAmelCase : int = load_tf_weights_in_mobilenet_va _lowerCAmelCase : List[str] = '''mobilenet_v1''' _lowerCAmelCase : Optional[Any] = '''pixel_values''' _lowerCAmelCase : Dict = False def A( self , lowercase__): if isinstance(lowercase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = True): super().__init__(lowercase__) __UpperCAmelCase : Tuple = config __UpperCAmelCase : Tuple = 3_2 __UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth) __UpperCAmelCase : List[str] = MobileNetVaConvLayer( lowercase__ , in_channels=config.num_channels , out_channels=lowercase__ , kernel_size=3 , stride=2 , ) __UpperCAmelCase : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCAmelCase : Union[str, Any] = nn.ModuleList() for i in range(1_3): __UpperCAmelCase : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=3 , stride=strides[i] , groups=lowercase__ , )) self.layer.append( MobileNetVaConvLayer( lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=1 , )) __UpperCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def A( self , lowercase__): raise NotImplementedError @add_start_docstrings_to_model_forward(lowercase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') __UpperCAmelCase : Optional[int] = self.conv_stem(lowercase__) __UpperCAmelCase : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): __UpperCAmelCase : str = layer_module(lowercase__) if output_hidden_states: __UpperCAmelCase : Tuple = all_hidden_states + (hidden_states,) __UpperCAmelCase : Union[str, Any] = hidden_states if self.pooler is not None: __UpperCAmelCase : Optional[int] = torch.flatten(self.pooler(lowercase__) , start_dim=1) else: __UpperCAmelCase : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=lowercase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : str = config.num_labels __UpperCAmelCase : Optional[int] = MobileNetVaModel(lowercase__) __UpperCAmelCase : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCAmelCase : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase__) __UpperCAmelCase : Tuple = nn.Linear(lowercase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Any = self.mobilenet_va(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__) __UpperCAmelCase : List[Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Optional[int] = self.classifier(self.dropout(lowercase__)) __UpperCAmelCase : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase : int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase : List[Any] = '''single_label_classification''' else: __UpperCAmelCase : List[str] = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase : List[str] = MSELoss() if self.num_labels == 1: __UpperCAmelCase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCAmelCase : str = loss_fct(lowercase__ , lowercase__) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase : str = CrossEntropyLoss() __UpperCAmelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __UpperCAmelCase : Tuple = loss_fct(lowercase__ , lowercase__) if not return_dict: __UpperCAmelCase : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states , )
719
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_UpperCamelCase ): _lowerCAmelCase : List[str] = ['''onnx'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''onnx''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''onnx''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''onnx'''])
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class __A ( Generic[T] ): def __init__( self , lowercase__): __UpperCAmelCase : Optional[int] = data __UpperCAmelCase : str = self __UpperCAmelCase : Optional[Any] = 0 class __A ( Generic[T] ): def __init__( self): # map from node name to the node object __UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def A( self , lowercase__): # create a new set with x as its member __UpperCAmelCase : Union[str, Any] = DisjointSetTreeNode(lowercase__) def A( self , lowercase__): # find the set x belongs to (with path-compression) __UpperCAmelCase : Optional[int] = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase : Any = self.find_set(elem_ref.parent.data) return elem_ref.parent def A( self , lowercase__ , lowercase__): # helper function for union operation if nodea.rank > nodea.rank: __UpperCAmelCase : Dict = nodea else: __UpperCAmelCase : Tuple = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A( self , lowercase__ , lowercase__): # merge 2 disjoint sets self.link(self.find_set(lowercase__) , self.find_set(lowercase__)) class __A ( Generic[T] ): def __init__( self): # connections: map from the node to the neighbouring nodes (with weights) __UpperCAmelCase : dict[T, dict[T, int]] = {} def A( self , lowercase__): # add a node ONLY if its not present in the graph if node not in self.connections: __UpperCAmelCase : str = {} def A( self , lowercase__ , lowercase__ , lowercase__): # add an edge with the given weight self.add_node(lowercase__) self.add_node(lowercase__) __UpperCAmelCase : Tuple = weight __UpperCAmelCase : Dict = weight def A( self): __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda lowercase__: x[2]) # creating the disjoint set __UpperCAmelCase : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase__) # MST generation __UpperCAmelCase : Any = 0 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Tuple = GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: __UpperCAmelCase : Union[str, Any] = edges[index] index += 1 __UpperCAmelCase : List[str] = disjoint_set.find_set(lowercase__) __UpperCAmelCase : int = disjoint_set.find_set(lowercase__) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase__ , lowercase__ , lowercase__) disjoint_set.union(lowercase__ , lowercase__) return graph
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' __UpperCAmelCase : Tuple = analyze_text(lowercase_ ) __UpperCAmelCase : List[str] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. __UpperCAmelCase : str = sum(single_char_strings.values() ) # one length string __UpperCAmelCase : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCAmelCase : Tuple = single_char_strings[ch] __UpperCAmelCase : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string __UpperCAmelCase : Dict = sum(two_char_strings.values() ) __UpperCAmelCase : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCAmelCase : Optional[int] = cha + cha if sequence in two_char_strings: __UpperCAmelCase : Optional[int] = two_char_strings[sequence] __UpperCAmelCase : Union[str, Any] = int(lowercase_ ) / all_sum my_sec_sum += prob * math.loga(lowercase_ ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple[dict, dict]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = Counter() # type: ignore __UpperCAmelCase : Optional[int] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowercase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
701
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if len(lowercase_ ) < k or k < 0: raise ValueError('''Invalid Input''' ) __UpperCAmelCase : List[str] = sum(array[:k] ) for i in range(len(lowercase_ ) - k ): __UpperCAmelCase : int = current_sum - array[i] + array[i + k] __UpperCAmelCase : Optional[int] = max(lowercase_ , lowercase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase = [randint(-1_000, 1_000) for i in range(100)] lowerCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = None , lowercase__ = None , lowercase__ = True , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 2_2_4} __UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__ , param_name='''crop_size''') __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : List[Any] = size __UpperCAmelCase : Optional[int] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size __UpperCAmelCase : Optional[int] = do_rescale __UpperCAmelCase : Optional[int] = rescale_factor __UpperCAmelCase : List[Any] = do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase : List[str] = do_convert_rgb def A( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __UpperCAmelCase : str = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : str = get_size_dict(lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(lowercase__ , param_name='''size''' , default_to_square=lowercase__) __UpperCAmelCase : str = resample if resample is not None else self.resample __UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Dict = get_size_dict(lowercase__ , param_name='''crop_size''' , default_to_square=lowercase__) __UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase : Union[str, Any] = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase : Optional[Any] = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase : Tuple = [to_numpy_array(lowercase__) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_center_crop: __UpperCAmelCase : Union[str, Any] = [self.center_crop(image=lowercase__ , size=lowercase__) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: __UpperCAmelCase : List[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] __UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] __UpperCAmelCase : int = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__)
703
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = KandinskyInpaintPipeline _lowerCAmelCase : List[Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _lowerCAmelCase : Any = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _lowerCAmelCase : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase : Union[str, Any] = False @property def A( self): return 3_2 @property def A( self): return 3_2 @property def A( self): return self.time_input_dim @property def A( self): return self.time_input_dim * 4 @property def A( self): return 1_0_0 @property def A( self): __UpperCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def A( self): torch.manual_seed(0) __UpperCAmelCase : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __UpperCAmelCase : Dict = MultilingualCLIP(lowercase__) __UpperCAmelCase : Optional[Any] = text_encoder.eval() return text_encoder @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Union[str, Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __UpperCAmelCase : Optional[int] = UNetaDConditionModel(**lowercase__) return model @property def A( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A( self): torch.manual_seed(0) __UpperCAmelCase : List[str] = VQModel(**self.dummy_movq_kwargs) return model def A( self): __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : List[Any] = self.dummy_tokenizer __UpperCAmelCase : str = self.dummy_unet __UpperCAmelCase : Optional[Any] = self.dummy_movq __UpperCAmelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __UpperCAmelCase : Tuple = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A( self , lowercase__ , lowercase__=0): __UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase__) # create init_image __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1)[0] __UpperCAmelCase : int = Image.fromarray(np.uinta(lowercase__)).convert('''RGB''').resize((2_5_6, 2_5_6)) # create mask __UpperCAmelCase : Dict = np.ones((6_4, 6_4) , dtype=np.floataa) __UpperCAmelCase : List[str] = 0 if str(lowercase__).startswith('''mps'''): __UpperCAmelCase : Dict = torch.manual_seed(lowercase__) else: __UpperCAmelCase : List[Any] = torch.Generator(device=lowercase__).manual_seed(lowercase__) __UpperCAmelCase : str = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A( self): __UpperCAmelCase : str = '''cpu''' __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**lowercase__) __UpperCAmelCase : Union[str, Any] = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = pipe(**self.get_dummy_inputs(lowercase__)) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : List[Any] = pipe( **self.get_dummy_inputs(lowercase__) , return_dict=lowercase__ , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}") assert image.shape == (1, 6_4, 6_4, 3) __UpperCAmelCase : int = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A( self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''') __UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') __UpperCAmelCase : List[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa) __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Optional[int] = '''a hat''' __UpperCAmelCase : int = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(lowercase__) __UpperCAmelCase : Any = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa) __UpperCAmelCase : int = pipeline.to(lowercase__) pipeline.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase : Any = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __UpperCAmelCase : List[str] = pipeline( lowercase__ , image=lowercase__ , mask_image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) __UpperCAmelCase : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ , lowercase__)
704
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : int = [0 for i in range(r + 1 )] # nc0 = 1 __UpperCAmelCase : List[Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __UpperCAmelCase : Any = min(lowercase_ , lowercase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
705
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
706
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
0
from __future__ import annotations from decimal import Decimal from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: '''simple docstring''' __UpperCAmelCase : Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCAmelCase : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] __UpperCAmelCase : Dict = matrix[1][1], matrix[0][0] __UpperCAmelCase : int = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCAmelCase : Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __UpperCAmelCase : str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCAmelCase : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCAmelCase : Dict = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCAmelCase : Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCAmelCase : str = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCAmelCase : int = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCAmelCase : Dict = array(lowercase_ ) for i in range(3 ): for j in range(3 ): __UpperCAmelCase : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCAmelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
707
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowerCAmelCase = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowerCAmelCase = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowerCAmelCase = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def A( self , lowercase__): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''') __UpperCAmelCase : Optional[Any] = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: __UpperCAmelCase : Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __UpperCAmelCase : int = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer __UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) __UpperCAmelCase : Optional[int] = score.BleurtScorer(os.path.join(lowercase__ , lowercase__)) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = self.scorer.score(references=lowercase__ , candidates=lowercase__) return {"scores": scores}
708
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A( self): __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : List[Any] = (3_2, 3_2) __UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase__) return image @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def A( self): torch.manual_seed(0) __UpperCAmelCase : str = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(lowercase__) @property def A( self): def extract(*lowercase__ , **lowercase__): class lowerCamelCase : def __init__( self): __UpperCAmelCase : Optional[Any] = torch.ones([0]) def A( self , lowercase__): self.pixel_values.to(lowercase__) return self return Out() return extract def A( self): __UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : int = self.dummy_cond_unet __UpperCAmelCase : Tuple = PNDMScheduler(skip_prk_steps=lowercase__) __UpperCAmelCase : List[str] = self.dummy_vae __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') __UpperCAmelCase : Tuple = 7_7 __UpperCAmelCase : List[Any] = self.dummy_image.to(lowercase__) __UpperCAmelCase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __UpperCAmelCase : int = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) __UpperCAmelCase : Optional[Any] = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : Any = torch.Generator(device=lowercase__).manual_seed(0) __UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , ) __UpperCAmelCase : Any = output.images __UpperCAmelCase : str = torch.Generator(device=lowercase__).manual_seed(0) __UpperCAmelCase : Optional[Any] = alt_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , return_dict=lowercase__ , )[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : Optional[int] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def A( self): __UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet __UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase__) __UpperCAmelCase : Tuple = self.dummy_vae __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') __UpperCAmelCase : Optional[Any] = 7_7 __UpperCAmelCase : str = self.dummy_image.to(lowercase__) # put models in fp16 __UpperCAmelCase : Optional[Any] = unet.half() __UpperCAmelCase : str = vae.half() __UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk __UpperCAmelCase : List[Any] = AltDiffusionImgaImgPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) __UpperCAmelCase : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__) __UpperCAmelCase : Dict = alt_pipe.to(lowercase__) alt_pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' __UpperCAmelCase : List[Any] = torch.manual_seed(0) __UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def A( self): __UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase : Dict = init_image.resize((7_6_0, 5_0_4)) __UpperCAmelCase : List[str] = '''BAAI/AltDiffusion''' __UpperCAmelCase : Dict = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() __UpperCAmelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : int = torch.manual_seed(0) __UpperCAmelCase : str = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : str = output.images[0] __UpperCAmelCase : Tuple = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) __UpperCAmelCase : Any = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') __UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2)) __UpperCAmelCase : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') __UpperCAmelCase : int = '''BAAI/AltDiffusion''' __UpperCAmelCase : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase__ , safety_checker=lowercase__ , ) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() __UpperCAmelCase : str = '''A fantasy landscape, trending on artstation''' __UpperCAmelCase : List[str] = torch.manual_seed(0) __UpperCAmelCase : Optional[int] = pipe( prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , ) __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
710
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase ( nn.Module ): def __init__( self): super().__init__() __UpperCAmelCase : int = nn.Linear(3 , 4) __UpperCAmelCase : Tuple = nn.BatchNormad(4) __UpperCAmelCase : str = nn.Linear(4 , 5) def A( self , lowercase__): return self.lineara(self.batchnorm(self.lineara(lowercase__))) class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__ , *lowercase__ , **lowercase__): return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase ( _UpperCamelCase ): def A( self , lowercase__ , lowercase__): return output + 1 class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Union[str, Any] = ModelForTest() __UpperCAmelCase : str = ModelHook() add_hook_to_module(lowercase__ , lowercase__) self.assertEqual(test_model._hf_hook , lowercase__) self.assertTrue(hasattr(lowercase__ , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(lowercase__) self.assertFalse(hasattr(lowercase__ , '''_hf_hook''')) self.assertFalse(hasattr(lowercase__ , '''_old_forward''')) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : str = ModelHook() add_hook_to_module(lowercase__ , lowercase__) add_hook_to_module(lowercase__ , lowercase__ , append=lowercase__) self.assertEqual(isinstance(test_model._hf_hook , lowercase__) , lowercase__) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(lowercase__ , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(lowercase__) self.assertFalse(hasattr(lowercase__ , '''_hf_hook''')) self.assertFalse(hasattr(lowercase__ , '''_old_forward''')) def A( self): __UpperCAmelCase : Tuple = ModelForTest() __UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3) __UpperCAmelCase : str = test_model(x + 1) __UpperCAmelCase : List[Any] = test_model(x + 2) __UpperCAmelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = test_model(lowercase__) assert torch.allclose(lowercase__ , lowercase__ , atol=1e-5) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : List[str] = test_model(lowercase__) __UpperCAmelCase : Optional[Any] = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : str = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : Optional[int] = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Any = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Any = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = test_model(lowercase__) assert torch.allclose(lowercase__ , output + 2 , atol=1e-5) def A( self): __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : Any = torch.randn(2 , 3) __UpperCAmelCase : Optional[Any] = test_model(lowercase__) __UpperCAmelCase : Tuple = PostForwardHook() add_hook_to_module(lowercase__ , lowercase__) __UpperCAmelCase : Optional[Any] = test_model(lowercase__) self.assertTrue(torch.allclose(lowercase__ , output + 1)) self.assertTrue(outputa.requires_grad) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Dict = test_model(lowercase__) self.assertFalse(outputa.requires_grad) @require_multi_gpu def A( self): __UpperCAmelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device __UpperCAmelCase : Any = torch.randn(2 , 3) __UpperCAmelCase : Union[str, Any] = model(lowercase__) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase__ , AlignDevicesHook(io_same_device=lowercase__)) __UpperCAmelCase : int = torch.randn(2 , 3).to(0) __UpperCAmelCase : str = model(lowercase__) self.assertEqual(output.device , torch.device(0)) def A( self): __UpperCAmelCase : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : List[str] = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Dict = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : str = torch.randn(2 , 3) __UpperCAmelCase : int = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload __UpperCAmelCase : str = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : Optional[int] = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def A( self): __UpperCAmelCase : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Union[str, Any] = torch.device(lowercase__) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : Optional[Any] = torch.randn(2 , 3) __UpperCAmelCase : Any = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__ , offload_buffers=lowercase__) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : List[str] = torch.randn(2 , 3) __UpperCAmelCase : int = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def A( self): __UpperCAmelCase : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices __UpperCAmelCase : Tuple = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[int] = torch.device(lowercase__) self.assertEqual(model.batchnorm.running_mean.device , lowercase__) __UpperCAmelCase : Optional[int] = torch.randn(2 , 3) __UpperCAmelCase : str = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict() , offload_buffers=lowercase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) __UpperCAmelCase : Dict = torch.randn(2 , 3) __UpperCAmelCase : Dict = model(lowercase__) self.assertEqual(output.device , lowercase__) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
711
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __UpperCAmelCase : int = flax_key_tuple[:-1] + ('''weight''',) __UpperCAmelCase : Optional[Any] = torch.permute(lowercase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ): # linear layer __UpperCAmelCase : List[str] = flax_key_tuple[:-1] + ('''weight''',) __UpperCAmelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if "metadata" in layer: __UpperCAmelCase : Any = layer.split('''metadata''' ) __UpperCAmelCase : Optional[int] = ''''''.join(split_layer[0] )[:-1] __UpperCAmelCase : List[str] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __UpperCAmelCase : Any = layer.split('''kvstore''' ) __UpperCAmelCase : int = ''''''.join(split_layer[0] )[:-1] __UpperCAmelCase : List[str] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __UpperCAmelCase : List[str] = layer.split('''/''' ) __UpperCAmelCase : Union[str, Any] = '''/'''.join(split_layer[:-1] ) __UpperCAmelCase : Union[str, Any] = (split_layer[-1],) if "kvstore/path" in layer: __UpperCAmelCase : str = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __UpperCAmelCase : Tuple = '''file''' else: __UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = rename_keys(lowercase_ ) __UpperCAmelCase : Any = {} for k, v in current_block.items(): __UpperCAmelCase : List[Any] = v __UpperCAmelCase : int = new_current_block torch.save(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = WEIGHTS_NAME ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = convert_file_size_to_int(lowercase_ ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : int = {} __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Dict = 0 os.makedirs(lowercase_ , exist_ok=lowercase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __UpperCAmelCase : Optional[int] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __UpperCAmelCase : List[Any] = flatten_dict(lowercase_ , sep='''/''' ) __UpperCAmelCase : Dict = {} for layer in checkpoint_info.keys(): __UpperCAmelCase : Union[str, Any] = get_key_and_tensorstore_dict( lowercase_ , lowercase_ , lowercase_ ) if curr_real_layer_name in all_layers: __UpperCAmelCase : List[str] = content else: __UpperCAmelCase : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __UpperCAmelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __UpperCAmelCase : Optional[int] = torch.tensor(lowercase_ ) __UpperCAmelCase : Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __UpperCAmelCase : Tuple = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowercase_ ) __UpperCAmelCase : Dict = '''/'''.join(lowercase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __UpperCAmelCase : int = os.path.join( lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[Any] = raw_weights.to(getattr(lowercase_ , lowercase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __UpperCAmelCase : Any = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __UpperCAmelCase : str = {} __UpperCAmelCase : str = {} for idx, shard in enumerate(lowercase_ ): __UpperCAmelCase : List[Any] = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin" ) # len(sharded_state_dicts):05d} __UpperCAmelCase : str = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) __UpperCAmelCase : int = shard for key in shard: __UpperCAmelCase : List[str] = shard_file # Add the metadata __UpperCAmelCase : Optional[Any] = {'''total_size''': total_size} __UpperCAmelCase : Tuple = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n''' f.write(lowercase_ ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __UpperCAmelCase : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __UpperCAmelCase : List[str] = TaTokenizer.from_pretrained('''t5-small''' ) __UpperCAmelCase : List[str] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __UpperCAmelCase : Optional[Any] = tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids __UpperCAmelCase : Optional[int] = model.generate(lowercase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
712
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } lowerCAmelCase = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Dict = DistilBertTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , lowercase__) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase__) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase__) != tokenize_chinese_chars ): __UpperCAmelCase : Any = getattr(lowercase__ , normalizer_state.pop('''type''')) __UpperCAmelCase : Dict = do_lower_case __UpperCAmelCase : Optional[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : Tuple = normalizer_class(**lowercase__) __UpperCAmelCase : str = do_lower_case def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : int = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__)
713
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = """▁""" lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 1_024, } # fmt: off lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : List[int] = [] _lowerCAmelCase : List[int] = [] def __init__( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase : Optional[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) __UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase__)) __UpperCAmelCase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model) __UpperCAmelCase : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__) } __UpperCAmelCase : Any = {v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase : int = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) __UpperCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : Dict = self.lang_code_to_id[self._src_lang] __UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A( self): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A( self): return self._src_lang @src_lang.setter def A( self , lowercase__): __UpperCAmelCase : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self): __UpperCAmelCase : List[Any] = self.__dict__.copy() __UpperCAmelCase : Optional[Any] = None return state def __setstate__( self , lowercase__): __UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCAmelCase : int = {} __UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A( self): __UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A( self , lowercase__): return self.sp_model.encode(lowercase__ , out_type=lowercase__) def A( self , lowercase__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowercase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A( self , lowercase__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A( self , lowercase__): __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = '''''' __UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__) + token __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(lowercase__) __UpperCAmelCase : str = False out_string += self.sp_model.decode(lowercase__) return out_string.strip() def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : str = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase__) elif not os.path.isfile(self.vocab_file): with open(lowercase__ , '''wb''') as fi: __UpperCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__) return (out_vocab_file,) def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) __UpperCAmelCase : int = [1] * len(self.prefix_tokens) __UpperCAmelCase : List[str] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__)) + suffix_ones return prefix_ones + ([0] * len(lowercase__)) + ([0] * len(lowercase__)) + suffix_ones def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') __UpperCAmelCase : str = src_lang __UpperCAmelCase : List[Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__) __UpperCAmelCase : Any = self.convert_tokens_to_ids(lowercase__) __UpperCAmelCase : Optional[Any] = tgt_lang_id return inputs def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): __UpperCAmelCase : Optional[Any] = src_lang __UpperCAmelCase : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__) def A( self): return self.set_src_lang_special_tokens(self.src_lang) def A( self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A( self , lowercase__): __UpperCAmelCase : List[Any] = self.lang_code_to_id[src_lang] __UpperCAmelCase : Optional[Any] = [self.cur_lang_code_id] __UpperCAmelCase : List[str] = [self.eos_token_id] def A( self , lowercase__): __UpperCAmelCase : Tuple = self.lang_code_to_id[tgt_lang] __UpperCAmelCase : int = [self.cur_lang_code_id] __UpperCAmelCase : Dict = [self.eos_token_id]
714
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=None , lowercase__=True , lowercase__=True , lowercase__=None , ): __UpperCAmelCase : Any = size if size is not None else {'''height''': 2_0, '''width''': 2_0} __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Any = min_resolution __UpperCAmelCase : Optional[int] = max_resolution __UpperCAmelCase : str = size __UpperCAmelCase : List[str] = do_normalize __UpperCAmelCase : int = do_convert_rgb __UpperCAmelCase : Any = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] __UpperCAmelCase : Any = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def A( self): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A( self): __UpperCAmelCase : Dict = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__).raw).convert('''RGB''') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = PixaStructImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb''')) def A( self): __UpperCAmelCase : Dict = self.image_processor_tester.prepare_dummy_image() __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Optional[Any] = 2_0_4_8 __UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''pt''' , max_patches=lowercase__) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6) , atol=1e-3 , rtol=1e-3)) def A( self): # Initialize image_processor __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : Dict = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __UpperCAmelCase : Tuple = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase__): __UpperCAmelCase : List[str] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches __UpperCAmelCase : Union[str, Any] = '''Hello''' __UpperCAmelCase : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Dict = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) __UpperCAmelCase : Optional[int] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : str = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def A( self): # Initialize image_processor __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input __UpperCAmelCase : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Dict = PixaStructImageProcessingTester(self , num_channels=4) __UpperCAmelCase : str = 3 @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb''')) def A( self): # Initialize image_processor __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input __UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __UpperCAmelCase : Dict = image_processor( lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = '''vision-encoder-decoder''' _lowerCAmelCase : Tuple = True def __init__( self , **lowercase__): super().__init__(**lowercase__) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") __UpperCAmelCase : int = kwargs.pop('''encoder''') __UpperCAmelCase : Optional[int] = encoder_config.pop('''model_type''') __UpperCAmelCase : Tuple = kwargs.pop('''decoder''') __UpperCAmelCase : Any = decoder_config.pop('''model_type''') __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model(lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__) __UpperCAmelCase : str = True @classmethod def A( cls , lowercase__ , lowercase__ , **lowercase__): logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase__) def A( self): __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__) __UpperCAmelCase : Optional[int] = self.encoder.to_dict() __UpperCAmelCase : Optional[Any] = self.decoder.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = version.parse('''1.11''' ) @property def A( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def A( self): return 1e-4 @property def A( self): return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}}) class lowerCamelCase ( _UpperCamelCase ): @property def A( self): __UpperCAmelCase : Dict = OrderedDict() __UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __UpperCAmelCase : str = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): import torch __UpperCAmelCase : Optional[Any] = OrderedDict() __UpperCAmelCase : int = super().generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) __UpperCAmelCase : Optional[Any] = dummy_input['''input_ids'''].shape __UpperCAmelCase : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) __UpperCAmelCase : Optional[Any] = dummy_input.pop('''input_ids''') __UpperCAmelCase : Optional[int] = dummy_input.pop('''attention_mask''') __UpperCAmelCase : Tuple = torch.zeros(lowercase__) return common_inputs class lowerCamelCase ( _UpperCamelCase ): @property def A( self): pass def A( self , lowercase__): return VisionEncoderDecoderEncoderOnnxConfig(lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = "default"): __UpperCAmelCase : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowercase__ , lowercase__)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0