code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __SCREAMING_SNAKE_CASE ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch '''
'''helper utility that will spawn up '''
'''multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=__SCREAMING_SNAKE_CASE , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=__SCREAMING_SNAKE_CASE )
return parser.parse_args()
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = parse_args()
# Import training_script as a module.
__UpperCAmelCase : Optional[int] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__UpperCAmelCase : Tuple = script_fpath.stem
__UpperCAmelCase : Union[str, Any] = importlib.import_module(__SCREAMING_SNAKE_CASE )
# Patch sys.argv
__UpperCAmelCase : int = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 704 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
_lowerCAmelCase : Optional[int] = ['''flax''', '''transformers''']
def __init__( self , *lowercase__ , **lowercase__):
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
_lowerCAmelCase : Any = ['''flax''', '''transformers''']
def __init__( self , *lowercase__ , **lowercase__):
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
_lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers''']
def __init__( self , *lowercase__ , **lowercase__):
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
class lowerCamelCase ( metaclass=_UpperCAmelCase ):
_lowerCAmelCase : Union[str, Any] = ['''flax''', '''transformers''']
def __init__( self , *lowercase__ , **lowercase__):
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''flax''', '''transformers'''])
| 705 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 675 | 0 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json',
'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json',
'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json',
}
class lowerCamelCase ( __lowercase ):
_lowerCAmelCase : List[Any] = '''owlvit_text_model'''
def __init__( self , lowercase__=4_9_4_0_8 , lowercase__=5_1_2 , lowercase__=2_0_4_8 , lowercase__=1_2 , lowercase__=8 , lowercase__=1_6 , lowercase__="quick_gelu" , lowercase__=1e-5 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , lowercase__=0 , lowercase__=4_9_4_0_6 , lowercase__=4_9_4_0_7 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
__UpperCAmelCase : Optional[int] = vocab_size
__UpperCAmelCase : List[str] = hidden_size
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : str = layer_norm_eps
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Tuple = initializer_factor
@classmethod
def A( cls , lowercase__ , **lowercase__):
cls._set_token_in_kwargs(lowercase__)
__UpperCAmelCase : List[str] = cls.get_config_dict(lowercase__ , **lowercase__)
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''') == "owlvit":
__UpperCAmelCase : Any = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.")
return cls.from_dict(lowercase__ , **lowercase__)
class lowerCamelCase ( __lowercase ):
_lowerCAmelCase : int = '''owlvit_vision_model'''
def __init__( self , lowercase__=7_6_8 , lowercase__=3_0_7_2 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3 , lowercase__=7_6_8 , lowercase__=3_2 , lowercase__="quick_gelu" , lowercase__=1e-5 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , **lowercase__ , ):
super().__init__(**lowercase__)
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Tuple = num_channels
__UpperCAmelCase : List[Any] = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : Any = layer_norm_eps
__UpperCAmelCase : Tuple = attention_dropout
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : str = initializer_factor
@classmethod
def A( cls , lowercase__ , **lowercase__):
cls._set_token_in_kwargs(lowercase__)
__UpperCAmelCase : Union[str, Any] = cls.get_config_dict(lowercase__ , **lowercase__)
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''') == "owlvit":
__UpperCAmelCase : Optional[int] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.")
return cls.from_dict(lowercase__ , **lowercase__)
class lowerCamelCase ( __lowercase ):
_lowerCAmelCase : Dict = '''owlvit'''
_lowerCAmelCase : Optional[int] = True
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=5_1_2 , lowercase__=2.6_5_9_2 , lowercase__=True , **lowercase__ , ):
super().__init__(**lowercase__)
if text_config is None:
__UpperCAmelCase : Union[str, Any] = {}
logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''')
if vision_config is None:
__UpperCAmelCase : str = {}
logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''')
__UpperCAmelCase : List[str] = OwlViTTextConfig(**lowercase__)
__UpperCAmelCase : str = OwlViTVisionConfig(**lowercase__)
__UpperCAmelCase : Tuple = projection_dim
__UpperCAmelCase : int = logit_scale_init_value
__UpperCAmelCase : List[str] = return_dict
__UpperCAmelCase : Optional[int] = 1.0
@classmethod
def A( cls , lowercase__ , **lowercase__):
cls._set_token_in_kwargs(lowercase__)
__UpperCAmelCase : Optional[Any] = cls.get_config_dict(lowercase__ , **lowercase__)
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.")
return cls.from_dict(lowercase__ , **lowercase__)
@classmethod
def A( cls , lowercase__ , lowercase__ , **lowercase__):
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : List[str] = text_config
__UpperCAmelCase : str = vision_config
return cls.from_dict(lowercase__ , **lowercase__)
def A( self):
__UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__)
__UpperCAmelCase : List[Any] = self.text_config.to_dict()
__UpperCAmelCase : str = self.vision_config.to_dict()
__UpperCAmelCase : Tuple = self.__class__.model_type
return output
class lowerCamelCase ( __lowercase ):
@property
def A( self):
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
])
@property
def A( self):
return OrderedDict(
[
('''logits_per_image''', {0: '''batch'''}),
('''logits_per_text''', {0: '''batch'''}),
('''text_embeds''', {0: '''batch'''}),
('''image_embeds''', {0: '''batch'''}),
])
@property
def A( self):
return 1e-4
def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = None , ):
__UpperCAmelCase : Dict = super().generate_dummy_inputs(
processor.tokenizer , batch_size=lowercase__ , seq_length=lowercase__ , framework=lowercase__)
__UpperCAmelCase : List[Any] = super().generate_dummy_inputs(
processor.image_processor , batch_size=lowercase__ , framework=lowercase__)
return {**text_input_dict, **image_input_dict}
@property
def A( self):
return 1_4
| 706 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 675 | 0 |
from math import factorial, pi
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 30 ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ):
raise ValueError('''maclaurin_sin() requires either an int or float for theta''' )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0:
raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' )
__UpperCAmelCase : Dict = float(_SCREAMING_SNAKE_CASE )
__UpperCAmelCase : int = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 30 ) -> Tuple:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , (int, float) ):
raise ValueError('''maclaurin_cos() requires either an int or float for theta''' )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or accuracy <= 0:
raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' )
__UpperCAmelCase : Optional[Any] = float(_SCREAMING_SNAKE_CASE )
__UpperCAmelCase : Dict = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 707 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
__UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
if latents is None:
__UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Union[str, Any] = latents.to(lowercase__)
__UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A( self , lowercase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__)
def A( self , lowercase__=0):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
__UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=lowercase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__)
# We'll offload the last model manually.
__UpperCAmelCase : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A( self):
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : str = self._execution_device
__UpperCAmelCase : List[str] = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0)
__UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
__UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
self.scheduler.set_timesteps(lowercase__ , device=lowercase__)
__UpperCAmelCase : List[Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.movq.config.latent_channels
__UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Union[str, Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint}
__UpperCAmelCase : Any = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
__UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Dict = image * 0.5 + 0.5
__UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1)
__UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
lowerCAmelCase = logging.get_logger(__name__)
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = question_encoder
__UpperCAmelCase : Dict = generator
__UpperCAmelCase : Any = self.question_encoder
def A( self , lowercase__):
if os.path.isfile(lowercase__):
raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(lowercase__ , exist_ok=lowercase__)
__UpperCAmelCase : Any = os.path.join(lowercase__ , '''question_encoder_tokenizer''')
__UpperCAmelCase : List[Any] = os.path.join(lowercase__ , '''generator_tokenizer''')
self.question_encoder.save_pretrained(lowercase__)
self.generator.save_pretrained(lowercase__)
@classmethod
def A( cls , lowercase__ , **lowercase__):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__UpperCAmelCase : Optional[int] = kwargs.pop('''config''' , lowercase__)
if config is None:
__UpperCAmelCase : str = RagConfig.from_pretrained(lowercase__)
__UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(
lowercase__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''')
__UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(
lowercase__ , config=config.generator , subfolder='''generator_tokenizer''')
return cls(question_encoder=lowercase__ , generator=lowercase__)
def __call__( self , *lowercase__ , **lowercase__):
return self.current_tokenizer(*lowercase__ , **lowercase__)
def A( self , *lowercase__ , **lowercase__):
return self.generator.batch_decode(*lowercase__ , **lowercase__)
def A( self , *lowercase__ , **lowercase__):
return self.generator.decode(*lowercase__ , **lowercase__)
def A( self):
__UpperCAmelCase : Optional[Any] = self.question_encoder
def A( self):
__UpperCAmelCase : List[Any] = self.generator
def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = "longest" , lowercase__ = None , lowercase__ = True , **lowercase__ , ):
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , lowercase__ , )
if max_length is None:
__UpperCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length
__UpperCAmelCase : Union[str, Any] = self(
lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , max_length=lowercase__ , padding=lowercase__ , truncation=lowercase__ , **lowercase__ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__UpperCAmelCase : List[str] = self.current_tokenizer.model_max_length
__UpperCAmelCase : List[Any] = self(
text_target=lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , **lowercase__ , )
__UpperCAmelCase : List[Any] = labels["""input_ids"""]
return model_inputs
| 708 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 675 | 0 |
'''simple docstring'''
from collections.abc import Callable
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : float = a
__UpperCAmelCase : float = b
if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function
return a
elif function(lowerCAmelCase__ ) == 0:
return b
elif (
function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__UpperCAmelCase : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowerCAmelCase__ ) == 0:
return mid
elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0:
__UpperCAmelCase : Optional[int] = mid
else:
__UpperCAmelCase : Any = mid
__UpperCAmelCase : Any = start + (end - start) / 2.0
return mid
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 709 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 675 | 0 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1 , lowercase_ = 1000 ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : str = 0
for divide_by_number in range(lowercase_ , digit + 1 ):
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : Dict = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(lowercase_ ):
__UpperCAmelCase : Dict = len(lowercase_ )
__UpperCAmelCase : Optional[int] = divide_by_number
else:
has_been_divided.append(lowercase_ )
__UpperCAmelCase : int = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ )
if matches:
__UpperCAmelCase : Any = float(matches[1] )
__UpperCAmelCase : Optional[Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCAmelCase : Dict = 1001
__UpperCAmelCase : str = '''imagenet-1k-id2label.json'''
__UpperCAmelCase : List[str] = '''huggingface/label-files'''
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = '''background'''
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ )
# Load 🤗 model
__UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCAmelCase : List[str] = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCAmelCase : Union[str, Any] = model(**lowercase_ )
__UpperCAmelCase : Optional[Any] = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__UpperCAmelCase : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowercase_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCAmelCase : List[str] = '''google/''' + model_name
image_processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 675 | 0 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 711 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase :
_lowerCAmelCase : Optional[Union[str, Path]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = True
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : int = 1
_lowerCAmelCase : Optional[Union[str, bool]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
def A( self):
return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : int = 2
for i in range(2 , max_n + 1 ):
__UpperCAmelCase : str = pre_numerator
__UpperCAmelCase : List[str] = 2 * i // 3 if i % 3 == 0 else 1
__UpperCAmelCase : int = cur_numerator
__UpperCAmelCase : Union[str, Any] = e_cont * pre_numerator + temp
return sum_digits(__lowerCAmelCase )
if __name__ == "__main__":
print(F'{solution() = }')
| 712 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b"
__UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:]
__UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str | Literal[False]:
'''simple docstring'''
__UpperCAmelCase : Any = list(a_ )
__UpperCAmelCase : Optional[int] = list(a_ )
__UpperCAmelCase : Union[str, Any] = 0
for i in range(len(a_ ) ):
if lista[i] != lista[i]:
count += 1
__UpperCAmelCase : str = '''_'''
if count > 1:
return False
else:
return "".join(a_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[str]:
'''simple docstring'''
__UpperCAmelCase : Tuple = []
while True:
__UpperCAmelCase : Optional[int] = ['''$'''] * len(a_ )
__UpperCAmelCase : str = []
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
__UpperCAmelCase : Union[str, Any] = compare_string(binary[i] , binary[j] )
if k is False:
__UpperCAmelCase : Tuple = '''*'''
__UpperCAmelCase : List[str] = '''*'''
temp.append('''X''' )
for i in range(len(a_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(a_ ) == 0:
return pi
__UpperCAmelCase : List[Any] = list(set(a_ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]:
'''simple docstring'''
__UpperCAmelCase : List[str] = []
for minterm in minterms:
__UpperCAmelCase : List[Any] = ''''''
for _ in range(a_ ):
__UpperCAmelCase : Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(a_ )
return temp
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = list(a_ )
__UpperCAmelCase : List[str] = list(a_ )
__UpperCAmelCase : List[Any] = 0
for i in range(len(a_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]:
'''simple docstring'''
__UpperCAmelCase : str = []
__UpperCAmelCase : Dict = [0] * len(a_ )
for i in range(len(chart[0] ) ):
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : Optional[int] = -1
for j in range(len(a_ ) ):
if chart[j][i] == 1:
count += 1
__UpperCAmelCase : List[str] = j
if count == 1:
__UpperCAmelCase : Optional[Any] = 1
for i in range(len(a_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(a_ ) ):
__UpperCAmelCase : Tuple = 0
temp.append(prime_implicants[i] )
while True:
__UpperCAmelCase : str = 0
__UpperCAmelCase : Union[str, Any] = -1
__UpperCAmelCase : Any = 0
for i in range(len(a_ ) ):
__UpperCAmelCase : Optional[Any] = chart[i].count(1 )
if count_n > max_n:
__UpperCAmelCase : Dict = count_n
__UpperCAmelCase : Optional[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(a_ ) ):
__UpperCAmelCase : Dict = 0
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[int]]:
'''simple docstring'''
__UpperCAmelCase : Tuple = [[0 for x in range(len(a_ ) )] for x in range(len(a_ ) )]
for i in range(len(a_ ) ):
__UpperCAmelCase : Optional[int] = prime_implicants[i].count('''_''' )
for j in range(len(a_ ) ):
if is_for_table(prime_implicants[i] , binary[j] , a_ ):
__UpperCAmelCase : Union[str, Any] = 1
return chart
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : str = int(input('''Enter the no. of variables\n''' ) )
__UpperCAmelCase : Union[str, Any] = [
float(a_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
__UpperCAmelCase : Optional[int] = decimal_to_binary(a_ , a_ )
__UpperCAmelCase : Tuple = check(a_ )
print('''Prime Implicants are:''' )
print(a_ )
__UpperCAmelCase : Optional[Any] = prime_implicant_chart(a_ , a_ )
__UpperCAmelCase : int = selection(a_ , a_ )
print('''Essential Prime Implicants are:''' )
print(a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 713 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 675 | 0 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
lowerCAmelCase = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class lowerCamelCase ( datasets.BuilderConfig ):
_lowerCAmelCase : List[str] = None
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , ) -> Tuple:
'''simple docstring'''
import pyspark
def generate_fn():
__UpperCAmelCase : Union[str, Any] = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) )
for partition_id in partition_order:
__UpperCAmelCase : Optional[Any] = df_with_partition_id.select('''*''' ).where(f"part_id = {partition_id}" ).drop('''part_id''' )
__UpperCAmelCase : int = partition_df.collect()
__UpperCAmelCase : Union[str, Any] = 0
for row in rows:
yield f"{partition_id}_{row_id}", row.asDict()
row_id += 1
return generate_fn
class lowerCamelCase ( _BaseExamplesIterable ):
def __init__( self , lowercase__ , lowercase__=None , ):
__UpperCAmelCase : Union[str, Any] = df
__UpperCAmelCase : str = partition_order or range(self.df.rdd.getNumPartitions())
__UpperCAmelCase : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order)
def __iter__( self):
yield from self.generate_examples_fn()
def A( self , lowercase__):
__UpperCAmelCase : Optional[int] = list(range(self.df.rdd.getNumPartitions()))
generator.shuffle(_A)
return SparkExamplesIterable(self.df , partition_order=_A)
def A( self , lowercase__ , lowercase__):
__UpperCAmelCase : Dict = self.split_shard_indices_by_worker(_A , _A)
return SparkExamplesIterable(self.df , partition_order=_A)
@property
def A( self):
return len(self.partition_order)
class lowerCamelCase ( datasets.DatasetBuilder ):
_lowerCAmelCase : str = SparkConfig
def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , **lowercase__ , ):
import pyspark
__UpperCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.getOrCreate()
__UpperCAmelCase : Dict = df
__UpperCAmelCase : List[Any] = working_dir
super().__init__(
cache_dir=_A , config_name=str(self.df.semanticHash()) , **_A , )
def A( self):
# Returns the path of the created file.
def create_cache_and_write_probe(lowercase__):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=_A)
__UpperCAmelCase : Optional[int] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex)
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(_A , '''a''')
return [probe_file]
if self._spark.conf.get('''spark.master''' , '''''').startswith('''local'''):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__UpperCAmelCase : Union[str, Any] = (
self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(_A).collect()
)
if os.path.isfile(probe[0]):
return
raise ValueError(
'''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''')
def A( self):
return datasets.DatasetInfo(features=self.config.features)
def A( self , lowercase__):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN)]
def A( self , lowercase__):
import pyspark
def get_arrow_batch_size(lowercase__):
for batch in it:
yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]})
__UpperCAmelCase : str = self.df.count()
__UpperCAmelCase : str = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__UpperCAmelCase : Optional[Any] = (
self.df.limit(_A)
.repartition(1)
.mapInArrow(_A , '''batch_bytes: long''')
.agg(pyspark.sql.functions.sum('''batch_bytes''').alias('''sample_bytes'''))
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__UpperCAmelCase : Optional[int] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__UpperCAmelCase : str = min(_A , int(approx_total_size / max_shard_size))
__UpperCAmelCase : Dict = self.df.repartition(_A)
def A( self , lowercase__ , lowercase__ , lowercase__ , ):
import pyspark
__UpperCAmelCase : Union[str, Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter
__UpperCAmelCase : List[str] = os.path.join(self._working_dir , os.path.basename(_A)) if self._working_dir else fpath
__UpperCAmelCase : Any = file_format == '''parquet'''
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__UpperCAmelCase : Optional[Any] = self.config.features
__UpperCAmelCase : Optional[Any] = self._writer_batch_size
__UpperCAmelCase : List[str] = self._fs.storage_options
def write_arrow(lowercase__):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__UpperCAmelCase : int = pyspark.TaskContext().taskAttemptId()
__UpperCAmelCase : Dict = next(_A , _A)
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
__UpperCAmelCase : int = 0
__UpperCAmelCase : Any = writer_class(
features=_A , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , )
__UpperCAmelCase : Tuple = pa.Table.from_batches([first_batch])
writer.write_table(_A)
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__UpperCAmelCase , __UpperCAmelCase : Tuple = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
shard_id += 1
__UpperCAmelCase : Any = writer_class(
features=writer._features , path=working_fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , )
__UpperCAmelCase : Optional[int] = pa.Table.from_batches([batch])
writer.write_table(_A)
if writer._num_bytes > 0:
__UpperCAmelCase , __UpperCAmelCase : int = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(_A)):
__UpperCAmelCase : Optional[int] = os.path.join(os.path.dirname(_A) , os.path.basename(_A))
shutil.move(_A , _A)
__UpperCAmelCase : Tuple = (
self.df.mapInArrow(_A , '''task_id: long, num_examples: long, num_bytes: long''')
.groupBy('''task_id''')
.agg(
pyspark.sql.functions.sum('''num_examples''').alias('''total_num_examples''') , pyspark.sql.functions.sum('''num_bytes''').alias('''total_num_bytes''') , pyspark.sql.functions.count('''num_bytes''').alias('''num_shards''') , pyspark.sql.functions.collect_list('''num_examples''').alias('''shard_lengths''') , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def A( self , lowercase__ , lowercase__ = "arrow" , lowercase__ = None , lowercase__ = None , **lowercase__ , ):
self._validate_cache_dir()
__UpperCAmelCase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE)
self._repartition_df_if_needed(_A)
__UpperCAmelCase : List[Any] = not is_remote_filesystem(self._fs)
__UpperCAmelCase : List[str] = os.path.join if is_local else posixpath.join
__UpperCAmelCase : Union[str, Any] = '''-TTTTT-SSSSS-of-NNNNN'''
__UpperCAmelCase : Union[str, Any] = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}"
__UpperCAmelCase : Tuple = path_join(self._output_dir , _A)
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Tuple = []
__UpperCAmelCase : Dict = []
for task_id, content in self._prepare_split_single(_A , _A , _A):
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards))
all_shard_lengths.extend(_A)
__UpperCAmelCase : Optional[Any] = total_num_examples
__UpperCAmelCase : int = total_num_bytes
# should rename everything at the end
logger.debug(F"Renaming {total_shards} shards.")
if total_shards > 1:
__UpperCAmelCase : Dict = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__UpperCAmelCase : int = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
lowercase__ , lowercase__ , lowercase__ , ):
rename(
_A , fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , fpath.replace('''TTTTT-SSSSS''' , F"{global_shard_id:05d}").replace('''NNNNN''' , F"{total_shards:05d}") , )
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[Any] = 0
for i in range(len(_A)):
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = task_id_and_num_shards[i]
for shard_id in range(_A):
args.append([task_id, shard_id, global_shard_id])
global_shard_id += 1
self._spark.sparkContext.parallelize(_A , len(_A)).map(lambda lowercase__: _rename_shard(*_A)).collect()
else:
# don't use any pattern
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[str] = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('''SSSSS''' , F"{shard_id:05d}").replace('''TTTTT''' , F"{task_id:05d}") , fpath.replace(_A , '''''') , )
def A( self , lowercase__ , ):
return SparkExamplesIterable(self.df)
| 714 |
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 675 | 0 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = filter(lambda lowercase_ : p.requires_grad , model.parameters() )
__UpperCAmelCase : Tuple = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase = logging.getLogger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if metric == "rouge2":
__UpperCAmelCase : str = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
__UpperCAmelCase : Optional[int] = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
__UpperCAmelCase : Any = '''{val_avg_em:.4f}-{step_count}'''
elif metric == "loss":
__UpperCAmelCase : int = '''{val_avg_loss:.4f}-{step_count}'''
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
''' function.''' )
__UpperCAmelCase : Union[str, Any] = ModelCheckpoint(
dirpath=UpperCAmelCase__ , filename=UpperCAmelCase__ , monitor=f"val_{metric}" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
return EarlyStopping(
monitor=f"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=UpperCAmelCase__ , verbose=UpperCAmelCase__ , )
class lowerCamelCase ( pl.Callback ):
def A( self , lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = {F"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(__UpperCamelCase)
@rank_zero_only
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=True):
logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****")
__UpperCAmelCase : Any = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']})
# Log results
__UpperCAmelCase : Optional[Any] = Path(pl_module.hparams.output_dir)
if type_path == "test":
__UpperCAmelCase : Optional[int] = od / '''test_results.txt'''
__UpperCAmelCase : List[str] = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
__UpperCAmelCase : int = od / F"{type_path}_results/{trainer.global_step:05d}.txt"
__UpperCAmelCase : Optional[int] = od / F"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=__UpperCamelCase)
generations_file.parent.mkdir(exist_ok=__UpperCamelCase)
with open(__UpperCamelCase , '''a+''') as writer:
for key in sorted(__UpperCamelCase):
if key in ["log", "progress_bar", "preds"]:
continue
__UpperCAmelCase : List[str] = metrics[key]
if isinstance(__UpperCamelCase , torch.Tensor):
__UpperCAmelCase : int = val.item()
__UpperCAmelCase : Tuple = F"{key}: {val:.6f}\n"
writer.write(__UpperCamelCase)
if not save_generations:
return
if "preds" in metrics:
__UpperCAmelCase : Tuple = '''\n'''.join(metrics['''preds'''])
generations_file.open('''w+''').write(__UpperCamelCase)
@rank_zero_only
def A( self , lowercase__ , lowercase__):
try:
__UpperCAmelCase : int = pl_module.model.model.num_parameters()
except AttributeError:
__UpperCAmelCase : int = pl_module.model.num_parameters()
__UpperCAmelCase : int = count_trainable_parameters(__UpperCamelCase)
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6})
@rank_zero_only
def A( self , lowercase__ , lowercase__):
save_json(pl_module.metrics , pl_module.metrics_save_path)
return self._write_logs(__UpperCamelCase , __UpperCamelCase , '''test''')
@rank_zero_only
def A( self , lowercase__ , lowercase__):
save_json(pl_module.metrics , pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 715 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 675 | 0 |
from ...processing_utils import ProcessorMixin
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Any = """SpeechT5FeatureExtractor"""
_lowerCAmelCase : str = """SpeechT5Tokenizer"""
def __init__( self , lowercase__ , lowercase__):
super().__init__(lowercase__ , lowercase__)
def __call__( self , *lowercase__ , **lowercase__):
__UpperCAmelCase : int = kwargs.pop('''audio''' , lowercase__)
__UpperCAmelCase : Optional[int] = kwargs.pop('''text''' , lowercase__)
__UpperCAmelCase : Union[str, Any] = kwargs.pop('''text_target''' , lowercase__)
__UpperCAmelCase : Optional[Any] = kwargs.pop('''audio_target''' , lowercase__)
__UpperCAmelCase : Dict = kwargs.pop('''sampling_rate''' , lowercase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
__UpperCAmelCase : Any = self.feature_extractor(lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__)
elif text is not None:
__UpperCAmelCase : int = self.tokenizer(lowercase__ , **lowercase__)
else:
__UpperCAmelCase : Tuple = None
if audio_target is not None:
__UpperCAmelCase : str = self.feature_extractor(audio_target=lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__)
__UpperCAmelCase : Union[str, Any] = targets['''input_values''']
elif text_target is not None:
__UpperCAmelCase : str = self.tokenizer(lowercase__ , **lowercase__)
__UpperCAmelCase : Any = targets['''input_ids''']
else:
__UpperCAmelCase : Dict = None
if inputs is None:
return targets
if targets is not None:
__UpperCAmelCase : List[str] = labels
__UpperCAmelCase : Union[str, Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
__UpperCAmelCase : Optional[Any] = decoder_attention_mask
return inputs
def A( self , *lowercase__ , **lowercase__):
__UpperCAmelCase : int = kwargs.pop('''input_values''' , lowercase__)
__UpperCAmelCase : List[Any] = kwargs.pop('''input_ids''' , lowercase__)
__UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , lowercase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
__UpperCAmelCase : Union[str, Any] = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__)
elif input_ids is not None:
__UpperCAmelCase : Dict = self.tokenizer.pad(lowercase__ , **lowercase__)
else:
__UpperCAmelCase : Optional[int] = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowercase__ , lowercase__) and "input_ids" in labels[0]):
__UpperCAmelCase : Any = self.tokenizer.pad(lowercase__ , **lowercase__)
__UpperCAmelCase : Tuple = targets['''input_ids''']
else:
__UpperCAmelCase : Optional[Any] = self.feature_extractor.feature_size
__UpperCAmelCase : Optional[int] = self.feature_extractor.num_mel_bins
__UpperCAmelCase : Dict = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__)
__UpperCAmelCase : Optional[Any] = feature_size_hack
__UpperCAmelCase : int = targets['''input_values''']
else:
__UpperCAmelCase : Dict = None
if inputs is None:
return targets
if targets is not None:
__UpperCAmelCase : Tuple = labels
__UpperCAmelCase : Optional[Any] = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
__UpperCAmelCase : int = decoder_attention_mask
return inputs
def A( self , *lowercase__ , **lowercase__):
return self.tokenizer.batch_decode(*lowercase__ , **lowercase__)
def A( self , *lowercase__ , **lowercase__):
return self.tokenizer.decode(*lowercase__ , **lowercase__)
| 716 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
if n_element < 1:
__UpperCAmelCase : str = ValueError('''a should be a positive number''' )
raise my_error
__UpperCAmelCase : Any = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0)
__UpperCAmelCase : int = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 675 | 0 |
class lowerCamelCase :
def __init__( self , lowercase__ = "" , lowercase__ = False):
__UpperCAmelCase : Tuple = {}
# A node will be a leaf if the tree contains its word
__UpperCAmelCase : str = is_leaf
__UpperCAmelCase : Optional[int] = prefix
def A( self , lowercase__):
__UpperCAmelCase : Optional[int] = 0
for q, w in zip(self.prefix , lowercase__):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def A( self , lowercase__):
for word in words:
self.insert(lowercase__)
def A( self , lowercase__):
if self.prefix == word:
__UpperCAmelCase : Union[str, Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
__UpperCAmelCase : List[Any] = RadixNode(prefix=lowercase__ , is_leaf=lowercase__)
else:
__UpperCAmelCase : int = self.nodes[word[0]]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match(
lowercase__)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowercase__)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
__UpperCAmelCase : List[Any] = remaining_prefix
__UpperCAmelCase : Union[str, Any] = self.nodes[matching_string[0]]
__UpperCAmelCase : int = RadixNode(lowercase__ , lowercase__)
__UpperCAmelCase : Optional[int] = aux_node
if remaining_word == "":
__UpperCAmelCase : str = True
else:
self.nodes[matching_string[0]].insert(lowercase__)
def A( self , lowercase__):
__UpperCAmelCase : Tuple = self.nodes.get(word[0] , lowercase__)
if not incoming_node:
return False
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = incoming_node.match(
lowercase__)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowercase__)
def A( self , lowercase__):
__UpperCAmelCase : str = self.nodes.get(word[0] , lowercase__)
if not incoming_node:
return False
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = incoming_node.match(
lowercase__)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowercase__)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
__UpperCAmelCase : List[Any] = list(self.nodes.values())[0]
__UpperCAmelCase : int = merging_node.is_leaf
self.prefix += merging_node.prefix
__UpperCAmelCase : Dict = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
__UpperCAmelCase : Optional[Any] = False
# If there is 1 edge, we merge it with its child
else:
__UpperCAmelCase : List[str] = list(incoming_node.nodes.values())[0]
__UpperCAmelCase : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
__UpperCAmelCase : Any = merging_node.nodes
return True
def A( self , lowercase__ = 0):
if self.prefix != "":
print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''')
for value in self.nodes.values():
value.print_tree(height + 1)
def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Dict = '''banana bananas bandana band apple all beast'''.split()
__UpperCAmelCase : Union[str, Any] = RadixNode()
root.insert_many(lowercase_ )
assert all(root.find(lowercase_ ) for word in words )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
'''simple docstring'''
assert test_trie()
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = RadixNode()
__UpperCAmelCase : List[str] = '''banana bananas bandanas bandana band apple all beast'''.split()
root.insert_many(lowercase_ )
print('''Words:''' , lowercase_ )
print('''Tree:''' )
root.print_tree()
if __name__ == "__main__":
main()
| 717 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''realm'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
# Common config
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Optional[Any] = retriever_proj_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = num_candidates
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Any = layer_norm_eps
# Reader config
__UpperCAmelCase : Optional[int] = span_hidden_size
__UpperCAmelCase : Dict = max_span_width
__UpperCAmelCase : int = reader_layer_norm_eps
__UpperCAmelCase : int = reader_beam_size
__UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
__UpperCAmelCase : Optional[int] = num_block_records
__UpperCAmelCase : Optional[Any] = searcher_beam_size
| 675 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 718 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets'''
__UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
__UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
__UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = abs(snake_case_ )
__UpperCAmelCase : Optional[Any] = 0
while n > 0:
res += n % 10
n //= 10
return res
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = abs(snake_case_ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return sum(int(snake_case_ ) for c in str(abs(snake_case_ ) ) )
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowercase_ , lowercase_ ) -> None:
__UpperCAmelCase : Tuple = f"{func.__name__}({value})"
__UpperCAmelCase : Tuple = timeit(f"__main__.{call}" , setup='''import __main__''' )
print(f"{call:56} = {func(snake_case_ )} -- {timing:.4f} seconds" )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(snake_case_ , snake_case_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 719 |
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowerCAmelCase = generate_large_matrix()
lowerCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid )
assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[Any] = len(lowercase_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase : List[Any] = (left + right) // 2
__UpperCAmelCase : Dict = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase : Dict = mid + 1
else:
__UpperCAmelCase : Optional[Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = len(grid[0] )
for i in range(len(lowercase_ ) ):
__UpperCAmelCase : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowercase_ ) * len(grid[0] )) - total
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
for row in grid:
for i, number in enumerate(lowercase_ ):
if number < 0:
total += len(lowercase_ ) - i
break
return total
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase : Tuple = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 675 | 0 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 720 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 675 | 0 |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True , lowercase_="pt" ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : Dict = {'''add_prefix_space''': True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(''' ''' ) else {}
__UpperCAmelCase : Union[str, Any] = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase__ , padding='''max_length''' if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = input_ids.ne(lowerCamelCase__ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__="train" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="" , ):
super().__init__()
__UpperCAmelCase : Optional[int] = Path(lowercase__).joinpath(type_path + '''.source''')
__UpperCAmelCase : Any = Path(lowercase__).joinpath(type_path + '''.target''')
__UpperCAmelCase : Tuple = self.get_char_lens(self.src_file)
__UpperCAmelCase : str = max_source_length
__UpperCAmelCase : List[Any] = max_target_length
assert min(self.src_lens) > 0, F"found empty line in {self.src_file}"
__UpperCAmelCase : int = tokenizer
__UpperCAmelCase : List[Any] = prefix
if n_obs is not None:
__UpperCAmelCase : Dict = self.src_lens[:n_obs]
__UpperCAmelCase : Optional[Any] = src_lang
__UpperCAmelCase : List[str] = tgt_lang
def __len__( self):
return len(self.src_lens)
def __getitem__( self , lowercase__):
__UpperCAmelCase : int = index + 1 # linecache starts at 1
__UpperCAmelCase : Dict = self.prefix + linecache.getline(str(self.src_file) , lowercase__).rstrip('''\n''')
__UpperCAmelCase : List[str] = linecache.getline(str(self.tgt_file) , lowercase__).rstrip('''\n''')
assert source_line, F"empty source line for index {index}"
assert tgt_line, F"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer , lowercase__):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCAmelCase : List[str] = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase__) else self.tokenizer
)
__UpperCAmelCase : List[str] = self.tokenizer.generator if isinstance(self.tokenizer , lowercase__) else self.tokenizer
__UpperCAmelCase : str = encode_line(lowercase__ , lowercase__ , self.max_source_length , '''right''')
__UpperCAmelCase : Dict = encode_line(lowercase__ , lowercase__ , self.max_target_length , '''right''')
__UpperCAmelCase : Any = source_inputs['''input_ids'''].squeeze()
__UpperCAmelCase : List[Any] = target_inputs['''input_ids'''].squeeze()
__UpperCAmelCase : Tuple = source_inputs['''attention_mask'''].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def A( lowercase__):
return [len(lowercase__) for x in Path(lowercase__).open().readlines()]
def A( self , lowercase__):
__UpperCAmelCase : Tuple = torch.stack([x['''input_ids'''] for x in batch])
__UpperCAmelCase : Optional[Any] = torch.stack([x['''attention_mask'''] for x in batch])
__UpperCAmelCase : Any = torch.stack([x['''decoder_input_ids'''] for x in batch])
__UpperCAmelCase : List[str] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , lowercase__)
else self.tokenizer.pad_token_id
)
__UpperCAmelCase : List[str] = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , lowercase__)
else self.tokenizer.pad_token_id
)
__UpperCAmelCase : Optional[int] = trim_batch(lowercase__ , lowercase__)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = trim_batch(lowercase__ , lowercase__ , attention_mask=lowercase__)
__UpperCAmelCase : List[str] = {
'''input_ids''': source_ids,
'''attention_mask''': source_mask,
'''decoder_input_ids''': y,
}
return batch
lowerCAmelCase = getLogger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return list(itertools.chain.from_iterable(lowerCamelCase__ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
__UpperCAmelCase : List[Any] = get_git_info()
save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , '''git_log.json''' ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=4 , **lowercase_ ) -> Any:
'''simple docstring'''
with open(lowerCamelCase__ , '''w''' ) as f:
json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
'''simple docstring'''
with open(lowerCamelCase__ ) as f:
return json.load(lowerCamelCase__ )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : int = git.Repo(search_parent_directories=lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = {
'''repo_id''': str(lowerCamelCase__ ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
'''hostname''': str(socket.gethostname() ),
}
return repo_infos
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List:
'''simple docstring'''
return list(map(lowerCamelCase__ , lowerCamelCase__ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
with open(lowerCamelCase__ , '''wb''' ) as f:
return pickle.dump(lowerCamelCase__ , lowerCamelCase__ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
def remove_articles(lowercase_ ):
return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , lowerCamelCase__ )
def white_space_fix(lowercase_ ):
return " ".join(text.split() )
def remove_punc(lowercase_ ):
__UpperCAmelCase : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowercase_ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Dict = normalize_answer(lowerCamelCase__ ).split()
__UpperCAmelCase : str = normalize_answer(lowerCamelCase__ ).split()
__UpperCAmelCase : Any = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ )
__UpperCAmelCase : str = sum(common.values() )
if num_same == 0:
return 0
__UpperCAmelCase : Optional[int] = 1.0 * num_same / len(lowerCamelCase__ )
__UpperCAmelCase : str = 1.0 * num_same / len(lowerCamelCase__ )
__UpperCAmelCase : Any = (2 * precision * recall) / (precision + recall)
return fa
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
assert len(lowerCamelCase__ ) == len(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = 0
for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ):
em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
em /= len(lowerCamelCase__ )
return {"em": em}
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return model_prefix.startswith('''rag''' )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCAmelCase : int = '''dropout_rate'''
for p in extra_params:
if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ):
logger.info('''config doesn\'t have a `{}` attribute'''.format(lowerCamelCase__ ) )
delattr(lowerCamelCase__ , lowerCamelCase__ )
continue
__UpperCAmelCase : Optional[Any] = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p]
setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
delattr(lowerCamelCase__ , lowerCamelCase__ )
return hparams, config
| 721 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ):
__UpperCAmelCase : Tuple = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = max_position_embeddings
__UpperCAmelCase : Tuple = type_vocab_size
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : Dict = num_choices
__UpperCAmelCase : Union[str, Any] = scope
def A( self):
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices)
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A( self):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__)
__UpperCAmelCase : List[Any] = model(lowercase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
__UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : str = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
# create attention mask
__UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
__UpperCAmelCase : int = self.seq_length // 2
__UpperCAmelCase : Any = 0
# first forward pass
__UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size)
# change a random masked slice from input_ids
__UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1
__UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1)
__UpperCAmelCase : int = random_other_next_tokens
# append to next input_ids and attn_mask
__UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , )
# get two different outputs
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
# select random slice
__UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval()
__UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
# first forward pass
__UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size)
__UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2)
# append to next input_ids and
__UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1)
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[
'''last_hidden_state'''
]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False):
__UpperCAmelCase : int = BioGptForCausalLM(lowercase__)
model.to(lowercase__)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def A( self , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[int] = BioGptModel(lowercase__)
__UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[Any] = self.num_labels
__UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = config_and_inputs
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else ()
_lowerCAmelCase : Union[str, Any] = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCAmelCase : List[Any] = False
def A( self):
__UpperCAmelCase : int = BioGptModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
def A( self):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : Dict = type
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__)
@slow
def A( self):
__UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
__UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : List[str] = '''left'''
# Define PAD Token = EOS Token = 50256
__UpperCAmelCase : List[Any] = tokenizer.eos_token
__UpperCAmelCase : Tuple = model.config.eos_token_id
# use different length sentences to test batching
__UpperCAmelCase : Optional[Any] = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__)
__UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__)
__UpperCAmelCase : int = model.generate(
input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , )
__UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__)
__UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
__UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings)
__UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : str = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence])
@slow
def A( self):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = 3
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : int = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = 3
__UpperCAmelCase : Union[str, Any] = '''multi_label_classification'''
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]])
__UpperCAmelCase : int = model(lowercase__)[0]
__UpperCAmelCase : Any = 4_2_3_8_4
__UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size))
self.assertEqual(output.shape , lowercase__)
__UpperCAmelCase : Dict = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4))
@slow
def A( self):
__UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
torch.manual_seed(0)
__UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__)
__UpperCAmelCase : List[str] = model.generate(
**lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , )
__UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : int = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(lowercase__ , lowercase__)
| 675 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __A ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 700 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = '''bert'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , **lowercase__)
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = position_embedding_type
__UpperCAmelCase : Optional[Any] = use_cache
__UpperCAmelCase : List[Any] = classifier_dropout
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
])
| 675 | 0 |
import torch
from diffusers import StableDiffusionPipeline
lowerCAmelCase = """path-to-your-trained-model"""
lowerCAmelCase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""")
lowerCAmelCase = """A photo of sks dog in a bucket"""
lowerCAmelCase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("""dog-bucket.png""")
| 701 |
from random import shuffle
import tensorflow as tf
from numpy import array
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
__UpperCAmelCase : str = len(vectors[0] )
# Will help select random centroids from among the available vectors
__UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__UpperCAmelCase : Union[str, Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__UpperCAmelCase : str = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__UpperCAmelCase : List[str] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
__UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] )
__UpperCAmelCase : Tuple = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__UpperCAmelCase : Dict = tf.placeholder('''int32''' )
__UpperCAmelCase : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] )
__UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__UpperCAmelCase : Optional[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__UpperCAmelCase : Union[str, Any] = 100
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
__UpperCAmelCase : List[str] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__UpperCAmelCase : List[Any] = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__UpperCAmelCase : Optional[Any] = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
__UpperCAmelCase : Optional[Any] = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__UpperCAmelCase : str = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__UpperCAmelCase : List[str] = sess.run(lowercase_ )
__UpperCAmelCase : Tuple = sess.run(lowercase_ )
return centroids, assignments
| 675 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = ['''image_processor''', '''tokenizer''']
_lowerCAmelCase : Optional[int] = '''LayoutLMv2ImageProcessor'''
_lowerCAmelCase : str = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self , lowercase__=None , lowercase__=None , **lowercase__):
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowercase__ , )
__UpperCAmelCase : List[Any] = kwargs.pop('''feature_extractor''')
__UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''')
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''')
super().__init__(lowercase__ , lowercase__)
def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ):
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes '''
'''if you initialized the image processor with apply_ocr set to True.''')
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''')
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''')
# first, apply the image processor
__UpperCAmelCase : str = self.image_processor(images=lowercase__ , return_tensors=lowercase__)
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension)
__UpperCAmelCase : Optional[int] = features['''words''']
__UpperCAmelCase : Any = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , )
# add pixel values
__UpperCAmelCase : int = features.pop('''pixel_values''')
if return_overflowing_tokens is True:
__UpperCAmelCase : str = self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping'''])
__UpperCAmelCase : int = images
return encoded_inputs
def A( self , lowercase__ , lowercase__):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
__UpperCAmelCase : Dict = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(lowercase__) != len(lowercase__):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
F" {len(lowercase__)} and {len(lowercase__)}")
return images_with_overflow
def A( self , *lowercase__ , **lowercase__):
return self.tokenizer.batch_decode(*lowercase__ , **lowercase__)
def A( self , *lowercase__ , **lowercase__):
return self.tokenizer.decode(*lowercase__ , **lowercase__)
@property
def A( self):
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def A( self):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , )
return self.image_processor_class
@property
def A( self):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , )
return self.image_processor
| 702 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if not nums:
return 0
__UpperCAmelCase : int = nums[0]
__UpperCAmelCase : Optional[Any] = 0
for num in nums[1:]:
__UpperCAmelCase , __UpperCAmelCase : int = (
max_excluding + num,
max(lowercase_ , lowercase_ ),
)
return max(lowercase_ , lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 703 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@require_torch
def A( self):
__UpperCAmelCase : str = pipeline(
task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''')
__UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
@slow
@require_torch
def A( self):
__UpperCAmelCase : int = pipeline(
task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , )
# This is an audio of a dog
__UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
] , )
__UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
__UpperCAmelCase : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5)
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
| 675 | 0 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Union[str, Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def A( self , lowercase__=0):
__UpperCAmelCase : List[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowercase__))
__UpperCAmelCase : Tuple = np.random.RandomState(lowercase__)
__UpperCAmelCase : Optional[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''strength''': 0.7_5,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def A( self):
__UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : List[Any] = self.get_dummy_inputs()
__UpperCAmelCase : List[Any] = pipe(**lowercase__).images
__UpperCAmelCase : str = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def A( self):
__UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
__UpperCAmelCase : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Any = self.get_dummy_inputs()
__UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images
__UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : str = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def A( self):
__UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
__UpperCAmelCase : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase__)
# warmup pass to apply optimizations
__UpperCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs())
__UpperCAmelCase : Any = self.get_dummy_inputs()
__UpperCAmelCase : Tuple = pipe(**lowercase__).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : Optional[Any] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def A( self):
__UpperCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
__UpperCAmelCase : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Optional[int] = self.get_dummy_inputs()
__UpperCAmelCase : Tuple = pipe(**lowercase__).images
__UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : Tuple = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def A( self):
__UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
__UpperCAmelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs()
__UpperCAmelCase : Optional[Any] = pipe(**lowercase__).images
__UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : Any = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def A( self):
__UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''')
__UpperCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Optional[Any] = self.get_dummy_inputs()
__UpperCAmelCase : Union[str, Any] = pipe(**lowercase__).images
__UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
__UpperCAmelCase : str = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
@property
def A( self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def A( self):
__UpperCAmelCase : Optional[Any] = ort.SessionOptions()
__UpperCAmelCase : int = False
return options
def A( self):
__UpperCAmelCase : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
__UpperCAmelCase : Optional[Any] = init_image.resize((7_6_8, 5_1_2))
# using the PNDM scheduler by default
__UpperCAmelCase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Dict = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase : List[Any] = np.random.RandomState(0)
__UpperCAmelCase : List[Any] = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowercase__ , output_type='''np''' , )
__UpperCAmelCase : List[str] = output.images
__UpperCAmelCase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 7_6_8, 3)
__UpperCAmelCase : Optional[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def A( self):
__UpperCAmelCase : List[str] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
__UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2))
__UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''')
__UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : List[Any] = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase : Optional[int] = np.random.RandomState(0)
__UpperCAmelCase : str = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowercase__ , output_type='''np''' , )
__UpperCAmelCase : List[Any] = output.images
__UpperCAmelCase : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 7_6_8, 3)
__UpperCAmelCase : Tuple = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
| 704 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 705 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 675 | 0 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=2 , lowercase__=3 , lowercase__=1_6 , lowercase__=[1, 2, 1] , lowercase__=[2, 2, 4] , lowercase__=2 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=True , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=1_0 , lowercase__=8 , ):
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Optional[Any] = batch_size
__UpperCAmelCase : Union[str, Any] = image_size
__UpperCAmelCase : Dict = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : List[str] = embed_dim
__UpperCAmelCase : int = depths
__UpperCAmelCase : Optional[int] = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : Optional[int] = mlp_ratio
__UpperCAmelCase : Tuple = qkv_bias
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : int = drop_path_rate
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : int = use_absolute_embeddings
__UpperCAmelCase : Any = patch_norm
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : str = is_training
__UpperCAmelCase : str = scope
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Any = type_sequence_label_size
__UpperCAmelCase : Tuple = encoder_stride
def A( self):
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__UpperCAmelCase : Any = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def A( self):
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = SwinvaModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Tuple = model(lowercase__)
__UpperCAmelCase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
__UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = SwinvaForMaskedImageModeling(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : int = model(lowercase__)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size))
# test greyscale images
__UpperCAmelCase : str = 1
__UpperCAmelCase : Tuple = SwinvaForMaskedImageModeling(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
__UpperCAmelCase : Dict = model(lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size))
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = self.type_sequence_label_size
__UpperCAmelCase : int = SwinvaForImageClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[Any] = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def A( self):
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase : List[str] = config_and_inputs
__UpperCAmelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Any = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
_lowerCAmelCase : Union[str, Any] = (
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Dict = False
_lowerCAmelCase : str = False
_lowerCAmelCase : Optional[int] = False
def A( self):
__UpperCAmelCase : str = SwinvaModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , embed_dim=3_7)
def A( self):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A( self):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
@unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''')
def A( self):
pass
@unittest.skip(reason='''Swinv2 does not use inputs_embeds''')
def A( self):
pass
def A( self):
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = model_class(lowercase__)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__UpperCAmelCase : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear))
def A( self):
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : int = model_class(lowercase__)
__UpperCAmelCase : List[str] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : str = True
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : int = False
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Dict = model_class(lowercase__)
model.to(lowercase__)
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__))
__UpperCAmelCase : Tuple = outputs.attentions
__UpperCAmelCase : Dict = len(self.model_tester.depths)
self.assertEqual(len(lowercase__) , lowercase__)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : Dict = True
__UpperCAmelCase : Optional[Any] = config.window_size**2
__UpperCAmelCase : Tuple = model_class(lowercase__)
model.to(lowercase__)
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(lowercase__ , lowercase__))
__UpperCAmelCase : Optional[int] = outputs.attentions
self.assertEqual(len(lowercase__) , lowercase__)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
__UpperCAmelCase : int = len(lowercase__)
# Check attention is always last and order is fine
__UpperCAmelCase : Dict = True
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : int = model_class(lowercase__)
model.to(lowercase__)
model.eval()
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowercase__ , lowercase__))
if hasattr(self.model_tester , '''num_hidden_states_types'''):
__UpperCAmelCase : str = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
__UpperCAmelCase : List[Any] = 2
self.assertEqual(out_len + added_hidden_states , len(lowercase__))
__UpperCAmelCase : Any = outputs.attentions
self.assertEqual(len(lowercase__) , lowercase__)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = model_class(lowercase__)
model.to(lowercase__)
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__))
__UpperCAmelCase : Optional[int] = outputs.hidden_states
__UpperCAmelCase : str = getattr(
self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1)
self.assertEqual(len(lowercase__) , lowercase__)
# Swinv2 has a different seq_length
__UpperCAmelCase : List[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(lowercase__) , lowercase__)
__UpperCAmelCase : Any = reshaped_hidden_states[0].shape
__UpperCAmelCase : Union[str, Any] = (
reshaped_hidden_states[0].view(lowercase__ , lowercase__ , height * width).permute(0 , 2 , 1)
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def A( self):
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__UpperCAmelCase : Any = True
self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Union[str, Any] = True
self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Union[str, Any] = 3
__UpperCAmelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = True
self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width))
def A( self):
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__)
@slow
def A( self):
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = SwinvaModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = _config_zero_init(lowercase__)
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = model_class(config=lowercase__)
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return (
AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''')
if is_vision_available()
else None
)
@slow
def A( self):
__UpperCAmelCase : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to(
lowercase__)
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
__UpperCAmelCase : List[Any] = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__)
# forward pass
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(**lowercase__)
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowercase__)
__UpperCAmelCase : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(lowercase__)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
| 706 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 675 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
lowerCAmelCase = imread(R"""digital_image_processing/image_data/lena_small.jpg""")
lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY)
def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : int = cn.convert_to_negative(lowercase_ )
# assert negative_img array for at least one True
assert negative_img.any()
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
'''simple docstring'''
with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(lowercase_ , 110 ) ).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''' )
def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Dict = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
__UpperCAmelCase : Optional[Any] = canny.canny(lowercase_ )
# assert canny array for at least one True
assert canny_array.any()
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
'''simple docstring'''
assert gg.gaussian_filter(lowercase_ , 5 , sigma=0.9 ).all()
def __SCREAMING_SNAKE_CASE ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] )
__UpperCAmelCase : Optional[Any] = conv.img_convolve(lowercase_ , lowercase_ ).astype(lowercase_ )
assert res.any()
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
assert med.median_filter(lowercase_ , 3 ).any()
def __SCREAMING_SNAKE_CASE ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = sob.sobel_filter(lowercase_ )
assert grad.any() and theta.any()
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = sp.make_sepia(lowercase_ , 20 )
assert sepia.all()
def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = bs.Burkes(imread(lowercase_ , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def __SCREAMING_SNAKE_CASE ( lowercase_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase_ , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : str = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
__UpperCAmelCase : Any = imread(lowercase_ , 0 )
# Test for get_neighbors_pixel function() return not None
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : List[Any] = image[x_coordinate][y_coordinate]
__UpperCAmelCase : str = lbp.get_neighbors_pixel(
lowercase_ , lowercase_ , lowercase_ , lowercase_ )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
__UpperCAmelCase : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
__UpperCAmelCase : Union[str, Any] = lbp.local_binary_value(lowercase_ , lowercase_ , lowercase_ )
assert lbp_image.any()
| 707 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
__UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
if latents is None:
__UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Union[str, Any] = latents.to(lowercase__)
__UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A( self , lowercase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__)
def A( self , lowercase__=0):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
__UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=lowercase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__)
# We'll offload the last model manually.
__UpperCAmelCase : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A( self):
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : str = self._execution_device
__UpperCAmelCase : List[str] = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0)
__UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
__UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
self.scheduler.set_timesteps(lowercase__ , device=lowercase__)
__UpperCAmelCase : List[Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.movq.config.latent_channels
__UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Union[str, Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint}
__UpperCAmelCase : Any = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
__UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Dict = image * 0.5 + 0.5
__UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1)
__UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : int = [1]
for i in range(2 , lowercase_ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[Any] = list(range(lowercase_ ) )
# Find permutation
while factorials:
__UpperCAmelCase : Optional[Any] = factorials.pop()
__UpperCAmelCase : Union[str, Any] = divmod(lowercase_ , lowercase_ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 675 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : str = OpenAIGPTTokenizer
_lowerCAmelCase : int = OpenAIGPTTokenizerFast
_lowerCAmelCase : Dict = True
_lowerCAmelCase : List[str] = False
def A( self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase : Union[str, Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
__UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__))))
__UpperCAmelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
__UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''])
with open(self.vocab_file , '''w''') as fp:
fp.write(json.dumps(lowercase__))
with open(self.merges_file , '''w''') as fp:
fp.write('''\n'''.join(lowercase__))
def A( self , lowercase__):
return "lower newer", "lower newer"
def A( self):
__UpperCAmelCase : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file)
__UpperCAmelCase : str = '''lower'''
__UpperCAmelCase : Optional[Any] = ['''low''', '''er</w>''']
__UpperCAmelCase : str = tokenizer.tokenize(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
__UpperCAmelCase : List[str] = tokens + ['''<unk>''']
__UpperCAmelCase : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__)
def A( self , lowercase__=1_5):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"):
__UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__)
# Simple input
__UpperCAmelCase : List[str] = '''This is a simple input'''
__UpperCAmelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2''']
__UpperCAmelCase : str = ('''This is a simple input''', '''This is a pair''')
__UpperCAmelCase : str = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''')
# Simple input
self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''')
# Simple input
self.assertRaises(
lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , )
# Pair input
self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''')
# Pair input
self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''')
# Pair input
self.assertRaises(
lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , )
def A( self):
pass
@require_ftfy
@require_spacy
@require_tokenizers
class lowerCamelCase ( _UpperCamelCase ):
pass
| 709 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 675 | 0 |
'''simple docstring'''
import math
from collections.abc import Iterator
from itertools import takewhile
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __SCREAMING_SNAKE_CASE ( ) -> Iterator[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 2
while True:
if is_prime(lowercase_ ):
yield num
num += 1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 2000000 ) -> int:
'''simple docstring'''
return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 710 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ )
if matches:
__UpperCAmelCase : Any = float(matches[1] )
__UpperCAmelCase : Optional[Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCAmelCase : Dict = 1001
__UpperCAmelCase : str = '''imagenet-1k-id2label.json'''
__UpperCAmelCase : List[str] = '''huggingface/label-files'''
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = '''background'''
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ )
# Load 🤗 model
__UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCAmelCase : List[str] = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCAmelCase : Union[str, Any] = model(**lowercase_ )
__UpperCAmelCase : Optional[Any] = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__UpperCAmelCase : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowercase_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCAmelCase : List[str] = '''google/''' + model_name
image_processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 675 | 0 |
from ...configuration_utils import PretrainedConfig
lowerCAmelCase = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''tapas'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0_2_4 , lowercase__=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__=1_0.0 , lowercase__=0 , lowercase__=1.0 , lowercase__=None , lowercase__=1.0 , lowercase__=False , lowercase__=None , lowercase__=1.0 , lowercase__=1.0 , lowercase__=False , lowercase__=False , lowercase__="ratio" , lowercase__=None , lowercase__=None , lowercase__=6_4 , lowercase__=3_2 , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=None , lowercase__=None , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , **lowercase__)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[str] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_sizes
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCAmelCase : Union[str, Any] = positive_label_weight
__UpperCAmelCase : int = num_aggregation_labels
__UpperCAmelCase : str = aggregation_loss_weight
__UpperCAmelCase : Dict = use_answer_as_supervision
__UpperCAmelCase : Any = answer_loss_importance
__UpperCAmelCase : Union[str, Any] = use_normalized_answer_loss
__UpperCAmelCase : int = huber_loss_delta
__UpperCAmelCase : Optional[int] = temperature
__UpperCAmelCase : List[Any] = aggregation_temperature
__UpperCAmelCase : List[str] = use_gumbel_for_cells
__UpperCAmelCase : List[str] = use_gumbel_for_aggregation
__UpperCAmelCase : List[str] = average_approximation_function
__UpperCAmelCase : Union[str, Any] = cell_selection_preference
__UpperCAmelCase : List[str] = answer_loss_cutoff
__UpperCAmelCase : str = max_num_rows
__UpperCAmelCase : int = max_num_columns
__UpperCAmelCase : Tuple = average_logits_per_cell
__UpperCAmelCase : Union[str, Any] = select_one_column
__UpperCAmelCase : List[str] = allow_empty_column_selection
__UpperCAmelCase : Optional[int] = init_cell_selection_weights_to_zero
__UpperCAmelCase : Any = reset_position_index_per_cell
__UpperCAmelCase : Optional[Any] = disable_per_token_loss
# Aggregation hyperparameters
__UpperCAmelCase : Optional[Any] = aggregation_labels
__UpperCAmelCase : int = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowercase__):
__UpperCAmelCase : Optional[Any] = {int(lowercase__): v for k, v in aggregation_labels.items()}
| 711 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase :
_lowerCAmelCase : Optional[Union[str, Path]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = True
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : int = 1
_lowerCAmelCase : Optional[Union[str, bool]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
def A( self):
return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
| 675 | 0 |
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
lowerCAmelCase = False
class lowerCamelCase ( unittest.TestCase ):
def A( self , lowercase__=3_2):
set_seed(0)
__UpperCAmelCase : Dict = UNetaDModel(sample_size=lowercase__ , in_channels=3 , out_channels=3)
__UpperCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1)
return model, optimizer
@slow
def A( self):
__UpperCAmelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
__UpperCAmelCase : Any = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , )
__UpperCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0)
__UpperCAmelCase : str = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowercase__) for _ in range(4)]
__UpperCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2)).to(lowercase__) for _ in range(4)]
__UpperCAmelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowercase__) for _ in range(4)]
# train with a DDPM scheduler
__UpperCAmelCase : Optional[int] = self.get_model_optimizer(resolution=3_2)
model.train().to(lowercase__)
for i in range(4):
optimizer.zero_grad()
__UpperCAmelCase : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i])
__UpperCAmelCase : Dict = model(lowercase__ , timesteps[i]).sample
__UpperCAmelCase : Dict = torch.nn.functional.mse_loss(lowercase__ , noise[i])
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
__UpperCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2)
model.train().to(lowercase__)
for i in range(4):
optimizer.zero_grad()
__UpperCAmelCase : int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i])
__UpperCAmelCase : Union[str, Any] = model(lowercase__ , timesteps[i]).sample
__UpperCAmelCase : str = torch.nn.functional.mse_loss(lowercase__ , noise[i])
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
| 712 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b"
__UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:]
__UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=3 , lowercase__=4 , lowercase__=[1_0, 2_0, 3_0, 4_0] , lowercase__=[2, 2, 3, 2] , lowercase__=True , lowercase__=True , lowercase__=3_7 , lowercase__="gelu" , lowercase__=1_0 , lowercase__=0.0_2 , lowercase__=["stage2", "stage3", "stage4"] , lowercase__=3 , lowercase__=None , ):
__UpperCAmelCase : List[Any] = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : str = num_channels
__UpperCAmelCase : Optional[Any] = num_stages
__UpperCAmelCase : Union[str, Any] = hidden_sizes
__UpperCAmelCase : Optional[int] = depths
__UpperCAmelCase : Union[str, Any] = is_training
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Union[str, Any] = out_features
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : Union[str, Any] = scope
__UpperCAmelCase : Optional[Any] = num_stages
def A( self):
__UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : Tuple = self.get_config()
return config, pixel_values, labels
def A( self):
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def A( self):
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , )
def A( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = UperNetForSemanticSegmentation(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : str = model(lowercase__)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
__UpperCAmelCase
) : Optional[Any] = config_and_inputs
__UpperCAmelCase : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
_lowerCAmelCase : Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
_lowerCAmelCase : int = False
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : int = False
_lowerCAmelCase : Optional[int] = False
_lowerCAmelCase : Tuple = False
def A( self):
__UpperCAmelCase : Dict = UperNetModelTester(self)
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7)
def A( self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A( self):
return
def A( self):
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(lowercase__)
__UpperCAmelCase : Optional[int] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Dict = [*signature.parameters.keys()]
__UpperCAmelCase : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase__)
def A( self):
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__)
@unittest.skip(reason='''UperNet does not use inputs_embeds''')
def A( self):
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''')
def A( self):
pass
@unittest.skip(reason='''UperNet does not have a base model''')
def A( self):
pass
@unittest.skip(reason='''UperNet does not have a base model''')
def A( self):
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''')
def A( self):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''')
def A( self):
pass
def A( self):
def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = model_class(lowercase__)
model.to(lowercase__)
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__))
__UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(lowercase__) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : List[Any] = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = _config_zero_init(lowercase__)
__UpperCAmelCase : Any = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = model_class(config=lowercase__)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip(reason='''UperNet does not have tied weights''')
def A( self):
pass
@slow
def A( self):
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
__UpperCAmelCase : Tuple = Image.open(lowercase_ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''')
__UpperCAmelCase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(lowercase__)
__UpperCAmelCase : Optional[int] = prepare_img()
__UpperCAmelCase : Optional[Any] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__)
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**lowercase__)
__UpperCAmelCase : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2))
self.assertEqual(outputs.logits.shape , lowercase__)
__UpperCAmelCase : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]).to(lowercase__)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4))
def A( self):
__UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''')
__UpperCAmelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(lowercase__)
__UpperCAmelCase : Tuple = prepare_img()
__UpperCAmelCase : List[str] = processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__)
with torch.no_grad():
__UpperCAmelCase : str = model(**lowercase__)
__UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2))
self.assertEqual(outputs.logits.shape , lowercase__)
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]).to(lowercase__)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1e-4))
| 713 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 675 | 0 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
lowerCAmelCase = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 512}
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Tuple = set()
__UpperCAmelCase : str = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
__UpperCAmelCase : Union[str, Any] = set(lowercase_ )
return pairs
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Any = VOCAB_FILES_NAMES
_lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowercase__ , lowercase__ , lowercase__="__start__" , lowercase__="__end__" , lowercase__="__unk__" , lowercase__="__null__" , **lowercase__ , ):
super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__)
with open(lowercase__ , encoding='''utf-8''') as vocab_handle:
__UpperCAmelCase : str = json.load(lowercase__)
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(lowercase__ , encoding='''utf-8''') as merges_handle:
__UpperCAmelCase : Optional[Any] = merges_handle.read().split('''\n''')[1:-1]
__UpperCAmelCase : Optional[int] = [tuple(merge.split()) for merge in merges]
__UpperCAmelCase : List[str] = dict(zip(lowercase__ , range(len(lowercase__))))
__UpperCAmelCase : Tuple = {}
@property
def A( self):
return len(self.encoder)
def A( self):
return dict(self.encoder , **self.added_tokens_encoder)
def A( self , lowercase__):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = re.sub('''([.,!?()])''' , r''' \1''' , lowercase__)
__UpperCAmelCase : Optional[int] = re.sub('''(\')''' , r''' \1 ''' , lowercase__)
__UpperCAmelCase : List[Any] = re.sub(r'''\s{2,}''' , ''' ''' , lowercase__)
if "\n" in token:
__UpperCAmelCase : int = token.replace('''\n''' , ''' __newln__''')
__UpperCAmelCase : str = token.split(''' ''')
__UpperCAmelCase : Any = []
for token in tokens:
if not len(lowercase__):
continue
__UpperCAmelCase : List[str] = token.lower()
__UpperCAmelCase : Tuple = tuple(lowercase__)
__UpperCAmelCase : int = tuple(list(word[:-1]) + [word[-1] + '''</w>'''])
__UpperCAmelCase : List[str] = get_pairs(lowercase__)
if not pairs:
words.append(lowercase__)
continue
while True:
__UpperCAmelCase : Optional[Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf''')))
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Optional[Any] = 0
while i < len(lowercase__):
try:
__UpperCAmelCase : Optional[int] = word.index(lowercase__ , lowercase__)
new_word.extend(word[i:j])
__UpperCAmelCase : List[Any] = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
__UpperCAmelCase : List[Any] = tuple(lowercase__)
__UpperCAmelCase : List[Any] = new_word
if len(lowercase__) == 1:
break
else:
__UpperCAmelCase : Dict = get_pairs(lowercase__)
__UpperCAmelCase : Union[str, Any] = '''@@ '''.join(lowercase__)
__UpperCAmelCase : Any = word[:-4]
__UpperCAmelCase : Union[str, Any] = word
words.append(lowercase__)
return " ".join(lowercase__)
def A( self , lowercase__):
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : Optional[int] = re.findall(r'''\S+\n?''' , lowercase__)
for token in words:
split_tokens.extend(list(self.bpe(lowercase__).split(''' ''')))
return split_tokens
def A( self , lowercase__):
__UpperCAmelCase : Any = token.lower()
return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token))
def A( self , lowercase__):
return self.decoder.get(lowercase__ , self.unk_token)
def A( self , lowercase__):
__UpperCAmelCase : List[str] = ''' '''.join(lowercase__).replace('''@@ ''' , '''''').strip()
return out_string
def A( self , lowercase__ , lowercase__ = None):
if not os.path.isdir(lowercase__):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
__UpperCAmelCase : int = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
__UpperCAmelCase : List[str] = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''])
with open(lowercase__ , '''w''' , encoding='''utf-8''') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''')
__UpperCAmelCase : List[str] = 0
with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer:
writer.write('''#version: 0.2\n''')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
''' Please check that the tokenizer is not corrupted!''')
__UpperCAmelCase : List[Any] = token_index
writer.write(''' '''.join(lowercase__) + '''\n''')
index += 1
return vocab_file, merge_file
| 714 |
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 675 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''realm'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
# Common config
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Optional[Any] = retriever_proj_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = num_candidates
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Any = layer_norm_eps
# Reader config
__UpperCAmelCase : Optional[int] = span_hidden_size
__UpperCAmelCase : Dict = max_span_width
__UpperCAmelCase : int = reader_layer_norm_eps
__UpperCAmelCase : int = reader_beam_size
__UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
__UpperCAmelCase : Optional[int] = num_block_records
__UpperCAmelCase : Optional[Any] = searcher_beam_size
| 715 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 675 | 0 |
from __future__ import annotations
import bisect
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__UpperCAmelCase : Any = len(lowercase_ )
while lo < hi:
__UpperCAmelCase : int = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__UpperCAmelCase : Optional[Any] = mid + 1
else:
__UpperCAmelCase : Optional[int] = mid
return lo
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__UpperCAmelCase : Union[str, Any] = len(lowercase_ )
while lo < hi:
__UpperCAmelCase : List[str] = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__UpperCAmelCase : Optional[Any] = mid + 1
else:
__UpperCAmelCase : List[Any] = mid
return lo
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_left(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_right(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Union[str, Any] = len(lowercase_ ) - 1
while left <= right:
__UpperCAmelCase : Dict = left + (right - left) // 2
__UpperCAmelCase : Union[str, Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__UpperCAmelCase : Optional[int] = midpoint - 1
else:
__UpperCAmelCase : Any = midpoint + 1
return None
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
__UpperCAmelCase : int = bisect.bisect_left(lowercase_ , lowercase_ )
if index != len(lowercase_ ) and sorted_collection[index] == item:
return index
return None
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int | None:
'''simple docstring'''
if right < left:
return None
__UpperCAmelCase : Any = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , midpoint - 1 )
else:
return binary_search_by_recursion(lowercase_ , lowercase_ , midpoint + 1 , lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip()
lowerCAmelCase = sorted(int(item) for item in user_input.split(""","""))
lowerCAmelCase = int(input("""Enter a single number to be found in the list:\n"""))
lowerCAmelCase = binary_search(collection, target)
if result is None:
print(F'{target} was not found in {collection}.')
else:
print(F'{target} was found at position {result} in {collection}.')
| 716 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
if n_element < 1:
__UpperCAmelCase : str = ValueError('''a should be a positive number''' )
raise my_error
__UpperCAmelCase : Any = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0)
__UpperCAmelCase : int = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 675 | 0 |
lowerCAmelCase = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 717 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''realm'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
# Common config
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Optional[Any] = retriever_proj_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = num_candidates
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Any = layer_norm_eps
# Reader config
__UpperCAmelCase : Optional[int] = span_hidden_size
__UpperCAmelCase : Dict = max_span_width
__UpperCAmelCase : int = reader_layer_norm_eps
__UpperCAmelCase : int = reader_beam_size
__UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
__UpperCAmelCase : Optional[int] = num_block_records
__UpperCAmelCase : Optional[Any] = searcher_beam_size
| 675 | 0 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 718 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets'''
__UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
__UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
__UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 675 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils)
__UpperCAmelCase : Union[str, Any] = os.path.sep.join(
mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''])
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
__UpperCAmelCase : str = test_metrics
@require_cpu
def A( self):
debug_launcher(self.test_metrics.main , num_processes=1)
@require_cpu
def A( self):
debug_launcher(self.test_metrics.main)
@require_single_gpu
def A( self):
self.test_metrics.main()
@require_multi_gpu
def A( self):
print(F"Found {torch.cuda.device_count()} devices.")
__UpperCAmelCase : Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(lowercase__ , env=os.environ.copy())
| 719 |
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowerCAmelCase = generate_large_matrix()
lowerCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid )
assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[Any] = len(lowercase_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase : List[Any] = (left + right) // 2
__UpperCAmelCase : Dict = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase : Dict = mid + 1
else:
__UpperCAmelCase : Optional[Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = len(grid[0] )
for i in range(len(lowercase_ ) ):
__UpperCAmelCase : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowercase_ ) * len(grid[0] )) - total
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
for row in grid:
for i, number in enumerate(lowercase_ ):
if number < 0:
total += len(lowercase_ ) - i
break
return total
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase : Tuple = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 675 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = (DEISMultistepScheduler,)
_lowerCAmelCase : List[Any] = (('''num_inference_steps''', 2_5),)
def A( self , **lowercase__):
__UpperCAmelCase : Union[str, Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**lowercase__)
return config
def A( self , lowercase__=0 , **lowercase__):
__UpperCAmelCase : List[str] = dict(self.forward_default_kwargs)
__UpperCAmelCase : Optional[int] = kwargs.pop('''num_inference_steps''' , lowercase__)
__UpperCAmelCase : int = self.dummy_sample
__UpperCAmelCase : Union[str, Any] = 0.1 * sample
__UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__)
__UpperCAmelCase : int = scheduler_class(**lowercase__)
scheduler.set_timesteps(lowercase__)
# copy over dummy past residuals
__UpperCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__)
__UpperCAmelCase : str = scheduler_class.from_pretrained(lowercase__)
new_scheduler.set_timesteps(lowercase__)
# copy over dummy past residuals
__UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCAmelCase : Optional[int] = sample, sample
for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1):
__UpperCAmelCase : Any = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
__UpperCAmelCase : Optional[Any] = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def A( self):
pass
def A( self , lowercase__=0 , **lowercase__):
__UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs)
__UpperCAmelCase : List[str] = kwargs.pop('''num_inference_steps''' , lowercase__)
__UpperCAmelCase : Tuple = self.dummy_sample
__UpperCAmelCase : str = 0.1 * sample
__UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase : List[str] = self.get_scheduler_config()
__UpperCAmelCase : List[Any] = scheduler_class(**lowercase__)
scheduler.set_timesteps(lowercase__)
# copy over dummy past residuals (must be after setting timesteps)
__UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowercase__)
__UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(lowercase__)
# copy over dummy past residuals
new_scheduler.set_timesteps(lowercase__)
# copy over dummy past residual (must be after setting timesteps)
__UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCAmelCase : Tuple = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
__UpperCAmelCase : str = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def A( self , lowercase__=None , **lowercase__):
if scheduler is None:
__UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
__UpperCAmelCase : List[Any] = self.get_scheduler_config(**lowercase__)
__UpperCAmelCase : List[Any] = scheduler_class(**lowercase__)
__UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
__UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__)
__UpperCAmelCase : int = scheduler_class(**lowercase__)
__UpperCAmelCase : List[str] = 1_0
__UpperCAmelCase : List[Any] = self.dummy_model()
__UpperCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(lowercase__)
for i, t in enumerate(scheduler.timesteps):
__UpperCAmelCase : Dict = model(lowercase__ , lowercase__)
__UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
return sample
def A( self):
__UpperCAmelCase : Any = dict(self.forward_default_kwargs)
__UpperCAmelCase : Any = kwargs.pop('''num_inference_steps''' , lowercase__)
for scheduler_class in self.scheduler_classes:
__UpperCAmelCase : Optional[int] = self.get_scheduler_config()
__UpperCAmelCase : List[Any] = scheduler_class(**lowercase__)
__UpperCAmelCase : Tuple = self.dummy_sample
__UpperCAmelCase : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps'''):
scheduler.set_timesteps(lowercase__)
elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps'''):
__UpperCAmelCase : List[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
__UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order]
__UpperCAmelCase : List[str] = scheduler.timesteps[5]
__UpperCAmelCase : str = scheduler.timesteps[6]
__UpperCAmelCase : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
__UpperCAmelCase : List[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample
self.assertEqual(output_a.shape , sample.shape)
self.assertEqual(output_a.shape , output_a.shape)
def A( self):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
__UpperCAmelCase : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config())
__UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=lowercase__)
__UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3
__UpperCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config)
__UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config)
__UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config)
__UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config)
__UpperCAmelCase : Tuple = self.full_loop(scheduler=lowercase__)
__UpperCAmelCase : str = torch.mean(torch.abs(lowercase__))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3
def A( self):
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowercase__)
def A( self):
self.check_over_configs(thresholding=lowercase__)
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , algorithm_type='''deis''' , solver_order=lowercase__ , solver_type=lowercase__ , )
def A( self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase__)
def A( self):
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , )
__UpperCAmelCase : str = self.full_loop(
solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , )
assert not torch.isnan(lowercase__).any(), "Samples have nan numbers"
def A( self):
self.check_over_configs(lower_order_final=lowercase__)
self.check_over_configs(lower_order_final=lowercase__)
def A( self):
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowercase__ , time_step=0)
def A( self):
__UpperCAmelCase : Any = self.full_loop()
__UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowercase__))
assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3
def A( self):
__UpperCAmelCase : List[Any] = self.full_loop(prediction_type='''v_prediction''')
__UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__))
assert abs(result_mean.item() - 0.0_9_1) < 1e-3
def A( self):
__UpperCAmelCase : str = self.scheduler_classes[0]
__UpperCAmelCase : Any = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0)
__UpperCAmelCase : Dict = scheduler_class(**lowercase__)
__UpperCAmelCase : str = 1_0
__UpperCAmelCase : Union[str, Any] = self.dummy_model()
__UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowercase__)
for i, t in enumerate(scheduler.timesteps):
__UpperCAmelCase : Optional[Any] = model(lowercase__ , lowercase__)
__UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
assert sample.dtype == torch.floataa
| 720 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 675 | 0 |
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(lowercase_ ):
return ext
raise Exception(
f"Unable to determine file format from file extension {path}. "
f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Tuple = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
__UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format
__UpperCAmelCase : int = PipelineDataFormat.from_str(
format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(lowercase_ , lowercase_ )
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = nlp
__UpperCAmelCase : Any = reader
@staticmethod
def A( lowercase__):
__UpperCAmelCase : Optional[int] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''')
run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''')
run_parser.add_argument('''--input''' , type=lowercase__ , help='''Path to the file to use for inference''')
run_parser.add_argument('''--output''' , type=lowercase__ , help='''Path to the file that will be used post to write results.''')
run_parser.add_argument('''--model''' , type=lowercase__ , help='''Name or path to the model to instantiate.''')
run_parser.add_argument('''--config''' , type=lowercase__ , help='''Name or path to the model\'s config to instantiate.''')
run_parser.add_argument(
'''--tokenizer''' , type=lowercase__ , help='''Name of the tokenizer to use. (default: same as the model name)''')
run_parser.add_argument(
'''--column''' , type=lowercase__ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , )
run_parser.add_argument(
'''--format''' , type=lowercase__ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , )
run_parser.add_argument(
'''--device''' , type=lowercase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''')
run_parser.set_defaults(func=lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self._nlp, []
for entry in self._reader:
__UpperCAmelCase : Tuple = nlp(**lowercase__) if self._reader.is_multi_columns else nlp(lowercase__)
if isinstance(lowercase__ , lowercase__):
outputs.append(lowercase__)
else:
outputs += output
# Saving data
if self._nlp.binary_output:
__UpperCAmelCase : Tuple = self._reader.save_binary(lowercase__)
logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}")
else:
self._reader.save(lowercase__)
| 721 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ):
__UpperCAmelCase : Tuple = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = max_position_embeddings
__UpperCAmelCase : Tuple = type_vocab_size
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : Dict = num_choices
__UpperCAmelCase : Union[str, Any] = scope
def A( self):
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices)
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A( self):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__)
__UpperCAmelCase : List[Any] = model(lowercase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
__UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : str = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
# create attention mask
__UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
__UpperCAmelCase : int = self.seq_length // 2
__UpperCAmelCase : Any = 0
# first forward pass
__UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size)
# change a random masked slice from input_ids
__UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1
__UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1)
__UpperCAmelCase : int = random_other_next_tokens
# append to next input_ids and attn_mask
__UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , )
# get two different outputs
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
# select random slice
__UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval()
__UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
# first forward pass
__UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size)
__UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2)
# append to next input_ids and
__UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1)
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[
'''last_hidden_state'''
]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False):
__UpperCAmelCase : int = BioGptForCausalLM(lowercase__)
model.to(lowercase__)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def A( self , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[int] = BioGptModel(lowercase__)
__UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[Any] = self.num_labels
__UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = config_and_inputs
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else ()
_lowerCAmelCase : Union[str, Any] = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCAmelCase : List[Any] = False
def A( self):
__UpperCAmelCase : int = BioGptModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
def A( self):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : Dict = type
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__)
@slow
def A( self):
__UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
__UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : List[str] = '''left'''
# Define PAD Token = EOS Token = 50256
__UpperCAmelCase : List[Any] = tokenizer.eos_token
__UpperCAmelCase : Tuple = model.config.eos_token_id
# use different length sentences to test batching
__UpperCAmelCase : Optional[Any] = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__)
__UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__)
__UpperCAmelCase : int = model.generate(
input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , )
__UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__)
__UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
__UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings)
__UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : str = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence])
@slow
def A( self):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = 3
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : int = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = 3
__UpperCAmelCase : Union[str, Any] = '''multi_label_classification'''
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]])
__UpperCAmelCase : int = model(lowercase__)[0]
__UpperCAmelCase : Any = 4_2_3_8_4
__UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size))
self.assertEqual(output.shape , lowercase__)
__UpperCAmelCase : Dict = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4))
@slow
def A( self):
__UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
torch.manual_seed(0)
__UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__)
__UpperCAmelCase : List[str] = model.generate(
**lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , )
__UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : int = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(lowercase__ , lowercase__)
| 675 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __A ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''deformable_detr'''
_lowerCAmelCase : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=3_0_0 , lowercase__=1_0_2_4 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=2_5_6 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , lowercase__=True , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=4 , lowercase__=4 , lowercase__=4 , lowercase__=False , lowercase__=3_0_0 , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , lowercase__=0.2_5 , lowercase__=False , **lowercase__ , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''')
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''')
__UpperCAmelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''])
elif isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = backbone_config.get('''model_type''')
__UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : Union[str, Any] = config_class.from_dict(lowercase__)
__UpperCAmelCase : List[Any] = use_timm_backbone
__UpperCAmelCase : Union[str, Any] = backbone_config
__UpperCAmelCase : Any = num_channels
__UpperCAmelCase : List[str] = num_queries
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : List[str] = encoder_ffn_dim
__UpperCAmelCase : str = encoder_layers
__UpperCAmelCase : Union[str, Any] = encoder_attention_heads
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : Any = decoder_layers
__UpperCAmelCase : Union[str, Any] = decoder_attention_heads
__UpperCAmelCase : int = dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : List[str] = activation_dropout
__UpperCAmelCase : Union[str, Any] = activation_function
__UpperCAmelCase : List[Any] = init_std
__UpperCAmelCase : Optional[int] = init_xavier_std
__UpperCAmelCase : Union[str, Any] = encoder_layerdrop
__UpperCAmelCase : List[str] = auxiliary_loss
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : List[str] = backbone
__UpperCAmelCase : Union[str, Any] = use_pretrained_backbone
__UpperCAmelCase : List[Any] = dilation
# deformable attributes
__UpperCAmelCase : List[Any] = num_feature_levels
__UpperCAmelCase : Optional[Any] = encoder_n_points
__UpperCAmelCase : str = decoder_n_points
__UpperCAmelCase : Any = two_stage
__UpperCAmelCase : int = two_stage_num_proposals
__UpperCAmelCase : Optional[int] = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''')
# Hungarian matcher
__UpperCAmelCase : Dict = class_cost
__UpperCAmelCase : List[Any] = bbox_cost
__UpperCAmelCase : Union[str, Any] = giou_cost
# Loss coefficients
__UpperCAmelCase : Tuple = mask_loss_coefficient
__UpperCAmelCase : List[Any] = dice_loss_coefficient
__UpperCAmelCase : int = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Any = eos_coefficient
__UpperCAmelCase : List[Any] = focal_alpha
__UpperCAmelCase : List[str] = disable_custom_kernels
super().__init__(is_encoder_decoder=lowercase__ , **lowercase__)
@property
def A( self):
return self.encoder_attention_heads
@property
def A( self):
return self.d_model
def A( self):
__UpperCAmelCase : int = copy.deepcopy(self.__dict__)
if self.backbone_config is not None:
__UpperCAmelCase : List[str] = self.backbone_config.to_dict()
__UpperCAmelCase : int = self.__class__.model_type
return output
| 700 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = '''bert'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , **lowercase__)
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = position_embedding_type
__UpperCAmelCase : Optional[Any] = use_cache
__UpperCAmelCase : List[Any] = classifier_dropout
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
])
| 675 | 0 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
lowerCAmelCase = get_logger(__name__)
lowerCAmelCase = R"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class lowerCamelCase :
@add_start_docstrings(lowercase__)
def __call__( self , lowercase__ , lowercase__):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.")
class lowerCamelCase :
@add_start_docstrings(lowercase__)
def __call__( self , lowercase__ , lowercase__):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.")
class lowerCamelCase ( _UpperCamelCase ):
@add_start_docstrings(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__):
for processor in self:
__UpperCAmelCase : str = inspect.signature(processor.__call__).parameters
if len(lowercase__) > 3:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
F"Make sure that all the required parameters: {list(function_args.keys())} for "
F"{processor.__class__} are passed to the logits processor.")
__UpperCAmelCase : Optional[Any] = processor(lowercase__ , lowercase__ , lowercase__ , **lowercase__)
else:
__UpperCAmelCase : str = processor(lowercase__ , lowercase__ , lowercase__)
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__):
if not isinstance(lowercase__ , lowercase__) or not (temperature > 0):
raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}")
__UpperCAmelCase : Optional[int] = temperature
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = scores / self.temperature
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1):
if not isinstance(lowercase__ , lowercase__) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}")
if not isinstance(lowercase__ , lowercase__) or (min_tokens_to_keep < 1):
raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
__UpperCAmelCase : str = top_p
__UpperCAmelCase : Optional[int] = filter_value
__UpperCAmelCase : Optional[int] = min_tokens_to_keep
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Dict = lax.top_k(lowercase__ , scores.shape[-1])
__UpperCAmelCase : Optional[int] = jnp.full_like(lowercase__ , self.filter_value)
__UpperCAmelCase : Union[str, Any] = jax.nn.softmax(lowercase__ , axis=-1).cumsum(axis=-1)
__UpperCAmelCase : Tuple = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
__UpperCAmelCase : List[str] = jnp.roll(lowercase__ , 1)
score_mask |= score_mask.at[:, 0].set(lowercase__)
# min tokens to keep
__UpperCAmelCase : List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase__)
__UpperCAmelCase : Tuple = jnp.where(lowercase__ , lowercase__ , lowercase__)
__UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(lowercase__ , lowercase__)[-1]
return next_scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1):
if not isinstance(lowercase__ , lowercase__) or top_k <= 0:
raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}")
__UpperCAmelCase : List[str] = max(lowercase__ , lowercase__)
__UpperCAmelCase : Union[str, Any] = filter_value
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Dict = scores.shape
__UpperCAmelCase : Optional[Any] = jnp.full(batch_size * vocab_size , self.filter_value)
__UpperCAmelCase : int = min(self.top_k , scores.shape[-1]) # Safety check
__UpperCAmelCase : Optional[Any] = lax.top_k(lowercase__ , lowercase__)
__UpperCAmelCase : List[Any] = jnp.broadcast_to((jnp.arange(lowercase__) * vocab_size)[:, None] , (batch_size, topk)).flatten()
__UpperCAmelCase : Optional[Any] = topk_scores.flatten()
__UpperCAmelCase : str = topk_indices.flatten() + shift
__UpperCAmelCase : int = next_scores_flat.at[topk_indices_flat].set(lowercase__)
__UpperCAmelCase : List[Any] = next_scores_flat.reshape(lowercase__ , lowercase__)
return next_scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__):
__UpperCAmelCase : Dict = bos_token_id
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = jnp.full(scores.shape , -float('''inf'''))
__UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - 1)
__UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.bos_token_id].set(0) , lowercase__)
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = max_length
__UpperCAmelCase : str = eos_token_id
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[Any] = jnp.full(scores.shape , -float('''inf'''))
__UpperCAmelCase : int = 1 - jnp.bool_(cur_len - self.max_length + 1)
__UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.eos_token_id].set(0) , lowercase__)
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__):
if not isinstance(lowercase__ , lowercase__) or min_length < 0:
raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}")
if not isinstance(lowercase__ , lowercase__) or eos_token_id < 0:
raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
__UpperCAmelCase : List[Any] = min_length
__UpperCAmelCase : Optional[int] = eos_token_id
def __call__( self , lowercase__ , lowercase__ , lowercase__):
# create boolean flag to decide if min length penalty should be applied
__UpperCAmelCase : List[str] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1)
__UpperCAmelCase : List[str] = jnp.where(lowercase__ , scores.at[:, self.eos_token_id].set(-float('''inf''')) , lowercase__)
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__):
__UpperCAmelCase : int = list(lowercase__)
__UpperCAmelCase : str = begin_index
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - self.begin_index)
__UpperCAmelCase : Optional[Any] = jnp.where(lowercase__ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''')) , lowercase__)
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('''inf'''))
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__):
__UpperCAmelCase : Any = dict(lowercase__)
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
__UpperCAmelCase : List[str] = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1
for index, token in force_token_map.items():
if token is not None:
__UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(lowercase__)
__UpperCAmelCase : Optional[int] = jnp.intaa(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__):
def _force_token(lowercase__):
__UpperCAmelCase : Optional[Any] = scores.shape[0]
__UpperCAmelCase : Dict = self.force_token_array[generation_idx]
__UpperCAmelCase : Union[str, Any] = jnp.ones_like(lowercase__ , dtype=scores.dtype) * -float('''inf''')
__UpperCAmelCase : Tuple = jnp.zeros((batch_size, 1) , dtype=scores.dtype)
__UpperCAmelCase : Any = lax.dynamic_update_slice(lowercase__ , lowercase__ , (0, current_token))
return new_scores
__UpperCAmelCase : Tuple = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase__) , lambda: scores , ) , )
return scores
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = generate_config.eos_token_id
__UpperCAmelCase : str = generate_config.no_timestamps_token_id
__UpperCAmelCase : Optional[int] = generate_config.no_timestamps_token_id + 1
__UpperCAmelCase : List[Any] = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(lowercase__ , '''max_initial_timestamp_index'''):
__UpperCAmelCase : Optional[int] = generate_config.max_initial_timestamp_index
else:
__UpperCAmelCase : Optional[Any] = model_config.vocab_size
if self.max_initial_timestamp_index is None:
__UpperCAmelCase : Dict = model_config.vocab_size
def __call__( self , lowercase__ , lowercase__ , lowercase__):
# suppress <|notimestamps|> which is handled by without_timestamps
__UpperCAmelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf'''))
def handle_pairs(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , lowercase__ , lowercase__)
__UpperCAmelCase : int = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase__ , )
__UpperCAmelCase : Dict = jnp.where((cur_len - self.begin_index) < 2 , lowercase__ , lowercase__)
__UpperCAmelCase : Optional[int] = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase__ , lowercase__ , )
return jnp.where(
lowercase__ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''')) , scores_k.at[: self.eos_token_id].set(-float('''inf''')) , ) , lowercase__ , )
__UpperCAmelCase : Any = jax.vmap(lowercase__)(lowercase__ , lowercase__)
__UpperCAmelCase : Optional[int] = jnp.where(cur_len == self.begin_index , lowercase__ , lowercase__)
__UpperCAmelCase : str = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase__ , )
__UpperCAmelCase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index
__UpperCAmelCase : Union[str, Any] = jnp.where(
lowercase__ , scores.at[:, last_allowed + 1 :].set(-float('''inf''')) , lowercase__ , )
# if sum of probability over timestamps is above any other token, sample timestamp
__UpperCAmelCase : Dict = jax.nn.log_softmax(lowercase__ , axis=-1)
def handle_cumulative_probs(lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1)
__UpperCAmelCase : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin])
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''')) , lowercase__ , )
__UpperCAmelCase : int = jax.vmap(lowercase__)(lowercase__ , lowercase__)
return scores
| 701 |
from random import shuffle
import tensorflow as tf
from numpy import array
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
__UpperCAmelCase : str = len(vectors[0] )
# Will help select random centroids from among the available vectors
__UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__UpperCAmelCase : Union[str, Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__UpperCAmelCase : str = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__UpperCAmelCase : List[str] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
__UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] )
__UpperCAmelCase : Tuple = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__UpperCAmelCase : Dict = tf.placeholder('''int32''' )
__UpperCAmelCase : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] )
__UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__UpperCAmelCase : Optional[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__UpperCAmelCase : Union[str, Any] = 100
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
__UpperCAmelCase : List[str] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__UpperCAmelCase : List[Any] = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__UpperCAmelCase : Optional[Any] = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
__UpperCAmelCase : Optional[Any] = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__UpperCAmelCase : str = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__UpperCAmelCase : List[str] = sess.run(lowercase_ )
__UpperCAmelCase : Tuple = sess.run(lowercase_ )
return centroids, assignments
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
return int(input_a == input_a == 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" )
print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" )
print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" )
print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 702 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if not nums:
return 0
__UpperCAmelCase : int = nums[0]
__UpperCAmelCase : Optional[Any] = 0
for num in nums[1:]:
__UpperCAmelCase , __UpperCAmelCase : int = (
max_excluding + num,
max(lowercase_ , lowercase_ ),
)
return max(lowercase_ , lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=0 ) -> Optional[int]:
'''simple docstring'''
return sorted(lowercase_ , key=lambda lowercase_ : x[column] )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Any:
'''simple docstring'''
for i in range(points_counts - 1 ):
for j in range(i + 1 , lowercase_ ):
__UpperCAmelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase : Any = current_dis
return min_dis
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=float('''inf''' ) ) -> Optional[int]:
'''simple docstring'''
for i in range(min(6 , points_counts - 1 ) , lowercase_ ):
for j in range(max(0 , i - 6 ) , lowercase_ ):
__UpperCAmelCase : str = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCAmelCase : Dict = current_dis
return min_dis
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if points_counts <= 3:
return dis_between_closest_pair(lowercase_ , lowercase_ )
# recursion
__UpperCAmelCase : int = points_counts // 2
__UpperCAmelCase : Tuple = closest_pair_of_points_sqr(
lowercase_ , points_sorted_on_y[:mid] , lowercase_ )
__UpperCAmelCase : Optional[int] = closest_pair_of_points_sqr(
lowercase_ , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCAmelCase : int = min(lowercase_ , lowercase_ )
__UpperCAmelCase : str = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(lowercase_ )
__UpperCAmelCase : Dict = dis_between_closest_in_strip(
lowercase_ , len(lowercase_ ) , lowercase_ )
return min(lowercase_ , lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : str = column_based_sort(lowercase_ , column=0 )
__UpperCAmelCase : Any = column_based_sort(lowercase_ , column=1 )
return (
closest_pair_of_points_sqr(
lowercase_ , lowercase_ , lowercase_ )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
print("""Distance:""", closest_pair_of_points(points, len(points)))
| 703 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@require_torch
def A( self):
__UpperCAmelCase : str = pipeline(
task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''')
__UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
@slow
@require_torch
def A( self):
__UpperCAmelCase : int = pipeline(
task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , )
# This is an audio of a dog
__UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
] , )
__UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
__UpperCAmelCase : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5)
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
| 675 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["""YolosFeatureExtractor"""]
lowerCAmelCase = ["""YolosImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""YolosForObjectDetection""",
"""YolosModel""",
"""YolosPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 704 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[int]]:
'''simple docstring'''
__UpperCAmelCase : list[list[int]] = []
__UpperCAmelCase : list[int] = []
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : int = sum(lowercase_ )
create_state_space_tree(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return result
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> None:
'''simple docstring'''
if sum(lowercase_ ) > max_sum or (remaining_nums_sum + sum(lowercase_ )) < max_sum:
return
if sum(lowercase_ ) == max_sum:
result.append(lowercase_ )
return
for index in range(lowercase_ , len(lowercase_ ) ):
create_state_space_tree(
lowercase_ , lowercase_ , index + 1 , [*path, nums[index]] , lowercase_ , remaining_nums_sum - nums[index] , )
lowerCAmelCase = [3, 34, 4, 12, 5, 2]
lowerCAmelCase = 9
lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 705 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 675 | 0 |
from math import sqrt
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
for i in range(1 , int(sqrt(lowercase_ ) + 1 ) ):
if n % i == 0 and i != sqrt(lowercase_ ):
total += i + n // i
elif i == sqrt(lowercase_ ):
total += i
return total - n
def __SCREAMING_SNAKE_CASE ( lowercase_ = 10000 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = sum(
i
for i in range(1 , lowercase_ )
if sum_of_divisors(sum_of_divisors(lowercase_ ) ) == i and sum_of_divisors(lowercase_ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 706 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 675 | 0 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __SCREAMING_SNAKE_CASE ( ) -> tuple[list[int], int]:
'''simple docstring'''
__UpperCAmelCase : Any = [randint(-1000 , 1000 ) for i in range(10 )]
__UpperCAmelCase : Union[str, Any] = randint(-5000 , 5000 )
return (arr, r)
lowerCAmelCase = make_dataset()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, ...]:
'''simple docstring'''
for triplet in permutations(lowercase_ , 3 ):
if sum(lowercase_ ) == target:
return tuple(sorted(lowercase_ ) )
return (0, 0, 0)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int, int]:
'''simple docstring'''
arr.sort()
__UpperCAmelCase : Tuple = len(lowercase_ )
for i in range(n - 1 ):
__UpperCAmelCase : Tuple = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __SCREAMING_SNAKE_CASE ( ) -> tuple[float, float]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__UpperCAmelCase : Union[str, Any] = '''
triplet_sum1(*dataset)
'''
__UpperCAmelCase : Tuple = '''
triplet_sum2(*dataset)
'''
__UpperCAmelCase : List[Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 )
__UpperCAmelCase : Union[str, Any] = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 )
return (min(lowercase_ ), min(lowercase_ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCAmelCase = solution_times()
print(F'The time for naive implementation is {times[0]}.')
print(F'The time for optimized implementation is {times[1]}.')
| 707 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
__UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
if latents is None:
__UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Union[str, Any] = latents.to(lowercase__)
__UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A( self , lowercase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__)
def A( self , lowercase__=0):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
__UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=lowercase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__)
# We'll offload the last model manually.
__UpperCAmelCase : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A( self):
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : str = self._execution_device
__UpperCAmelCase : List[str] = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0)
__UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
__UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
self.scheduler.set_timesteps(lowercase__ , device=lowercase__)
__UpperCAmelCase : List[Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.movq.config.latent_channels
__UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Union[str, Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint}
__UpperCAmelCase : Any = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
__UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Dict = image * 0.5 + 0.5
__UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1)
__UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
import os
def __SCREAMING_SNAKE_CASE ( lowercase_ = "matrix.txt" ) -> int:
'''simple docstring'''
with open(os.path.join(os.path.dirname(lowercase_ ) , lowercase_ ) ) as in_file:
__UpperCAmelCase : Any = in_file.read()
__UpperCAmelCase : Tuple = [[int(lowercase_ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()]
__UpperCAmelCase : Optional[int] = [[0 for cell in row] for row in grid]
__UpperCAmelCase : Dict = len(grid[0] )
__UpperCAmelCase : Optional[int] = [[0 for i in range(lowercase_ )] for j in range(lowercase_ )]
__UpperCAmelCase : Any = grid[0][0]
for i in range(1 , lowercase_ ):
__UpperCAmelCase : str = grid[0][i] + dp[0][i - 1]
for i in range(1 , lowercase_ ):
__UpperCAmelCase : Dict = grid[i][0] + dp[i - 1][0]
for i in range(1 , lowercase_ ):
for j in range(1 , lowercase_ ):
__UpperCAmelCase : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F'{solution() = }')
| 708 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 675 | 0 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 709 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 675 | 0 |
'''simple docstring'''
import qiskit
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
__UpperCAmelCase : List[str] = qiskit.QuantumCircuit(lowercase_ , lowercase_ )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
__UpperCAmelCase : Tuple = qiskit.execute(lowercase_ , lowercase_ , shots=1000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = single_qubit_measure(2, 2)
print(F'Total count for various states are: {counts}')
| 710 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ )
if matches:
__UpperCAmelCase : Any = float(matches[1] )
__UpperCAmelCase : Optional[Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCAmelCase : Dict = 1001
__UpperCAmelCase : str = '''imagenet-1k-id2label.json'''
__UpperCAmelCase : List[str] = '''huggingface/label-files'''
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = '''background'''
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ )
# Load 🤗 model
__UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCAmelCase : List[str] = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCAmelCase : Union[str, Any] = model(**lowercase_ )
__UpperCAmelCase : Optional[Any] = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__UpperCAmelCase : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowercase_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCAmelCase : List[str] = '''google/''' + model_name
image_processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 675 | 0 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase :
_lowerCAmelCase : int
_lowerCAmelCase : TreeNode | None = None
_lowerCAmelCase : TreeNode | None = None
lowerCAmelCase = namedtuple("""CoinsDistribResult""", """moves excess""")
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if root is None:
return 0
# Validation
def count_nodes(lowercase_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase_ ) != count_coins(lowercase_ ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(lowercase_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__UpperCAmelCase : Union[str, Any] = get_distrib(node.left )
__UpperCAmelCase : Any = get_distrib(node.right )
__UpperCAmelCase : Optional[Any] = 1 - left_distrib_excess
__UpperCAmelCase : Union[str, Any] = 1 - right_distrib_excess
__UpperCAmelCase : str = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase_ )
+ abs(lowercase_ )
)
__UpperCAmelCase : Union[str, Any] = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase_ , lowercase_ )
return get_distrib(lowercase_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase :
_lowerCAmelCase : Optional[Union[str, Path]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = True
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : int = 1
_lowerCAmelCase : Optional[Union[str, bool]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
def A( self):
return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
| 675 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WavLMForAudioFrameClassification""",
"""WavLMForCTC""",
"""WavLMForSequenceClassification""",
"""WavLMForXVector""",
"""WavLMModel""",
"""WavLMPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 712 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b"
__UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:]
__UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 713 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 675 | 0 |
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCamelCase ( unittest.TestCase ):
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : Dict = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def A( self):
__UpperCAmelCase : Union[str, Any] = self.dummy_uncond_unet
__UpperCAmelCase : int = PNDMScheduler()
__UpperCAmelCase : List[str] = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__)
pndm.to(lowercase__)
pndm.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : List[Any] = torch.manual_seed(0)
__UpperCAmelCase : Any = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''').images
__UpperCAmelCase : Optional[int] = torch.manual_seed(0)
__UpperCAmelCase : Dict = pndm(generator=lowercase__ , num_inference_steps=2_0 , output_type='''numpy''' , return_dict=lowercase__)[0]
__UpperCAmelCase : int = image[0, -3:, -3:, -1]
__UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__UpperCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : Any = '''google/ddpm-cifar10-32'''
__UpperCAmelCase : List[str] = UNetaDModel.from_pretrained(lowercase__)
__UpperCAmelCase : str = PNDMScheduler()
__UpperCAmelCase : Any = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__)
pndm.to(lowercase__)
pndm.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Optional[Any] = torch.manual_seed(0)
__UpperCAmelCase : List[Any] = pndm(generator=lowercase__ , output_type='''numpy''').images
__UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__UpperCAmelCase : List[Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 714 |
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 675 | 0 |
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
lowerCAmelCase = [
{"""dataset""": """wikipedia""", """config_name""": """20220301.de"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.en"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.it"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""},
{"""dataset""": """snli""", """config_name""": """plain_text"""},
{"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""},
{"""dataset""": """wiki40b""", """config_name""": """en"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""},
{"""dataset""": """natural_questions""", """config_name""": """default"""},
]
def __SCREAMING_SNAKE_CASE ( lowercase_=True ) -> List[str]:
'''simple docstring'''
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_UpperCamelCase ) )
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = None
_lowerCAmelCase : List[str] = None
def A( self , lowercase__ , lowercase__):
with TemporaryDirectory() as tmp_dir:
__UpperCAmelCase : Tuple = dataset_module_factory(lowercase__ , cache_dir=lowercase__)
__UpperCAmelCase : Optional[int] = import_main_class(dataset_module.module_path , dataset=lowercase__)
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=lowercase__ , config_name=lowercase__ , hash=dataset_module.hash , )
__UpperCAmelCase : str = '''/'''.join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=lowercase__).replace(os.sep , '''/'''),
config.DATASET_INFO_FILENAME,
])
__UpperCAmelCase : List[str] = cached_path(lowercase__ , cache_dir=lowercase__)
self.assertTrue(os.path.exists(lowercase__))
@pytest.mark.integration
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple'''
__UpperCAmelCase : Tuple = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ )
__UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path )
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
__UpperCAmelCase : str = None
builder_instance.download_and_prepare()
__UpperCAmelCase : int = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = dataset_module_factory('''wikipedia''' , cache_dir=lowercase_ )
__UpperCAmelCase : Tuple = import_main_class(dataset_module.module_path , dataset=lowercase_ )
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=lowercase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , )
__UpperCAmelCase : List[str] = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(lowercase_ , lowercase_ )
assert "train" in ds
assert isinstance(ds['''train'''] , lowercase_ )
assert next(iter(ds['''train'''] ) )
| 715 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 675 | 0 |
lowerCAmelCase = tuple[float, float, float]
lowerCAmelCase = tuple[float, float, float]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = end_pointa[0] - end_pointa[0]
__UpperCAmelCase : Union[str, Any] = end_pointa[1] - end_pointa[1]
__UpperCAmelCase : List[str] = end_pointa[2] - end_pointa[2]
return (x, y, z)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Vectorad:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i
__UpperCAmelCase : str = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
__UpperCAmelCase : str = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
return tuple(round(lowercase_ , lowercase_ ) for x in vector ) == (0, 0, 0)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = 10 ) -> bool:
'''simple docstring'''
__UpperCAmelCase : Tuple = create_vector(lowercase_ , lowercase_ )
__UpperCAmelCase : str = create_vector(lowercase_ , lowercase_ )
return is_zero_vector(get_ad_vectors_cross(lowercase_ , lowercase_ ) , lowercase_ )
| 716 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
if n_element < 1:
__UpperCAmelCase : str = ValueError('''a should be a positive number''' )
raise my_error
__UpperCAmelCase : Any = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0)
__UpperCAmelCase : int = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 675 | 0 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , **lowercase_ ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Any = AutoConfig.from_pretrained(lowercase_ , **lowercase_ )
__UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_config(lowercase_ )
model.save_pretrained(lowercase_ )
AutoTokenizer.from_pretrained(lowercase_ ).save_pretrained(lowercase_ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 717 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''realm'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
# Common config
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Optional[Any] = retriever_proj_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = num_candidates
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Any = layer_norm_eps
# Reader config
__UpperCAmelCase : Optional[int] = span_hidden_size
__UpperCAmelCase : Dict = max_span_width
__UpperCAmelCase : int = reader_layer_norm_eps
__UpperCAmelCase : int = reader_beam_size
__UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
__UpperCAmelCase : Optional[int] = num_block_records
__UpperCAmelCase : Optional[Any] = searcher_beam_size
| 675 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase = {
"""configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""],
"""processing_layoutlmv2""": ["""LayoutLMv2Processor"""],
"""tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["""LayoutLMv2TokenizerFast"""]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["""LayoutLMv2FeatureExtractor"""]
lowerCAmelCase = ["""LayoutLMv2ImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LayoutLMv2ForQuestionAnswering""",
"""LayoutLMv2ForSequenceClassification""",
"""LayoutLMv2ForTokenClassification""",
"""LayoutLMv2Layer""",
"""LayoutLMv2Model""",
"""LayoutLMv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 718 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets'''
__UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
__UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
__UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 675 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
lowerCAmelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Tuple = {}
with open(lowercase_ , '''r''' ) as file:
for line_number, line in enumerate(lowercase_ ):
__UpperCAmelCase : Any = line.strip()
if line:
__UpperCAmelCase : Optional[int] = line.split()
__UpperCAmelCase : Union[str, Any] = line_number
__UpperCAmelCase : str = words[0]
__UpperCAmelCase : int = value
return result
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
for attribute in key.split('''.''' ):
__UpperCAmelCase : Any = getattr(lowercase_ , lowercase_ )
__UpperCAmelCase : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowercase_ ):
__UpperCAmelCase : str = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCAmelCase : Optional[Any] = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCAmelCase : Optional[int] = getattr(lowercase_ , lowercase_ ).shape
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__UpperCAmelCase : Tuple = getattr(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = shape_pointer.shape
# let's reduce dimension
__UpperCAmelCase : List[str] = value[0]
else:
__UpperCAmelCase : Optional[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCAmelCase : int = value
elif weight_type == "weight_g":
__UpperCAmelCase : Any = value
elif weight_type == "weight_v":
__UpperCAmelCase : Dict = value
elif weight_type == "bias":
__UpperCAmelCase : List[Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__UpperCAmelCase : Optional[Any] = getattr(lowercase_ , lowercase_ )
__UpperCAmelCase : str = value
else:
__UpperCAmelCase : str = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowercase_ ):
__UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCAmelCase : List[Any] = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCAmelCase : Tuple = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase : List[Any] = '''.'''.join([key, hf_param_name] )
else:
__UpperCAmelCase : Tuple = key
__UpperCAmelCase : str = value if '''lm_head''' in full_key else value[0]
lowerCAmelCase = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = False
for key, mapped_key in MAPPING.items():
__UpperCAmelCase : str = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCAmelCase : List[str] = True
if "*" in mapped_key:
__UpperCAmelCase : Dict = name.split(lowercase_ )[0].split('''.''' )[-2]
__UpperCAmelCase : Optional[Any] = mapped_key.replace('''*''' , lowercase_ )
if "weight_g" in name:
__UpperCAmelCase : Tuple = '''weight_g'''
elif "weight_v" in name:
__UpperCAmelCase : List[str] = '''weight_v'''
elif "bias" in name:
__UpperCAmelCase : Union[str, Any] = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase : int = '''weight'''
else:
__UpperCAmelCase : Optional[Any] = None
if hf_dict is not None:
rename_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return is_used
return is_used
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[Any] = []
__UpperCAmelCase : Any = fairseq_model.state_dict()
__UpperCAmelCase : Dict = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCAmelCase : Union[str, Any] = True
else:
__UpperCAmelCase : Optional[Any] = load_wavaveca_layer(lowercase_ , lowercase_ , lowercase_ )
if not is_used:
unused_weights.append(lowercase_ )
logger.warning(f"Unused weights: {unused_weights}" )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = full_name.split('''conv_layers.''' )[-1]
__UpperCAmelCase : Optional[int] = name.split('''.''' )
__UpperCAmelCase : Any = int(items[0] )
__UpperCAmelCase : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCAmelCase : List[str] = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCAmelCase : Dict = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCAmelCase : Tuple = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCAmelCase : Optional[Any] = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(lowercase_ )
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False ) -> Dict:
'''simple docstring'''
if config_path is not None:
__UpperCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase_ )
else:
__UpperCAmelCase : Optional[int] = WavaVecaConfig()
if is_seq_class:
__UpperCAmelCase : str = read_txt_into_dict(lowercase_ )
__UpperCAmelCase : Union[str, Any] = idalabel
__UpperCAmelCase : Dict = WavaVecaForSequenceClassification(lowercase_ )
__UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , )
feature_extractor.save_pretrained(lowercase_ )
elif is_finetuned:
if dict_path:
__UpperCAmelCase : List[Any] = Dictionary.load(lowercase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase : str = target_dict.pad_index
__UpperCAmelCase : Optional[Any] = target_dict.bos_index
__UpperCAmelCase : Optional[Any] = target_dict.eos_index
__UpperCAmelCase : Dict = len(target_dict.symbols )
__UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , '''vocab.json''' )
if not os.path.isdir(lowercase_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) )
return
os.makedirs(lowercase_ , exist_ok=lowercase_ )
__UpperCAmelCase : Union[str, Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = 1
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(lowercase_ , lowercase_ )
__UpperCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer(
lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , )
__UpperCAmelCase : List[str] = True if config.feat_extract_norm == '''layer''' else False
__UpperCAmelCase : List[str] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , )
__UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ )
processor.save_pretrained(lowercase_ )
__UpperCAmelCase : Optional[Any] = WavaVecaForCTC(lowercase_ )
else:
__UpperCAmelCase : Optional[int] = WavaVecaForPreTraining(lowercase_ )
if is_finetuned or is_seq_class:
__UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__UpperCAmelCase : Dict = argparse.Namespace(task='''audio_pretraining''' )
__UpperCAmelCase : Optional[Any] = fairseq.tasks.setup_task(lowercase_ )
__UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase_ )
__UpperCAmelCase : Dict = model[0].eval()
recursively_load_weights(lowercase_ , lowercase_ , not is_finetuned )
hf_wavavec.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 719 |
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowerCAmelCase = generate_large_matrix()
lowerCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid )
assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[Any] = len(lowercase_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase : List[Any] = (left + right) // 2
__UpperCAmelCase : Dict = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase : Dict = mid + 1
else:
__UpperCAmelCase : Optional[Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = len(grid[0] )
for i in range(len(lowercase_ ) ):
__UpperCAmelCase : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowercase_ ) * len(grid[0] )) - total
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
for row in grid:
for i, number in enumerate(lowercase_ ):
if number < 0:
total += len(lowercase_ ) - i
break
return total
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase : Tuple = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 675 | 0 |
import heapq as hq
import math
from collections.abc import Iterator
class lowerCamelCase :
def __init__( self , lowercase__):
__UpperCAmelCase : List[str] = str(id_)
__UpperCAmelCase : str = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : str = []
__UpperCAmelCase : Union[str, Any] = {} # {vertex:distance}
def __lt__( self , lowercase__):
return self.key < other.key
def __repr__( self):
return self.id
def A( self , lowercase__):
self.neighbors.append(lowercase__)
def A( self , lowercase__ , lowercase__):
__UpperCAmelCase : int = weight
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , lowercase_ )
graph[b - 1].add_edge(graph[a - 1] , lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : int = []
for u in graph:
__UpperCAmelCase : List[str] = math.inf
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Tuple = graph[:]
while q:
__UpperCAmelCase : Any = min(lowercase_ )
q.remove(lowercase_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__UpperCAmelCase : List[Any] = u
__UpperCAmelCase : List[str] = u.edges[v.id]
for i in range(1 , len(lowercase_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Iterator[tuple]:
'''simple docstring'''
for u in graph:
__UpperCAmelCase : Any = math.inf
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Any = list(lowercase_ )
hq.heapify(lowercase_ )
while h:
__UpperCAmelCase : Union[str, Any] = hq.heappop(lowercase_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__UpperCAmelCase : Any = u
__UpperCAmelCase : Dict = u.edges[v.id]
hq.heapify(lowercase_ )
for i in range(1 , len(lowercase_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 675 | 0 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
__UpperCAmelCase : str = set()
__UpperCAmelCase : Any = []
def parse_line(lowercase_ ):
for line in fp:
if isinstance(lowercase_ , lowercase_ ):
__UpperCAmelCase : List[Any] = line.decode('''UTF-8''' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(''' ''' ):
# process a single warning and move it to `selected_warnings`.
if len(lowercase_ ) > 0:
__UpperCAmelCase : Any = '''\n'''.join(lowercase_ )
# Only keep the warnings specified in `targets`
if any(f": {x}: " in warning for x in targets ):
selected_warnings.add(lowercase_ )
buffer.clear()
continue
else:
__UpperCAmelCase : str = line.strip()
buffer.append(lowercase_ )
if from_gh:
for filename in os.listdir(lowercase_ ):
__UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , lowercase_ )
if not os.path.isdir(lowercase_ ):
# read the file
if filename != "warnings.txt":
continue
with open(lowercase_ ) as fp:
parse_line(lowercase_ )
else:
try:
with zipfile.ZipFile(lowercase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowercase_ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(lowercase_ ) as fp:
parse_line(lowercase_ )
except Exception:
logger.warning(
f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." )
return selected_warnings
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = set()
__UpperCAmelCase : Optional[Any] = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) )
return selected_warnings
if __name__ == "__main__":
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
'''simple docstring'''
return values.split(''',''' )
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
# optional parameters
parser.add_argument(
"""--targets""",
default="""DeprecationWarning,UserWarning,FutureWarning""",
type=list_str,
help="""Comma-separated list of target warning(s) which we want to extract.""",
)
parser.add_argument(
"""--from_gh""",
action="""store_true""",
help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""",
)
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("""=""" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
lowerCAmelCase = extract_warnings(args.output_dir, args.targets)
lowerCAmelCase = sorted(selected_warnings)
with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 721 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ):
__UpperCAmelCase : Tuple = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = max_position_embeddings
__UpperCAmelCase : Tuple = type_vocab_size
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : Dict = num_choices
__UpperCAmelCase : Union[str, Any] = scope
def A( self):
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices)
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A( self):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__)
__UpperCAmelCase : List[Any] = model(lowercase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
__UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : str = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
# create attention mask
__UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
__UpperCAmelCase : int = self.seq_length // 2
__UpperCAmelCase : Any = 0
# first forward pass
__UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size)
# change a random masked slice from input_ids
__UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1
__UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1)
__UpperCAmelCase : int = random_other_next_tokens
# append to next input_ids and attn_mask
__UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , )
# get two different outputs
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
# select random slice
__UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval()
__UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
# first forward pass
__UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size)
__UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2)
# append to next input_ids and
__UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1)
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[
'''last_hidden_state'''
]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False):
__UpperCAmelCase : int = BioGptForCausalLM(lowercase__)
model.to(lowercase__)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def A( self , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[int] = BioGptModel(lowercase__)
__UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[Any] = self.num_labels
__UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = config_and_inputs
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else ()
_lowerCAmelCase : Union[str, Any] = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCAmelCase : List[Any] = False
def A( self):
__UpperCAmelCase : int = BioGptModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
def A( self):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : Dict = type
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__)
@slow
def A( self):
__UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
__UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : List[str] = '''left'''
# Define PAD Token = EOS Token = 50256
__UpperCAmelCase : List[Any] = tokenizer.eos_token
__UpperCAmelCase : Tuple = model.config.eos_token_id
# use different length sentences to test batching
__UpperCAmelCase : Optional[Any] = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__)
__UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__)
__UpperCAmelCase : int = model.generate(
input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , )
__UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__)
__UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
__UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings)
__UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : str = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence])
@slow
def A( self):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = 3
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : int = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = 3
__UpperCAmelCase : Union[str, Any] = '''multi_label_classification'''
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]])
__UpperCAmelCase : int = model(lowercase__)[0]
__UpperCAmelCase : Any = 4_2_3_8_4
__UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size))
self.assertEqual(output.shape , lowercase__)
__UpperCAmelCase : Dict = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4))
@slow
def A( self):
__UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
torch.manual_seed(0)
__UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__)
__UpperCAmelCase : List[str] = model.generate(
**lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , )
__UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : int = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(lowercase__ , lowercase__)
| 675 | 0 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=1024 , lowercase_=1024 , lowercase_=False , **lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ )
__UpperCAmelCase : Optional[Any] = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''train''' , **lowercase_ )
__UpperCAmelCase : int = tok.pad_token_id
def get_lens(lowercase_ ):
__UpperCAmelCase : Tuple = tqdm(
DataLoader(lowercase_ , batch_size=512 , num_workers=8 , shuffle=lowercase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
__UpperCAmelCase : Any = []
for batch in dl:
__UpperCAmelCase : str = batch['''input_ids'''].ne(lowercase_ ).sum(1 ).tolist()
__UpperCAmelCase : List[str] = batch['''labels'''].ne(lowercase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase_ , lowercase_ ):
max_lens.append(max(lowercase_ , lowercase_ ) )
else:
max_lens.extend(lowercase_ )
return max_lens
__UpperCAmelCase : List[Any] = get_lens(lowercase_ )
__UpperCAmelCase : Tuple = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''val''' , **lowercase_ )
__UpperCAmelCase : str = get_lens(lowercase_ )
pickle_save(lowercase_ , train_ds.len_file )
pickle_save(lowercase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 700 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = '''bert'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , **lowercase__)
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = position_embedding_type
__UpperCAmelCase : Optional[Any] = use_cache
__UpperCAmelCase : List[Any] = classifier_dropout
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
])
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
__UpperCAmelCase : Optional[int] = 6
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : Union[str, Any] = 1901
__UpperCAmelCase : Dict = 0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
__UpperCAmelCase : int = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
__UpperCAmelCase : Dict = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
__UpperCAmelCase : Dict = day - days_per_month[month - 2]
if month > 12:
year += 1
__UpperCAmelCase : str = 1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 701 |
from random import shuffle
import tensorflow as tf
from numpy import array
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
__UpperCAmelCase : str = len(vectors[0] )
# Will help select random centroids from among the available vectors
__UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__UpperCAmelCase : Union[str, Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__UpperCAmelCase : str = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__UpperCAmelCase : List[str] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
__UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] )
__UpperCAmelCase : Tuple = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__UpperCAmelCase : Dict = tf.placeholder('''int32''' )
__UpperCAmelCase : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] )
__UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__UpperCAmelCase : Optional[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__UpperCAmelCase : Union[str, Any] = 100
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
__UpperCAmelCase : List[str] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__UpperCAmelCase : List[Any] = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__UpperCAmelCase : Optional[Any] = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
__UpperCAmelCase : Optional[Any] = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__UpperCAmelCase : str = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__UpperCAmelCase : List[str] = sess.run(lowercase_ )
__UpperCAmelCase : Tuple = sess.run(lowercase_ )
return centroids, assignments
| 675 | 0 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
lowerCAmelCase = [
"""Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the"""
""" final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe"""
""" depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""",
"""The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal"""
""" accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's"""
""" founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the"""
""" body.""",
"""Amnesty International releases its annual report on the death penalty. The report catalogs the use of"""
""" state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the"""
""" world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital"""
""" punishment.""",
]
lowerCAmelCase = [
"""Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ."""
""" Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz"""
""" had informed his Lufthansa training school of an episode of severe depression, airline says .""",
"""Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ."""
""" Israel and the United States opposed the move, which could open the door to war crimes investigations against"""
""" Israelis .""",
"""Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to"""
""" death . Organization claims that governments around the world are using the threat of terrorism to advance"""
""" executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death"""
""" sentences up by 28% .""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(lowercase_ , lowercase_ )
__UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = '''rougeLsum'''
__UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k]
__UpperCAmelCase : str = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k]
assert score > score_no_sep
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : str = ['''rouge1''', '''rouge2''', '''rougeL''']
__UpperCAmelCase : Optional[Any] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ )
__UpperCAmelCase : Any = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ )
assert score_sep == score_no_sep
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : int = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
__UpperCAmelCase : List[str] = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ ) == calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ )
def __SCREAMING_SNAKE_CASE ( ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[str] = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
__UpperCAmelCase : List[Any] = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
__UpperCAmelCase : Union[str, Any] = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] , newline_sep=lowercase_ )['''rougeLsum''']
__UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
__UpperCAmelCase : Dict = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) )
assert isinstance(lowercase_ , lowercase_ )
__UpperCAmelCase : Tuple = calculate_rouge_path(
data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=lowercase_ )
assert isinstance(lowercase_ , lowercase_ )
| 702 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if not nums:
return 0
__UpperCAmelCase : int = nums[0]
__UpperCAmelCase : Optional[Any] = 0
for num in nums[1:]:
__UpperCAmelCase , __UpperCAmelCase : int = (
max_excluding + num,
max(lowercase_ , lowercase_ ),
)
return max(lowercase_ , lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
from __future__ import annotations
from typing import Any
class lowerCamelCase :
def __init__( self , lowercase__ = 6):
__UpperCAmelCase : Node | None = None
__UpperCAmelCase : Node | None = None
self.create_linked_list(lowercase__)
def A( self , lowercase__):
__UpperCAmelCase : int = Node()
__UpperCAmelCase : int = current_node
__UpperCAmelCase : Optional[int] = current_node
__UpperCAmelCase : Optional[Any] = current_node
for _ in range(1 , lowercase__):
__UpperCAmelCase : Any = Node()
__UpperCAmelCase : Union[str, Any] = current_node
__UpperCAmelCase : Any = previous_node
__UpperCAmelCase : Any = current_node
__UpperCAmelCase : Optional[Any] = self.front
__UpperCAmelCase : Optional[int] = previous_node
def A( self):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A( self):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A( self , lowercase__):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
__UpperCAmelCase : List[Any] = self.rear.next
if self.rear:
__UpperCAmelCase : str = data
def A( self):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
__UpperCAmelCase : Tuple = self.front.data
__UpperCAmelCase : Dict = None
return data
__UpperCAmelCase : int = self.front
__UpperCAmelCase : Dict = old_front.next
__UpperCAmelCase : Union[str, Any] = old_front.data
__UpperCAmelCase : Dict = None
return data
def A( self):
if self.is_empty():
raise Exception('''Empty Queue''')
def A( self):
if self.rear and self.rear.next == self.front:
raise Exception('''Full Queue''')
class lowerCamelCase :
def __init__( self):
__UpperCAmelCase : Any | None = None
__UpperCAmelCase : Node | None = None
__UpperCAmelCase : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@require_torch
def A( self):
__UpperCAmelCase : str = pipeline(
task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''')
__UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
@slow
@require_torch
def A( self):
__UpperCAmelCase : int = pipeline(
task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , )
# This is an audio of a dog
__UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
] , )
__UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
__UpperCAmelCase : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5)
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
| 675 | 0 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
lowerCAmelCase = """src/transformers"""
lowerCAmelCase = """docs/source/en/tasks"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCAmelCase : int = f.readlines()
# Find the start prompt.
__UpperCAmelCase : str = 0
while not lines[start_index].startswith(lowercase_ ):
start_index += 1
start_index += 1
__UpperCAmelCase : str = start_index
while not lines[end_index].startswith(lowercase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
lowerCAmelCase = {
"""asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"""audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"""language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"""image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"""masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"""multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"""object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"""question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"""semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"""sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"""summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"""translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"""document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"""monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
lowerCAmelCase = {
"""summarization.md""": ("""nllb""",),
"""translation.md""": ("""nllb""",),
}
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide]
__UpperCAmelCase : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowercase_ , set() )
__UpperCAmelCase : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> int:
'''simple docstring'''
__UpperCAmelCase : Tuple = _find_text_in_file(
filename=os.path.join(lowercase_ , lowercase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , )
__UpperCAmelCase : int = get_model_list_for_task(lowercase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
''' to fix this.''' )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
lowerCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 704 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = '''M-CLIP'''
def __init__( self , lowercase__=1_0_2_4 , lowercase__=7_6_8 , **lowercase__):
__UpperCAmelCase : Optional[int] = transformerDimSize
__UpperCAmelCase : Optional[int] = imageDimSize
super().__init__(**lowercase__)
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = MCLIPConfig
def __init__( self , lowercase__ , *lowercase__ , **lowercase__):
super().__init__(lowercase__ , *lowercase__ , **lowercase__)
__UpperCAmelCase : int = XLMRobertaModel(lowercase__)
__UpperCAmelCase : Optional[Any] = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims)
def A( self , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = self.transformer(input_ids=lowercase__ , attention_mask=lowercase__)[0]
__UpperCAmelCase : Any = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
return self.LinearTransformation(lowercase__), embs
| 705 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 675 | 0 |
from torch import nn
class lowerCamelCase ( nn.Module ):
def __init__( self , lowercase__ , lowercase__):
super().__init__()
__UpperCAmelCase : str = class_size
__UpperCAmelCase : Union[str, Any] = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
__UpperCAmelCase : List[str] = nn.Linear(lowercase__ , lowercase__)
def A( self , lowercase__):
# hidden_state = nn.functional.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
__UpperCAmelCase : Union[str, Any] = self.mlp(lowercase__)
return logits
| 706 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 675 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : List[str] = tempfile.mkdtemp()
# fmt: off
__UpperCAmelCase : Tuple = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
__UpperCAmelCase : Dict = dict(zip(lowercase__ , range(len(lowercase__))))
__UpperCAmelCase : Dict = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
__UpperCAmelCase : Tuple = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
__UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp:
fp.write(json.dumps(lowercase__) + '''\n''')
with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp:
fp.write('''\n'''.join(lowercase__))
__UpperCAmelCase : List[str] = {
'''do_resize''': True,
'''size''': 2_0,
'''do_center_crop''': True,
'''crop_size''': 1_8,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__UpperCAmelCase : Any = os.path.join(self.tmpdirname , lowercase__)
with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp:
json.dump(lowercase__ , lowercase__)
def A( self , **lowercase__):
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__)
def A( self , **lowercase__):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase__)
def A( self , **lowercase__):
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__)
def A( self):
shutil.rmtree(self.tmpdirname)
def A( self):
__UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)]
__UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1)) for x in image_inputs]
return image_inputs
def A( self):
__UpperCAmelCase : Any = self.get_tokenizer()
__UpperCAmelCase : Dict = self.get_rust_tokenizer()
__UpperCAmelCase : str = self.get_image_processor()
__UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
processor_slow.save_pretrained(self.tmpdirname)
__UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__)
__UpperCAmelCase : List[str] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
processor_fast.save_pretrained(self.tmpdirname)
__UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowercase__)
self.assertIsInstance(processor_fast.tokenizer , lowercase__)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowercase__)
self.assertIsInstance(processor_fast.image_processor , lowercase__)
def A( self):
__UpperCAmelCase : Any = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
__UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''')
__UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=lowercase__)
__UpperCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowercase__)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowercase__)
def A( self):
__UpperCAmelCase : int = self.get_image_processor()
__UpperCAmelCase : List[str] = self.get_tokenizer()
__UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
__UpperCAmelCase : Tuple = self.prepare_image_inputs()
__UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''np''')
__UpperCAmelCase : Tuple = processor(images=lowercase__ , return_tensors='''np''')
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.get_image_processor()
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : Any = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
__UpperCAmelCase : List[str] = '''lower newer'''
__UpperCAmelCase : Dict = processor(text=lowercase__ , return_tensors='''np''')
__UpperCAmelCase : Optional[int] = tokenizer(lowercase__ , return_tensors='''np''')
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist())
def A( self):
__UpperCAmelCase : List[Any] = self.get_image_processor()
__UpperCAmelCase : Dict = self.get_tokenizer()
__UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
__UpperCAmelCase : Union[str, Any] = '''lower newer'''
__UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs()
__UpperCAmelCase : Optional[Any] = processor(text=lowercase__ , images=lowercase__)
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase__):
processor()
def A( self):
__UpperCAmelCase : Tuple = '''google/owlvit-base-patch32'''
__UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__)
__UpperCAmelCase : Dict = ['''cat''', '''nasa badge''']
__UpperCAmelCase : List[Any] = processor(text=lowercase__)
__UpperCAmelCase : Any = 1_6
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask'''])
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length))
# test if it raises when no input is passed
with pytest.raises(lowercase__):
processor()
def A( self):
__UpperCAmelCase : List[str] = '''google/owlvit-base-patch32'''
__UpperCAmelCase : Optional[Any] = OwlViTProcessor.from_pretrained(lowercase__)
__UpperCAmelCase : Optional[int] = [['''cat''', '''nasa badge'''], ['''person''']]
__UpperCAmelCase : Any = processor(text=lowercase__)
__UpperCAmelCase : int = 1_6
__UpperCAmelCase : int = len(lowercase__)
__UpperCAmelCase : int = max([len(lowercase__) for texts in input_texts])
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask'''])
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length))
# test if it raises when no input is passed
with pytest.raises(lowercase__):
processor()
def A( self):
__UpperCAmelCase : List[Any] = '''google/owlvit-base-patch32'''
__UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(lowercase__)
__UpperCAmelCase : Optional[int] = ['''cat''', '''nasa badge''']
__UpperCAmelCase : List[Any] = processor(text=lowercase__)
__UpperCAmelCase : Optional[int] = 1_6
__UpperCAmelCase : Optional[Any] = inputs['''input_ids''']
__UpperCAmelCase : str = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask'''])
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length))
self.assertListEqual(list(input_ids[0]) , predicted_ids[0])
self.assertListEqual(list(input_ids[1]) , predicted_ids[1])
def A( self):
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
__UpperCAmelCase : Optional[int] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
__UpperCAmelCase : str = self.prepare_image_inputs()
__UpperCAmelCase : Dict = self.prepare_image_inputs()
__UpperCAmelCase : int = processor(images=lowercase__ , query_images=lowercase__)
self.assertListEqual(list(inputs.keys()) , ['''query_pixel_values''', '''pixel_values'''])
# test if it raises when no input is passed
with pytest.raises(lowercase__):
processor()
def A( self):
__UpperCAmelCase : Tuple = self.get_image_processor()
__UpperCAmelCase : int = self.get_tokenizer()
__UpperCAmelCase : List[Any] = OwlViTProcessor(tokenizer=lowercase__ , image_processor=lowercase__)
__UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCAmelCase : int = processor.batch_decode(lowercase__)
__UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
| 707 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
__UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
if latents is None:
__UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Union[str, Any] = latents.to(lowercase__)
__UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A( self , lowercase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__)
def A( self , lowercase__=0):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
__UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=lowercase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__)
# We'll offload the last model manually.
__UpperCAmelCase : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A( self):
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : str = self._execution_device
__UpperCAmelCase : List[str] = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0)
__UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
__UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
self.scheduler.set_timesteps(lowercase__ , device=lowercase__)
__UpperCAmelCase : List[Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.movq.config.latent_channels
__UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Union[str, Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint}
__UpperCAmelCase : Any = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
__UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Dict = image * 0.5 + 0.5
__UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1)
__UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class lowerCamelCase :
_lowerCAmelCase : str = field(
metadata={'''help''': '''The output directory where the model will be written.'''} , )
_lowerCAmelCase : str = field(
metadata={
'''help''': (
'''The encoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train an encoder model from scratch.'''
)
} , )
_lowerCAmelCase : str = field(
metadata={
'''help''': (
'''The decoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train a decoder model from scratch.'''
)
} , )
_lowerCAmelCase : Optional[str] = field(
default=_UpperCamelCase , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} )
_lowerCAmelCase : Optional[str] = field(
default=_UpperCamelCase , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} )
def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments,) )
(__UpperCAmelCase ) : Optional[Any] = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
__UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
__UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
__UpperCAmelCase : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
__UpperCAmelCase : str = True
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowercase_ , decoder_config=lowercase_ , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
__UpperCAmelCase : Tuple = decoder_config.decoder_start_token_id
__UpperCAmelCase : str = decoder_config.pad_token_id
if decoder_start_token_id is None:
__UpperCAmelCase : Optional[Any] = decoder_config.bos_token_id
if pad_token_id is None:
__UpperCAmelCase : Any = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
__UpperCAmelCase : Any = decoder_config.eos_token_id
__UpperCAmelCase : Dict = decoder_start_token_id
__UpperCAmelCase : Optional[int] = pad_token_id
__UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
__UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
__UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 708 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 675 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 709 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 675 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : int = GPTSanJapaneseTokenizer
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Tuple = {'''do_clean_text''': False, '''add_prefix_space''': False}
def A( self):
super().setUp()
# fmt: off
__UpperCAmelCase : Union[str, Any] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
__UpperCAmelCase : str = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
__UpperCAmelCase : Union[str, Any] = {'''unk_token''': '''<unk>'''}
__UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''])
__UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''])
with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
with open(self.emoji_file , '''w''') as emoji_writer:
emoji_writer.write(json.dumps(lowercase__))
def A( self , **lowercase__):
kwargs.update(self.special_tokens_map)
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__)
def A( self , lowercase__):
__UpperCAmelCase : Optional[Any] = '''こんにちは、世界。 \nこんばんは、㔺界。😀'''
__UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def A( self , lowercase__):
__UpperCAmelCase : Optional[Any] = self.get_input_output_texts(lowercase__)
__UpperCAmelCase : Tuple = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__)
__UpperCAmelCase : Dict = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__)
return text, ids
def A( self):
pass # TODO add if relevant
def A( self):
pass # TODO add if relevant
def A( self):
pass # TODO add if relevant
def A( self):
__UpperCAmelCase : List[Any] = self.get_tokenizer()
# Testing tokenization
__UpperCAmelCase : Any = '''こんにちは、世界。 こんばんは、㔺界。'''
__UpperCAmelCase : List[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
__UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
# Testing conversion to ids without special tokens
__UpperCAmelCase : List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
__UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
# Testing conversion to ids with special tokens
__UpperCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token]
__UpperCAmelCase : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9]
__UpperCAmelCase : Dict = tokenizer.convert_tokens_to_ids(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
def A( self):
__UpperCAmelCase : str = self.get_tokenizer()
# Testing tokenization
__UpperCAmelCase : List[str] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
__UpperCAmelCase : Optional[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。'''
__UpperCAmelCase : Any = tokenizer.encode(lowercase__)
__UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__)
self.assertEqual(lowercase__ , lowercase__)
@slow
def A( self):
__UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
# Testing tokenization
__UpperCAmelCase : Dict = '''こんにちは、世界。'''
__UpperCAmelCase : List[str] = '''こんばんは、㔺界。😀'''
__UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。こんばんは、世界。😀'''
__UpperCAmelCase : Optional[Any] = tokenizer.encode(prefix_text + input_text)
__UpperCAmelCase : int = tokenizer.encode('''''' , prefix_text=prefix_text + input_text)
__UpperCAmelCase : List[Any] = tokenizer.encode(lowercase__ , prefix_text=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(lowercase__)
__UpperCAmelCase : Tuple = tokenizer.decode(lowercase__)
__UpperCAmelCase : Optional[Any] = tokenizer.decode(lowercase__)
self.assertEqual(lowercase__ , lowercase__)
self.assertEqual(lowercase__ , lowercase__)
self.assertEqual(lowercase__ , lowercase__)
@slow
def A( self):
__UpperCAmelCase : int = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
# Testing tokenization
__UpperCAmelCase : Tuple = '''こんにちは、世界。'''
__UpperCAmelCase : List[Any] = '''こんばんは、㔺界。😀'''
__UpperCAmelCase : Union[str, Any] = len(tokenizer.encode(lowercase__)) - 2
__UpperCAmelCase : Tuple = len(tokenizer.encode(lowercase__)) - 2
__UpperCAmelCase : int = [1] + [0] * (len_prefix + len_text + 1)
__UpperCAmelCase : Optional[Any] = [1] * (len_prefix + len_text + 1) + [0]
__UpperCAmelCase : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
__UpperCAmelCase : List[Any] = tokenizer(prefix_text + input_text).token_type_ids
__UpperCAmelCase : int = tokenizer('''''' , prefix_text=prefix_text + input_text).token_type_ids
__UpperCAmelCase : int = tokenizer(lowercase__ , prefix_text=lowercase__).token_type_ids
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
@slow
def A( self):
__UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
__UpperCAmelCase : Union[str, Any] = tokenizer.encode('''あンいワ''')
__UpperCAmelCase : str = tokenizer.encode('''''' , prefix_text='''あンいワ''')
__UpperCAmelCase : Optional[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''')
self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__))
self.assertEqual(tokenizer.decode(lowercase__) , tokenizer.decode(lowercase__))
self.assertNotEqual(lowercase__ , lowercase__)
self.assertNotEqual(lowercase__ , lowercase__)
self.assertEqual(x_token_a[1] , x_token_a[-1]) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3]) # SEG token
@slow
def A( self):
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
__UpperCAmelCase : List[str] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
__UpperCAmelCase : List[Any] = tokenizer(lowercase__ , padding=lowercase__)
__UpperCAmelCase : Tuple = tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__)
# fmt: off
__UpperCAmelCase : str = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]]
__UpperCAmelCase : List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
__UpperCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , lowercase__)
self.assertListEqual(x_token.token_type_ids , lowercase__)
self.assertListEqual(x_token.attention_mask , lowercase__)
self.assertListEqual(x_token_a.input_ids , lowercase__)
self.assertListEqual(x_token_a.token_type_ids , lowercase__)
self.assertListEqual(x_token_a.attention_mask , lowercase__)
def A( self):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def A( self):
# tokenizer has no padding token
pass
| 710 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ )
if matches:
__UpperCAmelCase : Any = float(matches[1] )
__UpperCAmelCase : Optional[Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCAmelCase : Dict = 1001
__UpperCAmelCase : str = '''imagenet-1k-id2label.json'''
__UpperCAmelCase : List[str] = '''huggingface/label-files'''
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = '''background'''
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ )
# Load 🤗 model
__UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCAmelCase : List[str] = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCAmelCase : Union[str, Any] = model(**lowercase_ )
__UpperCAmelCase : Optional[Any] = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__UpperCAmelCase : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowercase_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCAmelCase : List[str] = '''google/''' + model_name
image_processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ = 50000000 ) -> int:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = set()
__UpperCAmelCase : int = int((limit - 24) ** (1 / 2) )
__UpperCAmelCase : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase_ ) ) )
for primea in primes:
__UpperCAmelCase : List[Any] = primea * primea
for primea in primes:
__UpperCAmelCase : List[str] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
__UpperCAmelCase : Dict = primea * primea * primea * primea
__UpperCAmelCase : Optional[Any] = square + cube + tetr
if total >= limit:
break
ret.add(lowercase_ )
return len(lowercase_ )
if __name__ == "__main__":
print(F'{solution() = }')
| 712 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b"
__UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:]
__UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=0 , ):
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : List[str] = seq_length
__UpperCAmelCase : List[str] = is_training
__UpperCAmelCase : Optional[Any] = use_input_mask
__UpperCAmelCase : int = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : int = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : Tuple = attention_probs_dropout_prob
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : str = type_vocab_size
__UpperCAmelCase : List[str] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : Tuple = num_labels
__UpperCAmelCase : int = num_choices
__UpperCAmelCase : Optional[Any] = scope
__UpperCAmelCase : List[str] = projection_dim
def A( self):
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCAmelCase : Tuple = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
__UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length])
__UpperCAmelCase : Any = None
if self.use_token_type_ids:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__UpperCAmelCase : int = None
__UpperCAmelCase : int = None
__UpperCAmelCase : Dict = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices)
__UpperCAmelCase : Dict = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
__UpperCAmelCase : int = DPRConfig(projection_dim=self.projection_dim , **config.to_dict())
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : int = TFDPRContextEncoder(config=lowercase__)
__UpperCAmelCase : Any = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
__UpperCAmelCase : Any = model(lowercase__ , token_type_ids=lowercase__)
__UpperCAmelCase : Union[str, Any] = model(lowercase__)
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[str] = TFDPRQuestionEncoder(config=lowercase__)
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
__UpperCAmelCase : str = model(lowercase__ , token_type_ids=lowercase__)
__UpperCAmelCase : Optional[Any] = model(lowercase__)
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : List[Any] = TFDPRReader(config=lowercase__)
__UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
__UpperCAmelCase
) : List[Any] = config_and_inputs
__UpperCAmelCase : List[str] = {'''input_ids''': input_ids}
return config, inputs_dict
@require_tf
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
_lowerCAmelCase : Tuple = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {}
_lowerCAmelCase : List[str] = False
_lowerCAmelCase : List[Any] = False
_lowerCAmelCase : List[str] = False
_lowerCAmelCase : Dict = False
_lowerCAmelCase : Tuple = False
def A( self):
__UpperCAmelCase : int = TFDPRModelTester(self)
__UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*lowercase__)
def A( self):
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*lowercase__)
@slow
def A( self):
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Tuple = TFDPRContextEncoder.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = TFDPRContextEncoder.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[Any] = TFDPRQuestionEncoder.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[Any] = TFDPRReader.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
@require_tf
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''')
__UpperCAmelCase : List[Any] = tf.constant(
[[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]]) # [CLS] hello, is my dog cute? [SEP]
__UpperCAmelCase : Dict = model(lowercase__)[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
__UpperCAmelCase : Dict = tf.constant(
[
[
0.0_3_2_3_6_2_5_3,
0.1_2_7_5_3_3_3_5,
0.1_6_8_1_8_5_0_9,
0.0_0_2_7_9_7_8_6,
0.3_8_9_6_9_3_3,
0.2_4_2_6_4_9_4_5,
0.2_1_7_8_9_7_1,
-0.0_2_3_3_5_2_2_7,
-0.0_8_4_8_1_9_5_9,
-0.1_4_3_2_4_1_1_7,
]
])
self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1e-4))
| 713 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 675 | 0 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 714 |
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 675 | 0 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets'''
__UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
__UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
__UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 715 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 675 | 0 |
import os
import sys
import unittest
lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCAmelCase = os.path.join(git_repo_path, """src""", """transformers""")
lowerCAmelCase = """
{0} = None
"""
lowerCAmelCase = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
"""
lowerCAmelCase = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : Any = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''')
self.assertIsNone(lowercase__)
__UpperCAmelCase : Any = find_backend(''' if not is_tokenizers_available():''')
self.assertEqual(lowercase__ , '''tokenizers''')
__UpperCAmelCase : Dict = find_backend(''' if not is_tensorflow_text_available():''')
self.assertEqual(lowercase__ , '''tensorflow_text''')
__UpperCAmelCase : Optional[Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''')
self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers''')
__UpperCAmelCase : Optional[int] = find_backend(
''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''')
self.assertEqual(lowercase__ , '''sentencepiece_and_tensorflow_text''')
__UpperCAmelCase : List[Any] = find_backend(
''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''')
self.assertEqual(lowercase__ , '''sentencepiece_and_tokenizers_and_vision''')
def A( self):
__UpperCAmelCase : Optional[Any] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , lowercase__)
self.assertIn('''tensorflow_text''' , lowercase__)
self.assertIn('''sentencepiece_and_tokenizers''' , lowercase__)
# Likewise, we can't assert on the exact content of a key
self.assertIn('''BertModel''' , objects['''torch'''])
self.assertIn('''TFBertModel''' , objects['''tf'''])
self.assertIn('''FlaxBertModel''' , objects['''flax'''])
self.assertIn('''BertModel''' , objects['''torch'''])
self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''])
self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''])
def A( self):
__UpperCAmelCase : int = create_dummy_object('''CONSTANT''' , '''\'torch\'''')
self.assertEqual(lowercase__ , '''\nCONSTANT = None\n''')
__UpperCAmelCase : List[str] = create_dummy_object('''function''' , '''\'torch\'''')
self.assertEqual(
lowercase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''')
__UpperCAmelCase : str = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
'''
__UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''')
self.assertEqual(lowercase__ , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
'''
__UpperCAmelCase : Union[str, Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']})
self.assertEqual(dummy_files['''torch'''] , lowercase__)
| 716 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
if n_element < 1:
__UpperCAmelCase : str = ValueError('''a should be a positive number''' )
raise my_error
__UpperCAmelCase : Any = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0)
__UpperCAmelCase : int = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 675 | 0 |
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
__UpperCAmelCase : List[Any] = value_function
__UpperCAmelCase : List[Any] = unet
__UpperCAmelCase : Optional[Any] = scheduler
__UpperCAmelCase : int = env
__UpperCAmelCase : Optional[int] = env.get_dataset()
__UpperCAmelCase : List[Any] = {}
for key in self.data.keys():
try:
__UpperCAmelCase : Union[str, Any] = self.data[key].mean()
except: # noqa: E722
pass
__UpperCAmelCase : Optional[int] = {}
for key in self.data.keys():
try:
__UpperCAmelCase : List[Any] = self.data[key].std()
except: # noqa: E722
pass
__UpperCAmelCase : Tuple = env.observation_space.shape[0]
__UpperCAmelCase : List[str] = env.action_space.shape[0]
def A( self , lowercase__ , lowercase__):
return (x_in - self.means[key]) / self.stds[key]
def A( self , lowercase__ , lowercase__):
return x_in * self.stds[key] + self.means[key]
def A( self , lowercase__):
if type(lowercase__) is dict:
return {k: self.to_torch(lowercase__) for k, v in x_in.items()}
elif torch.is_tensor(lowercase__):
return x_in.to(self.unet.device)
return torch.tensor(lowercase__ , device=self.unet.device)
def A( self , lowercase__ , lowercase__ , lowercase__):
for key, val in cond.items():
__UpperCAmelCase : Optional[int] = val.clone()
return x_in
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = x.shape[0]
__UpperCAmelCase : Union[str, Any] = None
for i in tqdm.tqdm(self.scheduler.timesteps):
# create batch of timesteps to pass into model
__UpperCAmelCase : Dict = torch.full((batch_size,) , lowercase__ , device=self.unet.device , dtype=torch.long)
for _ in range(lowercase__):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
__UpperCAmelCase : Optional[int] = self.value_function(x.permute(0 , 2 , 1) , lowercase__).sample
__UpperCAmelCase : Dict = torch.autograd.grad([y.sum()] , [x])[0]
__UpperCAmelCase : Union[str, Any] = self.scheduler._get_variance(lowercase__)
__UpperCAmelCase : str = torch.exp(0.5 * posterior_variance)
__UpperCAmelCase : Tuple = model_std * grad
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : List[Any] = x.detach()
__UpperCAmelCase : Dict = x + scale * grad
__UpperCAmelCase : str = self.reset_xa(lowercase__ , lowercase__ , self.action_dim)
__UpperCAmelCase : int = self.unet(x.permute(0 , 2 , 1) , lowercase__).sample.permute(0 , 2 , 1)
# TODO: verify deprecation of this kwarg
__UpperCAmelCase : List[Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , predict_epsilon=lowercase__)['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
__UpperCAmelCase : List[Any] = self.reset_xa(lowercase__ , lowercase__ , self.action_dim)
__UpperCAmelCase : Dict = self.to_torch(lowercase__)
return x, y
def __call__( self , lowercase__ , lowercase__=6_4 , lowercase__=3_2 , lowercase__=2 , lowercase__=0.1):
# normalize the observations and create batch dimension
__UpperCAmelCase : Any = self.normalize(lowercase__ , '''observations''')
__UpperCAmelCase : Any = obs[None].repeat(lowercase__ , axis=0)
__UpperCAmelCase : Optional[Any] = {0: self.to_torch(lowercase__)}
__UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
__UpperCAmelCase : Any = randn_tensor(lowercase__ , device=self.unet.device)
__UpperCAmelCase : Any = self.reset_xa(lowercase__ , lowercase__ , self.action_dim)
__UpperCAmelCase : List[Any] = self.to_torch(lowercase__)
# run the diffusion process
__UpperCAmelCase : Optional[int] = self.run_diffusion(lowercase__ , lowercase__ , lowercase__ , lowercase__)
# sort output trajectories by value
__UpperCAmelCase : Dict = y.argsort(0 , descending=lowercase__).squeeze()
__UpperCAmelCase : str = x[sorted_idx]
__UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim]
__UpperCAmelCase : int = actions.detach().cpu().numpy()
__UpperCAmelCase : Tuple = self.de_normalize(lowercase__ , key='''actions''')
# select the action with the highest value
if y is not None:
__UpperCAmelCase : Tuple = 0
else:
# if we didn't run value guiding, select a random action
__UpperCAmelCase : str = np.random.randint(0 , lowercase__)
__UpperCAmelCase : Union[str, Any] = denorm_actions[selected_index, 0]
return denorm_actions
| 717 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = '''realm'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__)
# Common config
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Optional[Any] = retriever_proj_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = num_candidates
__UpperCAmelCase : Dict = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Any = layer_norm_eps
# Reader config
__UpperCAmelCase : Optional[int] = span_hidden_size
__UpperCAmelCase : Dict = max_span_width
__UpperCAmelCase : int = reader_layer_norm_eps
__UpperCAmelCase : int = reader_beam_size
__UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
__UpperCAmelCase : Optional[int] = num_block_records
__UpperCAmelCase : Optional[Any] = searcher_beam_size
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
'''simple docstring'''
if length <= 0 or not isinstance(lowercase_ , lowercase_ ):
raise ValueError('''Length must be a positive integer.''' )
return [n * (2 * n - 1) for n in range(lowercase_ )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 718 |
import pytest
import datasets
# Import fixture modules as plugins
lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets'''
__UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics'''
__UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) )
__UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) )
__UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
@pytest.fixture(autouse=lowercase_ , scope='''session''' )
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
'''simple docstring'''
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
| 675 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
lowerCAmelCase = logging.get_logger(__name__)
# General docstring
lowerCAmelCase = """MobileNetV1Config"""
# Base docstring
lowerCAmelCase = """google/mobilenet_v1_1.0_224"""
lowerCAmelCase = [1, 1_024, 7, 7]
# Image classification docstring
lowerCAmelCase = """google/mobilenet_v1_1.0_224"""
lowerCAmelCase = """tabby, tabby cat"""
lowerCAmelCase = [
"""google/mobilenet_v1_1.0_224""",
"""google/mobilenet_v1_0.75_192""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = {}
if isinstance(lowercase_ , lowercase_ ):
__UpperCAmelCase : Dict = model.mobilenet_va
else:
__UpperCAmelCase : List[str] = model
__UpperCAmelCase : Union[str, Any] = '''MobilenetV1/Conv2d_0/'''
__UpperCAmelCase : Union[str, Any] = backbone.conv_stem.convolution.weight
__UpperCAmelCase : Optional[Any] = backbone.conv_stem.normalization.bias
__UpperCAmelCase : Tuple = backbone.conv_stem.normalization.weight
__UpperCAmelCase : Optional[int] = backbone.conv_stem.normalization.running_mean
__UpperCAmelCase : int = backbone.conv_stem.normalization.running_var
for i in range(13 ):
__UpperCAmelCase : List[str] = i + 1
__UpperCAmelCase : Optional[int] = i * 2
__UpperCAmelCase : Any = backbone.layer[pt_index]
__UpperCAmelCase : Optional[Any] = f"MobilenetV1/Conv2d_{tf_index}_depthwise/"
__UpperCAmelCase : List[Any] = pointer.convolution.weight
__UpperCAmelCase : Any = pointer.normalization.bias
__UpperCAmelCase : List[str] = pointer.normalization.weight
__UpperCAmelCase : Tuple = pointer.normalization.running_mean
__UpperCAmelCase : Optional[int] = pointer.normalization.running_var
__UpperCAmelCase : Union[str, Any] = backbone.layer[pt_index + 1]
__UpperCAmelCase : str = f"MobilenetV1/Conv2d_{tf_index}_pointwise/"
__UpperCAmelCase : int = pointer.convolution.weight
__UpperCAmelCase : List[str] = pointer.normalization.bias
__UpperCAmelCase : int = pointer.normalization.weight
__UpperCAmelCase : int = pointer.normalization.running_mean
__UpperCAmelCase : List[Any] = pointer.normalization.running_var
if isinstance(lowercase_ , lowercase_ ):
__UpperCAmelCase : Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
__UpperCAmelCase : Any = model.classifier.weight
__UpperCAmelCase : Optional[Any] = model.classifier.bias
return tf_to_pt_map
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
__UpperCAmelCase : Any = tf.train.list_variables(lowercase_ )
__UpperCAmelCase : Union[str, Any] = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}" )
__UpperCAmelCase : Optional[int] = tf.train.load_variable(lowercase_ , lowercase_ )
__UpperCAmelCase : Any = array
# Build TF to PyTorch weights loading map
__UpperCAmelCase : Optional[int] = _build_tf_to_pytorch_map(lowercase_ , lowercase_ , lowercase_ )
for name, pointer in tf_to_pt_map.items():
logger.info(f"Importing {name}" )
if name not in tf_weights:
logger.info(f"{name} not in tf pre-trained weights, skipping" )
continue
__UpperCAmelCase : Dict = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
__UpperCAmelCase : List[Any] = np.transpose(lowercase_ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
__UpperCAmelCase : Optional[Any] = array.squeeze().transpose()
else:
__UpperCAmelCase : str = np.transpose(lowercase_ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" )
logger.info(f"Initialize PyTorch weight {name} {array.shape}" )
__UpperCAmelCase : List[str] = torch.from_numpy(lowercase_ )
tf_weights.pop(lowercase_ , lowercase_ )
tf_weights.pop(name + '''/RMSProp''' , lowercase_ )
tf_weights.pop(name + '''/RMSProp_1''' , lowercase_ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowercase_ )
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" )
return model
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> torch.Tensor:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = features.shape[-2:]
__UpperCAmelCase : Union[str, Any] = conv_layer.stride
__UpperCAmelCase : Any = conv_layer.kernel_size
if in_height % stride_height == 0:
__UpperCAmelCase : str = max(kernel_height - stride_height , 0 )
else:
__UpperCAmelCase : List[str] = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__UpperCAmelCase : List[Any] = max(kernel_width - stride_width , 0 )
else:
__UpperCAmelCase : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
__UpperCAmelCase : Union[str, Any] = pad_along_width // 2
__UpperCAmelCase : str = pad_along_width - pad_left
__UpperCAmelCase : List[Any] = pad_along_height // 2
__UpperCAmelCase : Union[str, Any] = pad_along_height - pad_top
__UpperCAmelCase : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(lowercase_ , lowercase_ , '''constant''' , 0.0 )
class lowerCamelCase ( nn.Module ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , lowercase__ = 1 , lowercase__ = False , lowercase__ = True , lowercase__ = True , ):
super().__init__()
__UpperCAmelCase : int = config
if in_channels % groups != 0:
raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.")
__UpperCAmelCase : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2)
__UpperCAmelCase : List[str] = nn.Convad(
in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=lowercase__ , groups=lowercase__ , bias=lowercase__ , padding_mode='''zeros''' , )
if use_normalization:
__UpperCAmelCase : Any = nn.BatchNormad(
num_features=lowercase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowercase__ , track_running_stats=lowercase__ , )
else:
__UpperCAmelCase : Optional[Any] = None
if use_activation:
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = ACTaFN[use_activation]
elif isinstance(config.hidden_act , lowercase__):
__UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act]
else:
__UpperCAmelCase : Optional[int] = config.hidden_act
else:
__UpperCAmelCase : List[Any] = None
def A( self , lowercase__):
if self.config.tf_padding:
__UpperCAmelCase : Optional[int] = apply_tf_padding(lowercase__ , self.convolution)
__UpperCAmelCase : Dict = self.convolution(lowercase__)
if self.normalization is not None:
__UpperCAmelCase : int = self.normalization(lowercase__)
if self.activation is not None:
__UpperCAmelCase : str = self.activation(lowercase__)
return features
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Dict = MobileNetVaConfig
_lowerCAmelCase : int = load_tf_weights_in_mobilenet_va
_lowerCAmelCase : List[str] = '''mobilenet_v1'''
_lowerCAmelCase : Optional[Any] = '''pixel_values'''
_lowerCAmelCase : Dict = False
def A( self , lowercase__):
if isinstance(lowercase__ , (nn.Linear, nn.Convad)):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(lowercase__ , nn.BatchNormad):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
lowerCAmelCase = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
lowerCAmelCase = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _UpperCamelCase , )
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ = True):
super().__init__(lowercase__)
__UpperCAmelCase : Tuple = config
__UpperCAmelCase : Tuple = 3_2
__UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth)
__UpperCAmelCase : List[str] = MobileNetVaConvLayer(
lowercase__ , in_channels=config.num_channels , out_channels=lowercase__ , kernel_size=3 , stride=2 , )
__UpperCAmelCase : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__UpperCAmelCase : Union[str, Any] = nn.ModuleList()
for i in range(1_3):
__UpperCAmelCase : List[Any] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__UpperCAmelCase : int = max(int(depth * config.depth_multiplier) , config.min_depth)
self.layer.append(
MobileNetVaConvLayer(
lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=3 , stride=strides[i] , groups=lowercase__ , ))
self.layer.append(
MobileNetVaConvLayer(
lowercase__ , in_channels=lowercase__ , out_channels=lowercase__ , kernel_size=1 , ))
__UpperCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def A( self , lowercase__):
raise NotImplementedError
@add_start_docstrings_to_model_forward(lowercase__)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , ):
__UpperCAmelCase : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''')
__UpperCAmelCase : Optional[int] = self.conv_stem(lowercase__)
__UpperCAmelCase : Dict = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
__UpperCAmelCase : str = layer_module(lowercase__)
if output_hidden_states:
__UpperCAmelCase : Tuple = all_hidden_states + (hidden_states,)
__UpperCAmelCase : Union[str, Any] = hidden_states
if self.pooler is not None:
__UpperCAmelCase : Optional[int] = torch.flatten(self.pooler(lowercase__) , start_dim=1)
else:
__UpperCAmelCase : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=lowercase__ , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , _UpperCamelCase , )
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__):
super().__init__(lowercase__)
__UpperCAmelCase : str = config.num_labels
__UpperCAmelCase : Optional[int] = MobileNetVaModel(lowercase__)
__UpperCAmelCase : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__UpperCAmelCase : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase__)
__UpperCAmelCase : Tuple = nn.Linear(lowercase__ , config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase__)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def A( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , ):
__UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCAmelCase : Any = self.mobilenet_va(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__)
__UpperCAmelCase : List[Any] = outputs.pooler_output if return_dict else outputs[1]
__UpperCAmelCase : Optional[int] = self.classifier(self.dropout(lowercase__))
__UpperCAmelCase : str = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__UpperCAmelCase : int = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__UpperCAmelCase : List[Any] = '''single_label_classification'''
else:
__UpperCAmelCase : List[str] = '''multi_label_classification'''
if self.config.problem_type == "regression":
__UpperCAmelCase : List[str] = MSELoss()
if self.num_labels == 1:
__UpperCAmelCase : List[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
__UpperCAmelCase : str = loss_fct(lowercase__ , lowercase__)
elif self.config.problem_type == "single_label_classification":
__UpperCAmelCase : str = CrossEntropyLoss()
__UpperCAmelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
__UpperCAmelCase : Union[str, Any] = BCEWithLogitsLoss()
__UpperCAmelCase : Tuple = loss_fct(lowercase__ , lowercase__)
if not return_dict:
__UpperCAmelCase : str = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states , )
| 719 |
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowerCAmelCase = generate_large_matrix()
lowerCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid )
assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[Any] = len(lowercase_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCAmelCase : List[Any] = (left + right) // 2
__UpperCAmelCase : Dict = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCAmelCase : Dict = mid + 1
else:
__UpperCAmelCase : Optional[Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = len(grid[0] )
for i in range(len(lowercase_ ) ):
__UpperCAmelCase : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowercase_ ) * len(grid[0] )) - total
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[Any] = 0
for row in grid:
for i, number in enumerate(lowercase_ ):
if number < 0:
total += len(lowercase_ ) - i
break
return total
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCAmelCase : Tuple = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 675 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 720 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 675 | 0 |
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=_UpperCamelCase ):
_lowerCAmelCase : List[str] = ['''onnx''']
def __init__( self , *lowercase__ , **lowercase__):
requires_backends(self , ['''onnx'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''onnx'''])
@classmethod
def A( cls , *lowercase__ , **lowercase__):
requires_backends(cls , ['''onnx'''])
| 721 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ):
__UpperCAmelCase : Tuple = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[Any] = use_input_mask
__UpperCAmelCase : List[str] = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Any = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = max_position_embeddings
__UpperCAmelCase : Tuple = type_vocab_size
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : Dict = num_choices
__UpperCAmelCase : Union[str, Any] = scope
def A( self):
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length])
__UpperCAmelCase : Union[str, Any] = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[int] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices)
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A( self):
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
__UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__)
__UpperCAmelCase : List[Any] = model(lowercase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
__UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : str = BioGptModel(config=lowercase__)
model.to(lowercase__)
model.eval()
# create attention mask
__UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
__UpperCAmelCase : int = self.seq_length // 2
__UpperCAmelCase : Any = 0
# first forward pass
__UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size)
# change a random masked slice from input_ids
__UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1
__UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1)
__UpperCAmelCase : int = random_other_next_tokens
# append to next input_ids and attn_mask
__UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , )
# get two different outputs
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
# select random slice
__UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval()
__UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__)
# first forward pass
__UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__)
__UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size)
__UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2)
# append to next input_ids and
__UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1)
__UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1)
__UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state''']
__UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[
'''last_hidden_state'''
]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item()
__UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3))
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False):
__UpperCAmelCase : int = BioGptForCausalLM(lowercase__)
model.to(lowercase__)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def A( self , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[int] = BioGptModel(lowercase__)
__UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__):
__UpperCAmelCase : Optional[Any] = self.num_labels
__UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def A( self):
__UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : int = config_and_inputs
__UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else ()
_lowerCAmelCase : Union[str, Any] = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCAmelCase : List[Any] = False
def A( self):
__UpperCAmelCase : int = BioGptModelTester(self)
__UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7)
def A( self):
self.config_tester.run_common_tests()
def A( self):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : Dict = type
self.model_tester.create_and_check_model(*lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__)
def A( self):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__)
@slow
def A( self):
__UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
__UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : List[str] = '''left'''
# Define PAD Token = EOS Token = 50256
__UpperCAmelCase : List[Any] = tokenizer.eos_token
__UpperCAmelCase : Tuple = model.config.eos_token_id
# use different length sentences to test batching
__UpperCAmelCase : Optional[Any] = [
'''Hello, my dog is a little''',
'''Today, I''',
]
__UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__)
__UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__)
__UpperCAmelCase : int = model.generate(
input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , )
__UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__)
__UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
__UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__)
__UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings)
__UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : str = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(lowercase__ , lowercase__)
self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence])
@slow
def A( self):
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__)
self.assertIsNotNone(lowercase__)
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = 3
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : int = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def A( self):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = 3
__UpperCAmelCase : Union[str, Any] = '''multi_label_classification'''
__UpperCAmelCase : List[Any] = input_dict['''input_ids''']
__UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__)
__UpperCAmelCase : List[str] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__)
model.to(lowercase__)
model.eval()
__UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]])
__UpperCAmelCase : int = model(lowercase__)[0]
__UpperCAmelCase : Any = 4_2_3_8_4
__UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size))
self.assertEqual(output.shape , lowercase__)
__UpperCAmelCase : Dict = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4))
@slow
def A( self):
__UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''')
__UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''')
model.to(lowercase__)
torch.manual_seed(0)
__UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__)
__UpperCAmelCase : List[str] = model.generate(
**lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , )
__UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__)
__UpperCAmelCase : int = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(lowercase__ , lowercase__)
| 675 | 0 |
from __future__ import annotations
from typing import Generic, TypeVar
lowerCAmelCase = TypeVar("""T""")
class __A ( Generic[T] ):
def __init__( self , lowercase__):
__UpperCAmelCase : Optional[int] = data
__UpperCAmelCase : str = self
__UpperCAmelCase : Optional[Any] = 0
class __A ( Generic[T] ):
def __init__( self):
# map from node name to the node object
__UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] = {}
def A( self , lowercase__):
# create a new set with x as its member
__UpperCAmelCase : Union[str, Any] = DisjointSetTreeNode(lowercase__)
def A( self , lowercase__):
# find the set x belongs to (with path-compression)
__UpperCAmelCase : Optional[int] = self.map[data]
if elem_ref != elem_ref.parent:
__UpperCAmelCase : Any = self.find_set(elem_ref.parent.data)
return elem_ref.parent
def A( self , lowercase__ , lowercase__):
# helper function for union operation
if nodea.rank > nodea.rank:
__UpperCAmelCase : Dict = nodea
else:
__UpperCAmelCase : Tuple = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def A( self , lowercase__ , lowercase__):
# merge 2 disjoint sets
self.link(self.find_set(lowercase__) , self.find_set(lowercase__))
class __A ( Generic[T] ):
def __init__( self):
# connections: map from the node to the neighbouring nodes (with weights)
__UpperCAmelCase : dict[T, dict[T, int]] = {}
def A( self , lowercase__):
# add a node ONLY if its not present in the graph
if node not in self.connections:
__UpperCAmelCase : str = {}
def A( self , lowercase__ , lowercase__ , lowercase__):
# add an edge with the given weight
self.add_node(lowercase__)
self.add_node(lowercase__)
__UpperCAmelCase : Tuple = weight
__UpperCAmelCase : Dict = weight
def A( self):
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : List[Any] = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start))
edges.append((start, end, self.connections[start][end]))
edges.sort(key=lambda lowercase__: x[2])
# creating the disjoint set
__UpperCAmelCase : Tuple = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(lowercase__)
# MST generation
__UpperCAmelCase : Any = 0
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Tuple = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections) - 1:
__UpperCAmelCase : Union[str, Any] = edges[index]
index += 1
__UpperCAmelCase : List[str] = disjoint_set.find_set(lowercase__)
__UpperCAmelCase : int = disjoint_set.find_set(lowercase__)
if parent_u != parent_v:
num_edges += 1
graph.add_edge(lowercase__ , lowercase__ , lowercase__)
disjoint_set.union(lowercase__ , lowercase__)
return graph
| 700 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = '''bert'''
def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ):
super().__init__(pad_token_id=lowercase__ , **lowercase__)
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = position_embedding_type
__UpperCAmelCase : Optional[Any] = use_cache
__UpperCAmelCase : List[Any] = classifier_dropout
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
])
| 675 | 0 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
'''simple docstring'''
__UpperCAmelCase : Tuple = analyze_text(lowercase_ )
__UpperCAmelCase : List[str] = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
__UpperCAmelCase : str = sum(single_char_strings.values() )
# one length string
__UpperCAmelCase : List[str] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
__UpperCAmelCase : Tuple = single_char_strings[ch]
__UpperCAmelCase : List[Any] = my_str / all_sum
my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula.
# print entropy
print(f"{round(-1 * my_fir_sum ):.1f}" )
# two len string
__UpperCAmelCase : Dict = sum(two_char_strings.values() )
__UpperCAmelCase : Optional[Any] = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
__UpperCAmelCase : Optional[int] = cha + cha
if sequence in two_char_strings:
__UpperCAmelCase : Optional[int] = two_char_strings[sequence]
__UpperCAmelCase : Union[str, Any] = int(lowercase_ ) / all_sum
my_sec_sum += prob * math.loga(lowercase_ )
# print second entropy
print(f"{round(-1 * my_sec_sum ):.1f}" )
# print the difference between them
print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" )
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple[dict, dict]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = Counter() # type: ignore
__UpperCAmelCase : Optional[int] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(lowercase_ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
'''simple docstring'''
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 701 |
from random import shuffle
import tensorflow as tf
from numpy import array
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
__UpperCAmelCase : str = len(vectors[0] )
# Will help select random centroids from among the available vectors
__UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
__UpperCAmelCase : Union[str, Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
__UpperCAmelCase : str = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
__UpperCAmelCase : List[str] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
__UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] )
__UpperCAmelCase : Tuple = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
__UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
__UpperCAmelCase : Dict = tf.placeholder('''int32''' )
__UpperCAmelCase : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
__UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
__UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] )
__UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
__UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] )
__UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
__UpperCAmelCase : Optional[Any] = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
__UpperCAmelCase : Union[str, Any] = 100
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
__UpperCAmelCase : List[str] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
__UpperCAmelCase : List[Any] = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
__UpperCAmelCase : Optional[Any] = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
__UpperCAmelCase : Optional[Any] = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
__UpperCAmelCase : str = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
__UpperCAmelCase : List[str] = sess.run(lowercase_ )
__UpperCAmelCase : Tuple = sess.run(lowercase_ )
return centroids, assignments
| 675 | 0 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if len(lowercase_ ) < k or k < 0:
raise ValueError('''Invalid Input''' )
__UpperCAmelCase : List[str] = sum(array[:k] )
for i in range(len(lowercase_ ) - k ):
__UpperCAmelCase : int = current_sum - array[i] + array[i + k]
__UpperCAmelCase : Optional[int] = max(lowercase_ , lowercase_ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCAmelCase = [randint(-1_000, 1_000) for i in range(100)]
lowerCAmelCase = randint(0, 110)
print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
| 702 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
'''simple docstring'''
if not nums:
return 0
__UpperCAmelCase : int = nums[0]
__UpperCAmelCase : Optional[Any] = 0
for num in nums[1:]:
__UpperCAmelCase , __UpperCAmelCase : int = (
max_excluding + num,
max(lowercase_ , lowercase_ ),
)
return max(lowercase_ , lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCAmelCase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Optional[int] = ['''pixel_values''']
def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = None , lowercase__ = None , lowercase__ = True , **lowercase__ , ):
super().__init__(**lowercase__)
__UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 2_2_4}
__UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__)
__UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
__UpperCAmelCase : str = get_size_dict(lowercase__ , default_to_square=lowercase__ , param_name='''crop_size''')
__UpperCAmelCase : List[Any] = do_resize
__UpperCAmelCase : List[Any] = size
__UpperCAmelCase : Optional[int] = resample
__UpperCAmelCase : List[Any] = do_center_crop
__UpperCAmelCase : Union[str, Any] = crop_size
__UpperCAmelCase : Optional[int] = do_rescale
__UpperCAmelCase : Optional[int] = rescale_factor
__UpperCAmelCase : List[Any] = do_normalize
__UpperCAmelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__UpperCAmelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD
__UpperCAmelCase : List[str] = do_convert_rgb
def A( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ):
__UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__)
if "shortest_edge" not in size:
raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
__UpperCAmelCase : str = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__)
return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__)
def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ):
__UpperCAmelCase : str = get_size_dict(lowercase__)
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__)
def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ):
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ):
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__)
def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ):
__UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(lowercase__ , param_name='''size''' , default_to_square=lowercase__)
__UpperCAmelCase : str = resample if resample is not None else self.resample
__UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : Dict = get_size_dict(lowercase__ , param_name='''crop_size''' , default_to_square=lowercase__)
__UpperCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__UpperCAmelCase : Union[str, Any] = make_list_of_images(lowercase__)
if not valid_images(lowercase__):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''')
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__UpperCAmelCase : Optional[Any] = [convert_to_rgb(lowercase__) for image in images]
# All transformations expect numpy arrays.
__UpperCAmelCase : Tuple = [to_numpy_array(lowercase__) for image in images]
if do_resize:
__UpperCAmelCase : Dict = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images]
if do_center_crop:
__UpperCAmelCase : Union[str, Any] = [self.center_crop(image=lowercase__ , size=lowercase__) for image in images]
if do_rescale:
__UpperCAmelCase : List[str] = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images]
if do_normalize:
__UpperCAmelCase : List[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images]
__UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images]
__UpperCAmelCase : int = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__)
| 703 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@require_torch
def A( self):
__UpperCAmelCase : str = pipeline(
task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''')
__UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
@slow
@require_torch
def A( self):
__UpperCAmelCase : int = pipeline(
task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , )
# This is an audio of a dog
__UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''')
__UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
] , )
__UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''])
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
__UpperCAmelCase : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5)
self.assertEqual(
nested_simplify(lowercase__) , [
[
{'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''},
{'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''},
],
]
* 5 , )
@unittest.skip('''No models are available in TF''')
def A( self):
pass
| 675 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Optional[int] = KandinskyInpaintPipeline
_lowerCAmelCase : List[Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
_lowerCAmelCase : Any = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
_lowerCAmelCase : str = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_lowerCAmelCase : Union[str, Any] = False
@property
def A( self):
return 3_2
@property
def A( self):
return 3_2
@property
def A( self):
return self.time_input_dim
@property
def A( self):
return self.time_input_dim * 4
@property
def A( self):
return 1_0_0
@property
def A( self):
__UpperCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''')
return tokenizer
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : str = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
__UpperCAmelCase : Dict = MultilingualCLIP(lowercase__)
__UpperCAmelCase : Optional[Any] = text_encoder.eval()
return text_encoder
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : Union[str, Any] = {
'''in_channels''': 9,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__UpperCAmelCase : Optional[int] = UNetaDConditionModel(**lowercase__)
return model
@property
def A( self):
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : List[str] = VQModel(**self.dummy_movq_kwargs)
return model
def A( self):
__UpperCAmelCase : Optional[Any] = self.dummy_text_encoder
__UpperCAmelCase : List[Any] = self.dummy_tokenizer
__UpperCAmelCase : str = self.dummy_unet
__UpperCAmelCase : Optional[Any] = self.dummy_movq
__UpperCAmelCase : Optional[int] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , )
__UpperCAmelCase : Tuple = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def A( self , lowercase__ , lowercase__=0):
__UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase__)).to(lowercase__)
__UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase__)
# create init_image
__UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase__)).to(lowercase__)
__UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1)[0]
__UpperCAmelCase : int = Image.fromarray(np.uinta(lowercase__)).convert('''RGB''').resize((2_5_6, 2_5_6))
# create mask
__UpperCAmelCase : Dict = np.ones((6_4, 6_4) , dtype=np.floataa)
__UpperCAmelCase : List[str] = 0
if str(lowercase__).startswith('''mps'''):
__UpperCAmelCase : Dict = torch.manual_seed(lowercase__)
else:
__UpperCAmelCase : List[Any] = torch.Generator(device=lowercase__).manual_seed(lowercase__)
__UpperCAmelCase : str = {
'''prompt''': '''horse''',
'''image''': init_image,
'''mask_image''': mask,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''num_inference_steps''': 2,
'''guidance_scale''': 4.0,
'''output_type''': '''np''',
}
return inputs
def A( self):
__UpperCAmelCase : str = '''cpu'''
__UpperCAmelCase : Optional[int] = self.get_dummy_components()
__UpperCAmelCase : Optional[Any] = self.pipeline_class(**lowercase__)
__UpperCAmelCase : Union[str, Any] = pipe.to(lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Dict = pipe(**self.get_dummy_inputs(lowercase__))
__UpperCAmelCase : Optional[int] = output.images
__UpperCAmelCase : List[Any] = pipe(
**self.get_dummy_inputs(lowercase__) , return_dict=lowercase__ , )[0]
__UpperCAmelCase : str = image[0, -3:, -3:, -1]
__UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
print(F"image.shape {image.shape}")
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCAmelCase : int = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def A( self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def A( self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A( self):
__UpperCAmelCase : Any = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''')
__UpperCAmelCase : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''')
__UpperCAmelCase : List[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa)
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Optional[int] = '''a hat'''
__UpperCAmelCase : int = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa)
pipe_prior.to(lowercase__)
__UpperCAmelCase : Any = KandinskyInpaintPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa)
__UpperCAmelCase : int = pipeline.to(lowercase__)
pipeline.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0)
__UpperCAmelCase : Any = pipe_prior(
lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__UpperCAmelCase : List[str] = pipeline(
lowercase__ , image=lowercase__ , mask_image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , )
__UpperCAmelCase : str = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__)
| 704 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ):
super().__init__()
self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__)
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''','''):
__UpperCAmelCase : Dict = int(lowercase__)
__UpperCAmelCase : Tuple = dict(sorted(self.labels.items()))
def A( self , lowercase__):
if not isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = list(lowercase__)
for l in label:
if l not in self.labels:
raise ValueError(
F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.")
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : List[str] = len(lowercase__)
__UpperCAmelCase : str = self.transformer.config.sample_size
__UpperCAmelCase : List[str] = self.transformer.config.in_channels
__UpperCAmelCase : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1)
__UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device)
__UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(lowercase__)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
__UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2]
__UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0)
__UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__)
__UpperCAmelCase : Any = t
if not torch.is_tensor(lowercase__):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps'''
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
__UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0)
__UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0)
__UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1)
else:
__UpperCAmelCase : Any = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0)
else:
__UpperCAmelCase : List[Any] = latent_model_input
__UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample
__UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : int = [0 for i in range(r + 1 )]
# nc0 = 1
__UpperCAmelCase : List[Any] = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__UpperCAmelCase : Any = min(lowercase_ , lowercase_ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 705 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ):
__UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8}
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : int = image_size
__UpperCAmelCase : Tuple = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Tuple = size
__UpperCAmelCase : Union[str, Any] = do_normalize
def A( self):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4],
[-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''clusters'''))
self.assertTrue(hasattr(lowercase__ , '''do_resize'''))
self.assertTrue(hasattr(lowercase__ , '''size'''))
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8})
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2)
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2})
def A( self):
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Any = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , obj[key]))
else:
self.assertEqual(obj[key] , lowercase__)
def A( self):
__UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''')
image_processor_first.to_json_file(lowercase__)
__UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict()
__UpperCAmelCase : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
def A( self):
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase__)
__UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict()
__UpperCAmelCase : Optional[Any] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , lowercase__)
@unittest.skip('''ImageGPT requires clusters at initialization''')
def A( self):
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' )
__UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] )
__UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] )
__UpperCAmelCase : int = [imagea, imagea]
return images
@require_vision
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def A( self):
__UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''')
__UpperCAmelCase : Any = prepare_images()
# test non-batched
__UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4))
__UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__)
# test batched
__UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''')
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4))
__UpperCAmelCase : Any = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
| 675 | 0 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 706 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l="""
def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
__UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("""Bangalore"""), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 675 | 0 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]:
'''simple docstring'''
__UpperCAmelCase : Any = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
__UpperCAmelCase : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('''This matrix has no inverse.''' )
# Creates a copy of the matrix with swapped positions of the elements
__UpperCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]]
__UpperCAmelCase : Dict = matrix[1][1], matrix[0][0]
__UpperCAmelCase : int = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowercase_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
__UpperCAmelCase : Any = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('''This matrix has no inverse.''' )
# Creating cofactor matrix
__UpperCAmelCase : str = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
__UpperCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
__UpperCAmelCase : Any = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
__UpperCAmelCase : Dict = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
__UpperCAmelCase : Optional[int] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
__UpperCAmelCase : Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
__UpperCAmelCase : Optional[int] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
__UpperCAmelCase : str = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
__UpperCAmelCase : Optional[int] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
__UpperCAmelCase : int = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
__UpperCAmelCase : Dict = array(lowercase_ )
for i in range(3 ):
for j in range(3 ):
__UpperCAmelCase : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
__UpperCAmelCase : str = array(lowercase_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowercase_ )
# Calculate the inverse of the matrix
return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
| 707 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
lowerCAmelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : int = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__UpperCAmelCase : Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase ( _UpperCamelCase ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , ):
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
__UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1)
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__):
if latents is None:
__UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Union[str, Any] = latents.to(lowercase__)
__UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A( self , lowercase__=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''')
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__)
def A( self , lowercase__=0):
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''')
__UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=lowercase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : List[Any] = None
for cpu_offloaded_model in [self.unet, self.movq]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__)
# We'll offload the last model manually.
__UpperCAmelCase : Any = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A( self):
if not hasattr(self.unet , '''_hf_hook'''):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , '''_hf_hook''')
and hasattr(module._hf_hook , '''execution_device''')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__)
def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ):
__UpperCAmelCase : str = self._execution_device
__UpperCAmelCase : List[str] = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0)
if isinstance(lowercase__ , lowercase__):
__UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0)
__UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0)
__UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
__UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__)
self.scheduler.set_timesteps(lowercase__ , device=lowercase__)
__UpperCAmelCase : List[Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.movq.config.latent_channels
__UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Union[str, Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint}
__UpperCAmelCase : Any = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2)
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , '''variance_type''')
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
__UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Dict = image * 0.5 + 0.5
__UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1)
__UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__)
| 675 | 0 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
lowerCAmelCase = datasets.logging.get_logger(__name__)
lowerCAmelCase = """\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
lowerCAmelCase = """\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project's README at https://github.com/google-research/bleurt#readme for more information.
"""
lowerCAmelCase = """
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
'scores': List of scores.
Examples:
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> bleurt = datasets.load_metric(\"bleurt\")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results[\"scores\"]])
[1.03, 1.04]
"""
lowerCAmelCase = {
"""bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""",
"""bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""",
"""bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""",
"""bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""",
"""bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""",
"""bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""",
"""BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""",
"""BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""",
"""BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""",
"""BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , )
def A( self , lowercase__):
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
'''Using default BLEURT-Base checkpoint for sequence maximum length 128. '''
'''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''')
__UpperCAmelCase : Optional[Any] = '''bleurt-base-128'''
if self.config_name.lower() in CHECKPOINT_URLS:
__UpperCAmelCase : Dict = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
__UpperCAmelCase : int = self.config_name.upper()
else:
raise KeyError(
F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}")
# download the model checkpoint specified by self.config_name and set up the scorer
__UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name])
__UpperCAmelCase : Optional[int] = score.BleurtScorer(os.path.join(lowercase__ , lowercase__))
def A( self , lowercase__ , lowercase__):
__UpperCAmelCase : Optional[int] = self.scorer.score(references=lowercase__ , candidates=lowercase__)
return {"scores": scores}
| 708 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
lowerCAmelCase = """sshleifer/bart-tiny-random"""
lowerCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@cached_property
def A( self):
return AutoConfig.from_pretrained(lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def A( self):
__UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def A( self):
with self.assertRaises(lowercase__):
create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
| 675 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase = {
"""configuration_pix2struct""": [
"""PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Pix2StructConfig""",
"""Pix2StructTextConfig""",
"""Pix2StructVisionConfig""",
],
"""processing_pix2struct""": ["""Pix2StructProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = ["""Pix2StructImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase = [
"""PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Pix2StructPreTrainedModel""",
"""Pix2StructForConditionalGeneration""",
"""Pix2StructVisionModel""",
"""Pix2StructTextModel""",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 709 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : List[str] = '''sew-d'''
def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ):
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__)
__UpperCAmelCase : Dict = hidden_size
__UpperCAmelCase : int = feat_extract_norm
__UpperCAmelCase : List[str] = feat_extract_activation
__UpperCAmelCase : str = list(lowercase__)
__UpperCAmelCase : Optional[int] = list(lowercase__)
__UpperCAmelCase : Tuple = list(lowercase__)
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : int = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : Any = len(self.conv_dim)
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Union[str, Any] = squeeze_factor
__UpperCAmelCase : Union[str, Any] = max_position_embeddings
__UpperCAmelCase : List[str] = position_buckets
__UpperCAmelCase : Tuple = share_att_key
__UpperCAmelCase : int = relative_attention
__UpperCAmelCase : str = norm_rel_ebd
__UpperCAmelCase : Dict = list(lowercase__)
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_dropout
__UpperCAmelCase : int = attention_dropout
__UpperCAmelCase : Optional[int] = activation_dropout
__UpperCAmelCase : Optional[Any] = feat_proj_dropout
__UpperCAmelCase : Optional[Any] = final_dropout
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : str = feature_layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Tuple = vocab_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)"
F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Optional[int] = apply_spec_augment
__UpperCAmelCase : List[str] = mask_time_prob
__UpperCAmelCase : Union[str, Any] = mask_time_length
__UpperCAmelCase : Optional[int] = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : List[Any] = mask_feature_min_masks
# ctc loss
__UpperCAmelCase : int = ctc_loss_reduction
__UpperCAmelCase : Union[str, Any] = ctc_zero_infinity
# sequence classification
__UpperCAmelCase : List[str] = use_weighted_layer_sum
__UpperCAmelCase : Tuple = classifier_proj_size
@property
def A( self):
return functools.reduce(operator.mul , self.conv_stride , 1)
| 675 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase ( unittest.TestCase ):
def A( self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A( self):
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : List[Any] = (3_2, 3_2)
__UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase__)
return image
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
return model
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : Optional[Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def A( self):
torch.manual_seed(0)
__UpperCAmelCase : str = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(lowercase__)
@property
def A( self):
def extract(*lowercase__ , **lowercase__):
class lowerCamelCase :
def __init__( self):
__UpperCAmelCase : Optional[Any] = torch.ones([0])
def A( self , lowercase__):
self.pixel_values.to(lowercase__)
return self
return Out()
return extract
def A( self):
__UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase : int = self.dummy_cond_unet
__UpperCAmelCase : Tuple = PNDMScheduler(skip_prk_steps=lowercase__)
__UpperCAmelCase : List[str] = self.dummy_vae
__UpperCAmelCase : Optional[Any] = self.dummy_text_encoder
__UpperCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''')
__UpperCAmelCase : Tuple = 7_7
__UpperCAmelCase : List[Any] = self.dummy_image.to(lowercase__)
__UpperCAmelCase : List[str] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : int = AltDiffusionImgaImgPipeline(
unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__)
__UpperCAmelCase : Optional[Any] = alt_pipe.to(lowercase__)
alt_pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
__UpperCAmelCase : Any = torch.Generator(device=lowercase__).manual_seed(0)
__UpperCAmelCase : Optional[int] = alt_pipe(
[prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , )
__UpperCAmelCase : Any = output.images
__UpperCAmelCase : str = torch.Generator(device=lowercase__).manual_seed(0)
__UpperCAmelCase : Optional[Any] = alt_pipe(
[prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , return_dict=lowercase__ , )[0]
__UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
__UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__UpperCAmelCase : Optional[int] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''')
def A( self):
__UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet
__UpperCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase__)
__UpperCAmelCase : Tuple = self.dummy_vae
__UpperCAmelCase : Tuple = self.dummy_text_encoder
__UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''')
__UpperCAmelCase : Optional[Any] = 7_7
__UpperCAmelCase : str = self.dummy_image.to(lowercase__)
# put models in fp16
__UpperCAmelCase : Optional[Any] = unet.half()
__UpperCAmelCase : str = vae.half()
__UpperCAmelCase : int = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCAmelCase : List[Any] = AltDiffusionImgaImgPipeline(
unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , )
__UpperCAmelCase : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__)
__UpperCAmelCase : Dict = alt_pipe.to(lowercase__)
alt_pipe.set_progress_bar_config(disable=lowercase__)
__UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
__UpperCAmelCase : List[Any] = torch.manual_seed(0)
__UpperCAmelCase : Dict = alt_pipe(
[prompt] , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , image=lowercase__ , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''')
def A( self):
__UpperCAmelCase : List[str] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
# resize to resolution that is divisible by 8 but not 16 or 32
__UpperCAmelCase : Dict = init_image.resize((7_6_0, 5_0_4))
__UpperCAmelCase : List[str] = '''BAAI/AltDiffusion'''
__UpperCAmelCase : Dict = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase__ , safety_checker=lowercase__ , )
pipe.to(lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
pipe.enable_attention_slicing()
__UpperCAmelCase : Optional[int] = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase : int = torch.manual_seed(0)
__UpperCAmelCase : str = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , )
__UpperCAmelCase : str = output.images[0]
__UpperCAmelCase : Tuple = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
__UpperCAmelCase : Any = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def A( self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A( self):
__UpperCAmelCase : Any = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''')
__UpperCAmelCase : Tuple = init_image.resize((7_6_8, 5_1_2))
__UpperCAmelCase : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''')
__UpperCAmelCase : int = '''BAAI/AltDiffusion'''
__UpperCAmelCase : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase__ , safety_checker=lowercase__ , )
pipe.to(lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
pipe.enable_attention_slicing()
__UpperCAmelCase : str = '''A fantasy landscape, trending on artstation'''
__UpperCAmelCase : List[str] = torch.manual_seed(0)
__UpperCAmelCase : Optional[int] = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowercase__ , output_type='''np''' , )
__UpperCAmelCase : Optional[Any] = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-2
| 710 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ )
if matches:
__UpperCAmelCase : Any = float(matches[1] )
__UpperCAmelCase : Optional[Any] = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCAmelCase : Dict = 1001
__UpperCAmelCase : str = '''imagenet-1k-id2label.json'''
__UpperCAmelCase : List[str] = '''huggingface/label-files'''
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
__UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = '''background'''
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
return config
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ )
# Load 🤗 model
__UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCAmelCase : List[str] = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCAmelCase : Union[str, Any] = model(**lowercase_ )
__UpperCAmelCase : Optional[Any] = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
__UpperCAmelCase : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(lowercase_ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCAmelCase : List[str] = '''google/''' + model_name
image_processor.push_to_hub(lowercase_ )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""mobilenet_v1_1.0_224""",
type=str,
help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""",
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCAmelCase = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 675 | 0 |
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class lowerCamelCase ( nn.Module ):
def __init__( self):
super().__init__()
__UpperCAmelCase : int = nn.Linear(3 , 4)
__UpperCAmelCase : Tuple = nn.BatchNormad(4)
__UpperCAmelCase : str = nn.Linear(4 , 5)
def A( self , lowercase__):
return self.lineara(self.batchnorm(self.lineara(lowercase__)))
class lowerCamelCase ( _UpperCamelCase ):
def A( self , lowercase__ , *lowercase__ , **lowercase__):
return (args[0] + 1,) + args[1:], kwargs
class lowerCamelCase ( _UpperCamelCase ):
def A( self , lowercase__ , lowercase__):
return output + 1
class lowerCamelCase ( unittest.TestCase ):
def A( self):
__UpperCAmelCase : Union[str, Any] = ModelForTest()
__UpperCAmelCase : str = ModelHook()
add_hook_to_module(lowercase__ , lowercase__)
self.assertEqual(test_model._hf_hook , lowercase__)
self.assertTrue(hasattr(lowercase__ , '''_old_forward'''))
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , '''forward''')
self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x'''])
remove_hook_from_module(lowercase__)
self.assertFalse(hasattr(lowercase__ , '''_hf_hook'''))
self.assertFalse(hasattr(lowercase__ , '''_old_forward'''))
def A( self):
__UpperCAmelCase : Optional[int] = ModelForTest()
__UpperCAmelCase : str = ModelHook()
add_hook_to_module(lowercase__ , lowercase__)
add_hook_to_module(lowercase__ , lowercase__ , append=lowercase__)
self.assertEqual(isinstance(test_model._hf_hook , lowercase__) , lowercase__)
self.assertEqual(len(test_model._hf_hook.hooks) , 2)
self.assertTrue(hasattr(lowercase__ , '''_old_forward'''))
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , '''forward''')
self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x'''])
remove_hook_from_module(lowercase__)
self.assertFalse(hasattr(lowercase__ , '''_hf_hook'''))
self.assertFalse(hasattr(lowercase__ , '''_old_forward'''))
def A( self):
__UpperCAmelCase : Tuple = ModelForTest()
__UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3)
__UpperCAmelCase : str = test_model(x + 1)
__UpperCAmelCase : List[Any] = test_model(x + 2)
__UpperCAmelCase : Union[str, Any] = PreForwardHook()
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : List[Any] = test_model(lowercase__)
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
# Attaching a hook to a model when it already has one replaces, does not chain
__UpperCAmelCase : Union[str, Any] = PreForwardHook()
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : List[Any] = test_model(lowercase__)
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
# You need to use the sequential hook to chain two or more hooks
__UpperCAmelCase : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook())
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : Optional[int] = test_model(lowercase__)
assert torch.allclose(lowercase__ , lowercase__ , atol=1e-5)
def A( self):
__UpperCAmelCase : Optional[int] = ModelForTest()
__UpperCAmelCase : Dict = torch.randn(2 , 3)
__UpperCAmelCase : List[str] = test_model(lowercase__)
__UpperCAmelCase : Optional[Any] = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : str = test_model(lowercase__)
self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5))
# Attaching a hook to a model when it already has one replaces, does not chain
__UpperCAmelCase : Optional[int] = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : Any = test_model(lowercase__)
self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1e-5))
# You need to use the sequential hook to chain two or more hooks
__UpperCAmelCase : Any = SequentialHook(PostForwardHook() , PostForwardHook())
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : List[Any] = test_model(lowercase__)
assert torch.allclose(lowercase__ , output + 2 , atol=1e-5)
def A( self):
__UpperCAmelCase : Optional[int] = ModelForTest()
__UpperCAmelCase : Any = torch.randn(2 , 3)
__UpperCAmelCase : Optional[Any] = test_model(lowercase__)
__UpperCAmelCase : Tuple = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__)
__UpperCAmelCase : Optional[Any] = test_model(lowercase__)
self.assertTrue(torch.allclose(lowercase__ , output + 1))
self.assertTrue(outputa.requires_grad)
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Dict = test_model(lowercase__)
self.assertFalse(outputa.requires_grad)
@require_multi_gpu
def A( self):
__UpperCAmelCase : str = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0))
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0))
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1))
self.assertEqual(model.lineara.weight.device , torch.device(0))
self.assertEqual(model.batchnorm.weight.device , torch.device(0))
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0))
self.assertEqual(model.lineara.weight.device , torch.device(1))
# We can still make a forward pass. The input does not need to be on any particular device
__UpperCAmelCase : Any = torch.randn(2 , 3)
__UpperCAmelCase : Union[str, Any] = model(lowercase__)
self.assertEqual(output.device , torch.device(1))
# We can add a general hook to put back output on same device as input.
add_hook_to_module(lowercase__ , AlignDevicesHook(io_same_device=lowercase__))
__UpperCAmelCase : int = torch.randn(2 , 3).to(0)
__UpperCAmelCase : str = model(lowercase__)
self.assertEqual(output.device , torch.device(0))
def A( self):
__UpperCAmelCase : List[Any] = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# This will move each submodule on different devices
__UpperCAmelCase : List[str] = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__))
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__))
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__))
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
# Buffers are not included in the offload by default, so are on the execution device
__UpperCAmelCase : Dict = torch.device(hook_kwargs['''execution_device'''])
self.assertEqual(model.batchnorm.running_mean.device , lowercase__)
__UpperCAmelCase : str = torch.randn(2 , 3)
__UpperCAmelCase : int = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.lineara)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# Now test with buffers included in the offload
__UpperCAmelCase : str = {
'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''',
'''offload''': True,
'''offload_buffers''': True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__))
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__))
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__))
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta'''))
__UpperCAmelCase : Dict = torch.randn(2 , 3)
__UpperCAmelCase : Optional[int] = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara)
remove_hook_from_module(model.batchnorm)
remove_hook_from_module(model.lineara)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
def A( self):
__UpperCAmelCase : Any = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# This will move each submodule on different devices
__UpperCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu'''
attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__)
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
# Buffers are not included in the offload by default, so are on the execution device
__UpperCAmelCase : Union[str, Any] = torch.device(lowercase__)
self.assertEqual(model.batchnorm.running_mean.device , lowercase__)
__UpperCAmelCase : Optional[Any] = torch.randn(2 , 3)
__UpperCAmelCase : Any = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# Now test with buffers included in the offload
attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__ , offload_buffers=lowercase__)
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta'''))
__UpperCAmelCase : List[str] = torch.randn(2 , 3)
__UpperCAmelCase : int = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
def A( self):
__UpperCAmelCase : Dict = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# This will move each submodule on different devices
__UpperCAmelCase : Tuple = 0 if torch.cuda.is_available() else '''cpu'''
attach_align_device_hook(
lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict())
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
# Buffers are not included in the offload by default, so are on the execution device
__UpperCAmelCase : Optional[int] = torch.device(lowercase__)
self.assertEqual(model.batchnorm.running_mean.device , lowercase__)
__UpperCAmelCase : Optional[int] = torch.randn(2 , 3)
__UpperCAmelCase : str = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
# Now test with buffers included in the offload
attach_align_device_hook(
lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict() , offload_buffers=lowercase__ , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta'''))
self.assertEqual(model.lineara.weight.device , torch.device('''meta'''))
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta'''))
__UpperCAmelCase : Dict = torch.randn(2 , 3)
__UpperCAmelCase : Dict = model(lowercase__)
self.assertEqual(output.device , lowercase__)
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__)
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu'''))
self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
| 711 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase :
_lowerCAmelCase : Optional[Union[str, Path]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = False
_lowerCAmelCase : bool = True
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : int = 1
_lowerCAmelCase : Optional[Union[str, bool]] = None
_lowerCAmelCase : bool = False
_lowerCAmelCase : Optional[Dict] = None
_lowerCAmelCase : Optional[str] = None
def A( self):
return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
| 675 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
__UpperCAmelCase : int = flax_key_tuple[:-1] + ('''weight''',)
__UpperCAmelCase : Optional[Any] = torch.permute(lowercase_ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ):
# linear layer
__UpperCAmelCase : List[str] = flax_key_tuple[:-1] + ('''weight''',)
__UpperCAmelCase : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if "metadata" in layer:
__UpperCAmelCase : Any = layer.split('''metadata''' )
__UpperCAmelCase : Optional[int] = ''''''.join(split_layer[0] )[:-1]
__UpperCAmelCase : List[str] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
__UpperCAmelCase : Any = layer.split('''kvstore''' )
__UpperCAmelCase : int = ''''''.join(split_layer[0] )[:-1]
__UpperCAmelCase : List[str] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
__UpperCAmelCase : List[str] = layer.split('''/''' )
__UpperCAmelCase : Union[str, Any] = '''/'''.join(split_layer[:-1] )
__UpperCAmelCase : Union[str, Any] = (split_layer[-1],)
if "kvstore/path" in layer:
__UpperCAmelCase : str = f"{switch_checkpoint_path}/{checkpoint_info[layer]}"
elif "kvstore/driver" in layer:
__UpperCAmelCase : Tuple = '''file'''
else:
__UpperCAmelCase : Optional[int] = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : List[Any] = rename_keys(lowercase_ )
__UpperCAmelCase : Any = {}
for k, v in current_block.items():
__UpperCAmelCase : List[Any] = v
__UpperCAmelCase : int = new_current_block
torch.save(lowercase_ , lowercase_ )
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = WEIGHTS_NAME ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : List[str] = convert_file_size_to_int(lowercase_ )
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : int = {}
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : Dict = 0
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
__UpperCAmelCase : Optional[int] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
__UpperCAmelCase : List[Any] = flatten_dict(lowercase_ , sep='''/''' )
__UpperCAmelCase : Dict = {}
for layer in checkpoint_info.keys():
__UpperCAmelCase : Union[str, Any] = get_key_and_tensorstore_dict(
lowercase_ , lowercase_ , lowercase_ )
if curr_real_layer_name in all_layers:
__UpperCAmelCase : List[str] = content
else:
__UpperCAmelCase : Tuple = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
__UpperCAmelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
__UpperCAmelCase : Optional[int] = torch.tensor(lowercase_ )
__UpperCAmelCase : Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
__UpperCAmelCase : Tuple = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowercase_ )
__UpperCAmelCase : Dict = '''/'''.join(lowercase_ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
__UpperCAmelCase : int = os.path.join(
lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) )
rename_and_save_block(lowercase_ , lowercase_ )
sharded_state_dicts.append(current_block.keys() )
del current_block
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = 0
__UpperCAmelCase : Optional[Any] = raw_weights.to(getattr(lowercase_ , lowercase_ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
__UpperCAmelCase : Any = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) )
rename_and_save_block(lowercase_ , lowercase_ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(lowercase_ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
__UpperCAmelCase : str = {}
__UpperCAmelCase : str = {}
for idx, shard in enumerate(lowercase_ ):
__UpperCAmelCase : List[Any] = weights_name.replace(
'''.bin''' , f"-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin" ) # len(sharded_state_dicts):05d}
__UpperCAmelCase : str = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) )
os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
__UpperCAmelCase : int = shard
for key in shard:
__UpperCAmelCase : List[str] = shard_file
# Add the metadata
__UpperCAmelCase : Optional[Any] = {'''total_size''': total_size}
__UpperCAmelCase : Tuple = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' ) as f:
__UpperCAmelCase : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n'''
f.write(lowercase_ )
return metadata, index
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""")
parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
lowerCAmelCase = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __SCREAMING_SNAKE_CASE ( ) -> int:
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
__UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
__UpperCAmelCase : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
__UpperCAmelCase : List[str] = TaTokenizer.from_pretrained('''t5-small''' )
__UpperCAmelCase : List[str] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
__UpperCAmelCase : Optional[Any] = tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids
__UpperCAmelCase : Optional[int] = model.generate(lowercase_ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 712 |
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
__UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b"
__UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:]
__UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase = {
"""vocab_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"""
),
"""distilbert-base-german-cased""": (
"""https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"""
),
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase = {
"""distilbert-base-uncased""": 512,
"""distilbert-base-uncased-distilled-squad""": 512,
"""distilbert-base-cased""": 512,
"""distilbert-base-cased-distilled-squad""": 512,
"""distilbert-base-german-cased""": 512,
"""distilbert-base-multilingual-cased""": 512,
}
lowerCAmelCase = {
"""distilbert-base-uncased""": {"""do_lower_case""": True},
"""distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True},
"""distilbert-base-cased""": {"""do_lower_case""": False},
"""distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False},
"""distilbert-base-german-cased""": {"""do_lower_case""": False},
"""distilbert-base-multilingual-cased""": {"""do_lower_case""": False},
}
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Any = VOCAB_FILES_NAMES
_lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase : Union[str, Any] = ['''input_ids''', '''attention_mask''']
_lowerCAmelCase : Dict = DistilBertTokenizer
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ):
super().__init__(
lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , )
__UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get('''lowercase''' , lowercase__) != do_lower_case
or normalizer_state.get('''strip_accents''' , lowercase__) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , lowercase__) != tokenize_chinese_chars
):
__UpperCAmelCase : Any = getattr(lowercase__ , normalizer_state.pop('''type'''))
__UpperCAmelCase : Dict = do_lower_case
__UpperCAmelCase : Optional[Any] = strip_accents
__UpperCAmelCase : str = tokenize_chinese_chars
__UpperCAmelCase : Tuple = normalizer_class(**lowercase__)
__UpperCAmelCase : str = do_lower_case
def A( self , lowercase__ , lowercase__=None):
__UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A( self , lowercase__ , lowercase__ = None):
__UpperCAmelCase : Tuple = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def A( self , lowercase__ , lowercase__ = None):
__UpperCAmelCase : int = self._tokenizer.model.save(lowercase__ , name=lowercase__)
return tuple(lowercase__)
| 713 |
from string import ascii_uppercase
lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase = dict(enumerate(ascii_uppercase))
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : List[Any] = len(lowercase_ )
__UpperCAmelCase : int = 0
while True:
if x == i:
__UpperCAmelCase : List[str] = 0
if len(lowercase_ ) == len(lowercase_ ):
break
key += key[i]
i += 1
return key
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : str = ''''''
__UpperCAmelCase : List[str] = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
__UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = ''''''
__UpperCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
__UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK'''
__UpperCAmelCase : List[Any] = '''SECRET'''
__UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ )
print(f"Encrypted Text = {s}" )
print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 675 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = """▁"""
lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""}
lowerCAmelCase = {
"""vocab_file""": {
"""facebook/mbart-large-50-one-to-many-mmt""": (
"""https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"""
),
}
}
lowerCAmelCase = {
"""facebook/mbart-large-50-one-to-many-mmt""": 1_024,
}
# fmt: off
lowerCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""]
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Tuple = VOCAB_FILES_NAMES
_lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
_lowerCAmelCase : List[int] = []
_lowerCAmelCase : List[int] = []
def __init__( self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
__UpperCAmelCase : Optional[Any] = kwargs.get('''additional_special_tokens''' , [])
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
__UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(lowercase__))
__UpperCAmelCase : Any = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model)
__UpperCAmelCase : Union[str, Any] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__)
}
__UpperCAmelCase : Any = {v: k for k, v in self.lang_code_to_id.items()}
__UpperCAmelCase : int = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
__UpperCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else '''en_XX'''
__UpperCAmelCase : Dict = self.lang_code_to_id[self._src_lang]
__UpperCAmelCase : int = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def A( self):
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def A( self):
return self._src_lang
@src_lang.setter
def A( self , lowercase__):
__UpperCAmelCase : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__( self):
__UpperCAmelCase : List[Any] = self.__dict__.copy()
__UpperCAmelCase : Optional[Any] = None
return state
def __setstate__( self , lowercase__):
__UpperCAmelCase : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
__UpperCAmelCase : int = {}
__UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def A( self):
__UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(lowercase__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def A( self , lowercase__):
return self.sp_model.encode(lowercase__ , out_type=lowercase__)
def A( self , lowercase__):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(lowercase__)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def A( self , lowercase__):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def A( self , lowercase__):
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : List[str] = ''''''
__UpperCAmelCase : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__) + token
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(lowercase__)
__UpperCAmelCase : str = False
out_string += self.sp_model.decode(lowercase__)
return out_string.strip()
def A( self , lowercase__ , lowercase__ = None):
if not os.path.isdir(lowercase__):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
__UpperCAmelCase : str = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowercase__)
elif not os.path.isfile(self.vocab_file):
with open(lowercase__ , '''wb''') as fi:
__UpperCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase__)
return (out_vocab_file,)
def A( self , lowercase__ , lowercase__ = None , lowercase__ = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__)
__UpperCAmelCase : int = [1] * len(self.prefix_tokens)
__UpperCAmelCase : List[str] = [1] * len(self.suffix_tokens)
if token_ids_a is None:
return prefix_ones + ([0] * len(lowercase__)) + suffix_ones
return prefix_ones + ([0] * len(lowercase__)) + ([0] * len(lowercase__)) + suffix_ones
def A( self , lowercase__ , lowercase__ = None):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''')
__UpperCAmelCase : str = src_lang
__UpperCAmelCase : List[Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__)
__UpperCAmelCase : Any = self.convert_tokens_to_ids(lowercase__)
__UpperCAmelCase : Optional[Any] = tgt_lang_id
return inputs
def A( self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ):
__UpperCAmelCase : Optional[Any] = src_lang
__UpperCAmelCase : int = tgt_lang
return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__)
def A( self):
return self.set_src_lang_special_tokens(self.src_lang)
def A( self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def A( self , lowercase__):
__UpperCAmelCase : List[Any] = self.lang_code_to_id[src_lang]
__UpperCAmelCase : Optional[Any] = [self.cur_lang_code_id]
__UpperCAmelCase : List[str] = [self.eos_token_id]
def A( self , lowercase__):
__UpperCAmelCase : Tuple = self.lang_code_to_id[tgt_lang]
__UpperCAmelCase : int = [self.cur_lang_code_id]
__UpperCAmelCase : Dict = [self.eos_token_id]
| 714 |
from typing import Dict, Optional
import numpy as np
import datasets
lowerCAmelCase = """
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
"""
lowerCAmelCase = """
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric(\"mean_iou\")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
"""
lowerCAmelCase = """\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"""
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
__UpperCAmelCase : List[str] = new_id
# turn into Numpy arrays
__UpperCAmelCase : Tuple = np.array(lowercase_ )
__UpperCAmelCase : str = np.array(lowercase_ )
if reduce_labels:
__UpperCAmelCase : List[Any] = 255
__UpperCAmelCase : str = label - 1
__UpperCAmelCase : Dict = 255
__UpperCAmelCase : str = label != ignore_index
__UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ )
__UpperCAmelCase : List[str] = pred_label[mask]
__UpperCAmelCase : Any = np.array(lowercase_ )[mask]
__UpperCAmelCase : Optional[Any] = pred_label[pred_label == label]
__UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0]
__UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
__UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase_ , lowercase_ ):
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# compute metrics
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum()
__UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union
__UpperCAmelCase : List[str] = total_area_intersect / total_area_label
__UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ )
__UpperCAmelCase : int = np.nanmean(lowercase_ )
__UpperCAmelCase : List[str] = all_acc
__UpperCAmelCase : Any = iou
__UpperCAmelCase : str = acc
if nan_to_num is not None:
__UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def A( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
'''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))),
}) , reference_urls=[
'''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'''
] , )
def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ):
__UpperCAmelCase : str = mean_iou(
results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , )
return iou_result
| 675 | 0 |
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=None , lowercase__=True , lowercase__=True , lowercase__=None , ):
__UpperCAmelCase : Any = size if size is not None else {'''height''': 2_0, '''width''': 2_0}
__UpperCAmelCase : str = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : Any = min_resolution
__UpperCAmelCase : Optional[int] = max_resolution
__UpperCAmelCase : str = size
__UpperCAmelCase : List[str] = do_normalize
__UpperCAmelCase : int = do_convert_rgb
__UpperCAmelCase : Any = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
__UpperCAmelCase : Any = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
def A( self):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def A( self):
__UpperCAmelCase : Dict = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
__UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__).raw).convert('''RGB''')
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Optional[Any] = PixaStructImageProcessingTester(self)
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb'''))
def A( self):
__UpperCAmelCase : Dict = self.image_processor_tester.prepare_dummy_image()
__UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict)
__UpperCAmelCase : Optional[Any] = 2_0_4_8
__UpperCAmelCase : int = image_processor(lowercase__ , return_tensors='''pt''' , max_patches=lowercase__)
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6) , atol=1e-3 , rtol=1e-3))
def A( self):
# Initialize image_processor
__UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image)
# Test not batched input
__UpperCAmelCase : str = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase : Optional[int] = image_processor(
lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A( self):
# Initialize image_processor
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image)
# Test not batched input
__UpperCAmelCase : Dict = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
__UpperCAmelCase : Tuple = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowercase__):
__UpperCAmelCase : List[str] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
__UpperCAmelCase : Union[str, Any] = '''Hello'''
__UpperCAmelCase : List[Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase : Dict = image_processor(
lowercase__ , return_tensors='''pt''' , max_patches=lowercase__ , header_text=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A( self):
# Initialize image_processor
__UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
__UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray)
__UpperCAmelCase : Optional[int] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase : str = image_processor(
lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def A( self):
# Initialize image_processor
__UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
__UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor)
# Test not batched input
__UpperCAmelCase : Tuple = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase : Optional[Any] = image_processor(
lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ):
_lowerCAmelCase : Union[str, Any] = PixaStructImageProcessor if is_vision_available() else None
def A( self):
__UpperCAmelCase : Dict = PixaStructImageProcessingTester(self , num_channels=4)
__UpperCAmelCase : str = 3
@property
def A( self):
return self.image_processor_tester.prepare_image_processor_dict()
def A( self):
__UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , '''do_normalize'''))
self.assertTrue(hasattr(lowercase__ , '''do_convert_rgb'''))
def A( self):
# Initialize image_processor
__UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image)
# Test not batched input
__UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
__UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
__UpperCAmelCase : Dict = image_processor(
lowercase__ , return_tensors='''pt''' , max_patches=lowercase__).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 715 |
lowerCAmelCase = 256
# Modulus to hash a string
lowerCAmelCase = 1_000_003
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
'''simple docstring'''
__UpperCAmelCase : List[str] = len(lowercase_ )
__UpperCAmelCase : Tuple = len(lowercase_ )
if p_len > t_len:
return False
__UpperCAmelCase : Any = 0
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : List[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(lowercase_ ):
__UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__UpperCAmelCase : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = '''abc1abc12'''
__UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ )
# Test 2)
__UpperCAmelCase : Union[str, Any] = '''ABABX'''
__UpperCAmelCase : List[Any] = '''ABABZABABYABABX'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 3)
__UpperCAmelCase : str = '''AAAB'''
__UpperCAmelCase : List[Any] = '''ABAAAAAB'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 4)
__UpperCAmelCase : Optional[Any] = '''abcdabcy'''
__UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(lowercase_ , lowercase_ )
# Test 5)
__UpperCAmelCase : Any = '''Lü'''
__UpperCAmelCase : Optional[int] = '''Lüsai'''
assert rabin_karp(lowercase_ , lowercase_ )
__UpperCAmelCase : List[Any] = '''Lue'''
assert not rabin_karp(lowercase_ , lowercase_ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 675 | 0 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
lowerCAmelCase = logging.get_logger(__name__)
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : Any = '''vision-encoder-decoder'''
_lowerCAmelCase : Tuple = True
def __init__( self , **lowercase__):
super().__init__(**lowercase__)
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F"A configuraton of type {self.model_type} cannot be instantiated because "
F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}")
__UpperCAmelCase : int = kwargs.pop('''encoder''')
__UpperCAmelCase : Optional[int] = encoder_config.pop('''model_type''')
__UpperCAmelCase : Tuple = kwargs.pop('''decoder''')
__UpperCAmelCase : Any = decoder_config.pop('''model_type''')
__UpperCAmelCase : Union[str, Any] = AutoConfig.for_model(lowercase__ , **lowercase__)
__UpperCAmelCase : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__)
__UpperCAmelCase : str = True
@classmethod
def A( cls , lowercase__ , lowercase__ , **lowercase__):
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[Any] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase__)
def A( self):
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__)
__UpperCAmelCase : Optional[int] = self.encoder.to_dict()
__UpperCAmelCase : Optional[Any] = self.decoder.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class lowerCamelCase ( _UpperCamelCase ):
_lowerCAmelCase : int = version.parse('''1.11''' )
@property
def A( self):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
])
@property
def A( self):
return 1e-4
@property
def A( self):
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}})
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
__UpperCAmelCase : Dict = OrderedDict()
__UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__UpperCAmelCase : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
__UpperCAmelCase : str = {0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ):
import torch
__UpperCAmelCase : Optional[Any] = OrderedDict()
__UpperCAmelCase : int = super().generate_dummy_inputs(
lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__)
__UpperCAmelCase : Optional[Any] = dummy_input['''input_ids'''].shape
__UpperCAmelCase : List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size)
__UpperCAmelCase : Optional[Any] = dummy_input.pop('''input_ids''')
__UpperCAmelCase : Optional[int] = dummy_input.pop('''attention_mask''')
__UpperCAmelCase : Tuple = torch.zeros(lowercase__)
return common_inputs
class lowerCamelCase ( _UpperCamelCase ):
@property
def A( self):
pass
def A( self , lowercase__):
return VisionEncoderDecoderEncoderOnnxConfig(lowercase__)
def A( self , lowercase__ , lowercase__ , lowercase__ = "default"):
__UpperCAmelCase : List[Any] = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(lowercase__ , lowercase__)
| 716 |
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = int(lowercase_ )
if n_element < 1:
__UpperCAmelCase : str = ValueError('''a should be a positive number''' )
raise my_error
__UpperCAmelCase : Any = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0)
__UpperCAmelCase : int = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
lowerCAmelCase = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""")
| 675 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.