code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = ['''image_processor''', '''tokenizer'''] _lowerCAmelCase : Tuple = '''OwlViTImageProcessor''' _lowerCAmelCase : Optional[int] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , lowercase__=None , lowercase__=None , **lowercase__): __UpperCAmelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase : Tuple = kwargs.pop('''feature_extractor''') __UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase__ , lowercase__) def __call__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="max_length" , lowercase__="np" , **lowercase__): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''') if text is not None: if isinstance(lowercase__ , lowercase__) or (isinstance(lowercase__ , lowercase__) and not isinstance(text[0] , lowercase__)): __UpperCAmelCase : Dict = [self.tokenizer(lowercase__ , padding=lowercase__ , return_tensors=lowercase__ , **lowercase__)] elif isinstance(lowercase__ , lowercase__) and isinstance(text[0] , lowercase__): __UpperCAmelCase : Union[str, Any] = [] # Maximum number of queries across batch __UpperCAmelCase : Tuple = max([len(lowercase__) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(lowercase__) != max_num_queries: __UpperCAmelCase : List[Any] = t + [''' '''] * (max_num_queries - len(lowercase__)) __UpperCAmelCase : List[str] = self.tokenizer(lowercase__ , padding=lowercase__ , return_tensors=lowercase__ , **lowercase__) encodings.append(lowercase__) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''') if return_tensors == "np": __UpperCAmelCase : Union[str, Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase : int = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase : int = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase : Any = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase : List[str] = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0) __UpperCAmelCase : Any = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase : Dict = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0) __UpperCAmelCase : List[Any] = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0) else: raise ValueError('''Target return tensor type could not be returned''') __UpperCAmelCase : List[Any] = BatchEncoding() __UpperCAmelCase : Tuple = input_ids __UpperCAmelCase : List[Any] = attention_mask if query_images is not None: __UpperCAmelCase : Any = BatchEncoding() __UpperCAmelCase : str = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__).pixel_values __UpperCAmelCase : Tuple = query_pixel_values if images is not None: __UpperCAmelCase : Optional[int] = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__) if text is not None and images is not None: __UpperCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__) , tensor_type=lowercase__) def A( self , *lowercase__ , **lowercase__): return self.image_processor.post_process(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.image_processor.post_process_object_detection(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.image_processor.post_process_image_guided_detection(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.decode(*lowercase__ , **lowercase__) @property def A( self): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def A( self): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=3 , lowercase__=3_2 , lowercase__=3 , lowercase__=1_0 , lowercase__=[1_0, 2_0, 3_0, 4_0] , lowercase__=[1, 1, 2, 1] , lowercase__=True , lowercase__=True , lowercase__="relu" , lowercase__=3 , lowercase__=None , ): __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[Any] = embeddings_size __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : str = len(lowercase__) def A( self): __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values def A( self): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = FlaxRegNetModel(config=lowercase__) __UpperCAmelCase : Union[str, Any] = model(lowercase__) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : Any = FlaxRegNetForImageClassification(config=lowercase__) __UpperCAmelCase : Optional[int] = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A( self): __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _lowerCAmelCase : Any = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[int] = False def A( self): __UpperCAmelCase : Dict = FlaxRegNetModelTester(self) __UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__) def A( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A( self): return def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) @unittest.skip(reason='''RegNet does not use inputs_embeds''') def A( self): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(lowercase__) __UpperCAmelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Any = model_class(lowercase__) __UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : str = self.model_tester.num_stages self.assertEqual(len(lowercase__) , expected_num_stages + 1) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __UpperCAmelCase : Any = self._prepare_for_class(lowercase__ , lowercase__) __UpperCAmelCase : Any = model_class(lowercase__) @jax.jit def model_jitted(lowercase__ , **lowercase__): return model(pixel_values=lowercase__ , **lowercase__) with self.subTest('''JIT Enabled'''): __UpperCAmelCase : Optional[Any] = model_jitted(**lowercase__).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): __UpperCAmelCase : Dict = model_jitted(**lowercase__).to_tuple() self.assertEqual(len(lowercase__) , len(lowercase__)) for jitted_output, output in zip(lowercase__ , lowercase__): self.assertEqual(jitted_output.shape , output.shape) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''') if is_vision_available() else None @slow def A( self): __UpperCAmelCase : str = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''') __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=lowercase__ , return_tensors='''np''') __UpperCAmelCase : Optional[int] = model(**lowercase__) # verify the logits __UpperCAmelCase : str = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : Union[str, Any] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[str, float]: '''simple docstring''' __UpperCAmelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[str, str]: '''simple docstring''' __UpperCAmelCase : List[str] = random.randint(0 , len(lowercase_ ) - 1 ) __UpperCAmelCase : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] __UpperCAmelCase : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = list(lowercase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCAmelCase : Union[str, Any] = random.choice(lowercase_ ) return "".join(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , ) -> list[str]: '''simple docstring''' __UpperCAmelCase : List[str] = [] # Generate more children proportionally to the fitness score. __UpperCAmelCase : Tuple = int(parent_a[1] * 100 ) + 1 __UpperCAmelCase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): __UpperCAmelCase : Union[str, Any] = population_score[random.randint(0 , lowercase_ )][0] __UpperCAmelCase , __UpperCAmelCase : Any = crossover(parent_a[0] , lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ , lowercase_ ) ) pop.append(mutate(lowercase_ , lowercase_ ) ) return pop def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: __UpperCAmelCase : Optional[Any] = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCAmelCase : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCAmelCase : Dict = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(lowercase_ ) # Generate random starting population. __UpperCAmelCase : List[Any] = [] for _ in range(lowercase_ ): population.append(''''''.join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCAmelCase , __UpperCAmelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCAmelCase : Tuple = [evaluate(lowercase_ , lowercase_ ) for item in population] # Check if there is a matching evolution. __UpperCAmelCase : Tuple = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCAmelCase : List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. __UpperCAmelCase : Union[str, Any] = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] , lowercase_ , lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowerCAmelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase = """__DUMMY_TRANSFORMERS_USER__""" lowerCAmelCase = """Dummy User""" lowerCAmelCase = """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""" lowerCAmelCase = """https://hub-ci.huggingface.co""" lowerCAmelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCAmelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCAmelCase = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , lowercase_ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' HfFolder.save_token(lowercase_ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=lowercase_ ) @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = HfFolder.get_token() HfFolder.save_token(lowercase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' def _cleanup_repo(lowercase_ ): hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' @contextmanager def _temporary_repo(lowercase_ ): try: yield repo_id finally: cleanup_repo(lowercase_ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = f"repo_txt_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Dict = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data/text_data.txt''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Any = f"repo_zipped_txt_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Tuple = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data.zip''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = f"repo_zipped_img_data-{int(time.time() * 10e3 )}" __UpperCAmelCase : Dict = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' , private=lowercase_ ) hf_api.upload_file( token=lowercase_ , path_or_fileobj=str(lowercase_ ) , path_in_repo='''data.zip''' , repo_id=lowercase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(lowercase_ , token=lowercase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : _lowerCAmelCase : str = field( default=_UpperCamelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_UpperCamelCase )} ) _lowerCAmelCase : str = field( default=_UpperCamelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowerCAmelCase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCAmelCase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowerCAmelCase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowerCAmelCase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowerCAmelCase : bool = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowerCAmelCase : bool = field( default=_UpperCamelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowerCAmelCase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowerCAmelCase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowerCAmelCase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowerCAmelCase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = '''train''' _lowerCAmelCase : List[Any] = '''dev''' class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : SquadDataTrainingArguments _lowerCAmelCase : List[SquadFeatures] _lowerCAmelCase : Split _lowerCAmelCase : bool def __init__( self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = Split.train , lowercase__ = False , lowercase__ = None , lowercase__ = "pt" , ): __UpperCAmelCase : Union[str, Any] = args __UpperCAmelCase : List[str] = is_language_sensitive __UpperCAmelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase__ , lowercase__): try: __UpperCAmelCase : str = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''') __UpperCAmelCase : int = mode # Load data features from cache or dataset file __UpperCAmelCase : Tuple = '''v2''' if args.version_2_with_negative else '''v1''' __UpperCAmelCase : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase : int = cached_features_file + '''.lock''' with FileLock(lowercase__): if os.path.exists(lowercase__) and not args.overwrite_cache: __UpperCAmelCase : Any = time.time() __UpperCAmelCase : Tuple = torch.load(lowercase__) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase : Any = self.old_features['''features'''] __UpperCAmelCase : Any = self.old_features.get('''dataset''' , lowercase__) __UpperCAmelCase : List[Any] = self.old_features.get('''examples''' , lowercase__) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ''' future run''') else: if mode == Split.dev: __UpperCAmelCase : List[Any] = self.processor.get_dev_examples(args.data_dir) else: __UpperCAmelCase : Dict = self.processor.get_train_examples(args.data_dir) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase__ , ) __UpperCAmelCase : Dict = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , lowercase__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]") def __len__( self): return len(self.features) def __getitem__( self , lowercase__): # Convert to Tensors and build dataset __UpperCAmelCase : List[Any] = self.features[i] __UpperCAmelCase : Tuple = torch.tensor(feature.input_ids , dtype=torch.long) __UpperCAmelCase : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long) __UpperCAmelCase : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long) __UpperCAmelCase : Tuple = torch.tensor(feature.cls_index , dtype=torch.long) __UpperCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float) __UpperCAmelCase : Any = torch.tensor(feature.is_impossible , dtype=torch.float) __UpperCAmelCase : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask}) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible}) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: __UpperCAmelCase : Optional[Any] = torch.tensor(feature.start_position , dtype=torch.long) __UpperCAmelCase : List[Any] = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions}) return inputs
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : str = getattr(lowercase_ , lowercase_ ) if weight_type is not None: __UpperCAmelCase : List[Any] = getattr(lowercase_ , lowercase_ ).shape else: __UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Any = value elif weight_type == "bias": __UpperCAmelCase : int = value else: __UpperCAmelCase : Tuple = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[int] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Any = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: __UpperCAmelCase : int = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Tuple = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : Optional[Any] = '''weight_v''' elif "weight" in name: __UpperCAmelCase : Any = '''weight''' elif "bias" in name: __UpperCAmelCase : str = '''bias''' else: __UpperCAmelCase : str = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : int = name.split('''.''' ) __UpperCAmelCase : Dict = int(items[0] ) __UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __UpperCAmelCase : Optional[int] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = SEWConfig() if is_finetuned: __UpperCAmelCase : str = model.wav_encoder.wav_model.cfg else: __UpperCAmelCase : Optional[int] = model.cfg __UpperCAmelCase : Optional[int] = fs_config.conv_bias __UpperCAmelCase : List[str] = eval(fs_config.conv_feature_layers ) __UpperCAmelCase : Dict = [x[0] for x in conv_layers] __UpperCAmelCase : Optional[Any] = [x[1] for x in conv_layers] __UpperCAmelCase : Any = [x[2] for x in conv_layers] __UpperCAmelCase : Dict = '''gelu''' __UpperCAmelCase : Union[str, Any] = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' __UpperCAmelCase : Optional[int] = 0.0 __UpperCAmelCase : Union[str, Any] = fs_config.activation_fn.name __UpperCAmelCase : Union[str, Any] = fs_config.encoder_embed_dim __UpperCAmelCase : Optional[int] = 0.0_2 __UpperCAmelCase : Optional[Any] = fs_config.encoder_ffn_embed_dim __UpperCAmelCase : Any = 1e-5 __UpperCAmelCase : int = fs_config.encoder_layerdrop __UpperCAmelCase : Optional[int] = fs_config.encoder_attention_heads __UpperCAmelCase : Optional[Any] = fs_config.conv_pos_groups __UpperCAmelCase : int = fs_config.conv_pos __UpperCAmelCase : Optional[Any] = len(lowercase_ ) __UpperCAmelCase : int = fs_config.encoder_layers __UpperCAmelCase : int = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __UpperCAmelCase : str = model.cfg __UpperCAmelCase : Any = fs_config.final_dropout __UpperCAmelCase : List[Any] = fs_config.layerdrop __UpperCAmelCase : Optional[Any] = fs_config.activation_dropout __UpperCAmelCase : Optional[int] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __UpperCAmelCase : Any = fs_config.attention_dropout __UpperCAmelCase : List[Any] = fs_config.dropout_input __UpperCAmelCase : List[Any] = fs_config.dropout __UpperCAmelCase : List[str] = fs_config.mask_channel_length __UpperCAmelCase : Tuple = fs_config.mask_channel_prob __UpperCAmelCase : str = fs_config.mask_length __UpperCAmelCase : Optional[int] = fs_config.mask_prob __UpperCAmelCase : Tuple = '''Wav2Vec2FeatureExtractor''' __UpperCAmelCase : List[str] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True ) -> Optional[Any]: '''simple docstring''' if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __UpperCAmelCase : Optional[int] = SEWConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : Tuple = convert_config(model[0] , lowercase_ ) __UpperCAmelCase : int = model[0].eval() __UpperCAmelCase : str = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) if is_finetuned: if dict_path: __UpperCAmelCase : Any = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Tuple = target_dict.pad_index __UpperCAmelCase : Tuple = target_dict.bos_index __UpperCAmelCase : Any = target_dict.pad_index __UpperCAmelCase : List[str] = target_dict.bos_index __UpperCAmelCase : Any = target_dict.eos_index __UpperCAmelCase : Any = len(target_dict.symbols ) __UpperCAmelCase : Dict = os.path.join(lowercase_ , '''vocab.json''' ) if not os.path.isdir(lowercase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , lowercase_ ) __UpperCAmelCase : int = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , ) __UpperCAmelCase : Optional[int] = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) __UpperCAmelCase : List[Any] = SEWForCTC(lowercase_ ) else: __UpperCAmelCase : Any = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ , lowercase_ , lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils) __UpperCAmelCase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py''']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCAmelCase : str = test_metrics @require_cpu def A( self): debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def A( self): debug_launcher(self.test_metrics.main) @require_single_gpu def A( self): self.test_metrics.main() @require_multi_gpu def A( self): print(F"Found {torch.cuda.device_count()} devices.") __UpperCAmelCase : Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase__ , env=os.environ.copy())
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : str = 0 @slow def A( self): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(lowercase__) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) self.assertIsInstance(lowercase__ , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(lowercase__) , 0) def A( self): __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def A( self): __UpperCAmelCase : str = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 2_0) def A( self): __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) # Check that tokenizer_type ≠ model_type __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase__ , config=lowercase__) self.assertIsInstance(lowercase__ , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 1_2) def A( self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(lowercase__ , '''vocab.txt''')) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase__ , tokenizer_type='''bert''' , use_fast=lowercase__) self.assertIsInstance(lowercase__ , lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(lowercase__ , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(lowercase__ , '''merges.txt''')) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(lowercase__ , tokenizer_type='''gpt2''' , use_fast=lowercase__) self.assertIsInstance(lowercase__ , lowercase__) @require_tokenizers def A( self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(lowercase__ , '''vocab.txt''')) __UpperCAmelCase : int = AutoTokenizer.from_pretrained(lowercase__ , tokenizer_type='''bert''') self.assertIsInstance(lowercase__ , lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(lowercase__ , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(lowercase__ , '''merges.txt''')) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase__ , tokenizer_type='''gpt2''') self.assertIsInstance(lowercase__ , lowercase__) def A( self): with pytest.raises(lowercase__): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''') @require_tokenizers def A( self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __UpperCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''') self.assertIsInstance(lowercase__ , (BertTokenizer, BertTokenizerFast)) if isinstance(lowercase__ , lowercase__): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowercase__) else: self.assertEqual(tokenizer.do_lower_case , lowercase__) self.assertEqual(tokenizer.model_max_length , 5_1_2) @require_tokenizers def A( self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowercase__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''') def A( self): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __UpperCAmelCase : Tuple = TOKENIZER_MAPPING.values() __UpperCAmelCase : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowercase__) @require_tokenizers def A( self): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowercase__) , lowercase__) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''') , lowercase__) @require_tokenizers def A( self): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=lowercase__) __UpperCAmelCase : str = '''Hello, world. How are you?''' __UpperCAmelCase : str = tokenizer.tokenize(lowercase__) self.assertEqual('''[UNK]''' , tokens[0]) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=lowercase__) __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertEqual('''[UNK]''' , tokens[0]) @require_tokenizers def A( self): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''') self.assertEqual(type(lowercase__) , lowercase__) self.assertEqual(tokenizer.model_max_length , 5_1_2) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0) self.assertEqual(tokenizer.unk_token , '''[UNK]''') self.assertEqual(tokenizer.padding_side , '''right''') self.assertEqual(tokenizer.truncation_side , '''right''') def A( self): __UpperCAmelCase : str = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 1_2) def A( self): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''ctrl''') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowercase__ , lowercase__) def A( self): # Check we can load the tokenizer config of an online model. __UpperCAmelCase : Union[str, Any] = get_tokenizer_config('''bert-base-cased''') __UpperCAmelCase : List[Any] = config.pop('''_commit_hash''' , lowercase__) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowercase__ , {'''do_lower_case''': False}) # This model does not have a tokenizer_config so we get back an empty dict. __UpperCAmelCase : Optional[Any] = get_tokenizer_config(lowercase__) self.assertDictEqual(lowercase__ , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Any = get_tokenizer_config(lowercase__) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''') def A( self): try: AutoConfig.register('''custom''' , lowercase__) AutoTokenizer.register(lowercase__ , slow_tokenizer_class=lowercase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase__): AutoTokenizer.register(lowercase__ , slow_tokenizer_class=lowercase__) __UpperCAmelCase : Dict = CustomTokenizer.from_pretrained(lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def A( self): try: AutoConfig.register('''custom''' , lowercase__) # Can register in two steps AutoTokenizer.register(lowercase__ , slow_tokenizer_class=lowercase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(lowercase__ , fast_tokenizer_class=lowercase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowercase__ , slow_tokenizer_class=lowercase__ , fast_tokenizer_class=lowercase__) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase__): AutoTokenizer.register(lowercase__ , fast_tokenizer_class=lowercase__) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : List[Any] = BertTokenizerFast.from_pretrained(lowercase__) bert_tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : str = CustomTokenizerFast.from_pretrained(lowercase__) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase__ , use_fast=lowercase__) self.assertIsInstance(lowercase__ , lowercase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def A( self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase__): __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase__): __UpperCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__) __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(lowercase__ , trust_remote_code=lowercase__) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version __UpperCAmelCase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__ , use_fast=lowercase__) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase__) __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__ , trust_remote_code=lowercase__ , use_fast=lowercase__) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') @require_tokenizers def A( self): class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = False class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = NewTokenizer _lowerCAmelCase : str = False try: AutoConfig.register('''custom''' , lowercase__) AutoTokenizer.register(lowercase__ , slow_tokenizer_class=lowercase__) AutoTokenizer.register(lowercase__ , fast_tokenizer_class=lowercase__) # If remote code is not set, the default is to use local __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=lowercase__) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__ , use_fast=lowercase__) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertTrue(tokenizer.special_attribute_present) __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowercase__ , use_fast=lowercase__) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def A( self): __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=lowercase__) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version __UpperCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=lowercase__ , use_fast=lowercase__) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def A( self): with self.assertRaisesRegex( lowercase__ , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''') def A( self): with self.assertRaisesRegex( lowercase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowercase__ , revision='''aaaaaa''') def A( self): # Make sure we have cached the tokenizer. __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') with RequestCounter() as counter: __UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000000 ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = OpenAIGPTTokenizer _lowerCAmelCase : int = OpenAIGPTTokenizerFast _lowerCAmelCase : Dict = True _lowerCAmelCase : List[str] = False def A( self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(lowercase__)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(lowercase__)) def A( self , lowercase__): return "lower newer", "lower newer" def A( self): __UpperCAmelCase : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) __UpperCAmelCase : str = '''lower''' __UpperCAmelCase : Optional[Any] = ['''low''', '''er</w>'''] __UpperCAmelCase : str = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) __UpperCAmelCase : List[str] = tokens + ['''<unk>'''] __UpperCAmelCase : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__) def A( self , lowercase__=1_5): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__) # Simple input __UpperCAmelCase : List[str] = '''This is a simple input''' __UpperCAmelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase : str = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase : str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Simple input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Simple input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , ) # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Pair input self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''') # Pair input self.assertRaises( lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding='''max_length''' , ) def A( self): pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase ( _UpperCamelCase ): pass
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase : Optional[Any] = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) __UpperCAmelCase : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase : int = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase : Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = dct.pop(lowercase_ ) __UpperCAmelCase : List[Any] = val def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if "handwritten" in checkpoint_url: __UpperCAmelCase : Dict = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase : List[str] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase : str = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = ViTConfig(image_size=384 , qkv_bias=lowercase_ ) __UpperCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase : List[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase : Optional[int] = 1024 __UpperCAmelCase : Union[str, Any] = 4096 __UpperCAmelCase : Dict = 24 __UpperCAmelCase : str = 16 __UpperCAmelCase : Dict = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = '''relu''' __UpperCAmelCase : Tuple = 1024 __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Dict = False __UpperCAmelCase : str = False # load HuggingFace model __UpperCAmelCase : Union[str, Any] = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) __UpperCAmelCase : str = TrOCRForCausalLM(lowercase_ ) __UpperCAmelCase : Dict = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] __UpperCAmelCase : List[Any] = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase : Optional[Any] = state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase : Tuple = val else: __UpperCAmelCase : Optional[int] = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image __UpperCAmelCase : Optional[int] = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase : int = TrOCRProcessor(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase : int = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) __UpperCAmelCase : int = outputs.logits __UpperCAmelCase : Optional[Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase : Optional[Any] = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase : List[Any] = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase : Union[str, Any] = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase : Any = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = int(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = t // 3600, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=300 ) -> Optional[int]: '''simple docstring''' return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __UpperCAmelCase : Optional[Any] = f"{elt:.6f}" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCamelCase : _lowerCAmelCase : Optional[Any] = 5 _lowerCAmelCase : List[Any] = 0.2 def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = 3_0_0 , ): __UpperCAmelCase : Optional[Any] = total __UpperCAmelCase : Tuple = '''''' if prefix is None else prefix __UpperCAmelCase : Any = leave __UpperCAmelCase : Any = parent __UpperCAmelCase : List[str] = width __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Tuple = None def A( self , lowercase__ , lowercase__ = False , lowercase__ = None): __UpperCAmelCase : Tuple = value if comment is not None: __UpperCAmelCase : Optional[Any] = comment if self.last_value is None: __UpperCAmelCase : Any = time.time() __UpperCAmelCase : List[str] = value __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Dict = self.warmup __UpperCAmelCase : Optional[Any] = 1 self.update_bar(lowercase__) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 __UpperCAmelCase : int = time.time() __UpperCAmelCase : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __UpperCAmelCase : List[Any] = self.elapsed_time / (value - self.start_value) else: __UpperCAmelCase : Optional[int] = None if value >= self.total: __UpperCAmelCase : Union[str, Any] = self.total __UpperCAmelCase : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: __UpperCAmelCase : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(lowercase__) __UpperCAmelCase : List[str] = value __UpperCAmelCase : Dict = current_time if self.average_time_per_item is None: __UpperCAmelCase : str = 1 else: __UpperCAmelCase : Optional[Any] = max(int(self.update_every / self.average_time_per_item) , 1) def A( self , lowercase__ , lowercase__=None): __UpperCAmelCase : int = ''' ''' * (len(str(self.total)) - len(str(lowercase__))) + str(lowercase__) if self.elapsed_time is None: __UpperCAmelCase : str = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: __UpperCAmelCase : List[str] = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: __UpperCAmelCase : Dict = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" F" {format_time(self.predicted_remaining)}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else F", {self.comment}]" self.display() def A( self): __UpperCAmelCase : Tuple = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __UpperCAmelCase : List[str] = disp.display(disp.HTML(self.html_code) , display_id=lowercase__) else: self.output.update(disp.HTML(self.html_code)) def A( self): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''')) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__=None): super().__init__(lowercase__) __UpperCAmelCase : str = None if column_names is None else [column_names] __UpperCAmelCase : List[Any] = None def A( self): __UpperCAmelCase : Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __UpperCAmelCase : Optional[Any] = disp.display(disp.HTML(self.html_code) , display_id=lowercase__) else: self.output.update(disp.HTML(self.html_code)) def A( self , lowercase__): if self.inner_table is None: __UpperCAmelCase : Dict = [list(values.keys()), list(values.values())] else: __UpperCAmelCase : Optional[Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowercase__) __UpperCAmelCase : Dict = columns self.inner_table.append([values[c] for c in columns]) def A( self , lowercase__ , lowercase__=None , lowercase__=3_0_0): __UpperCAmelCase : int = NotebookProgressBar(lowercase__ , prefix=lowercase__ , parent=self , width=lowercase__) return self.child_bar def A( self): __UpperCAmelCase : str = None self.display() class lowerCamelCase ( _UpperCamelCase ): def __init__( self): __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Dict = False def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : List[Any] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''') __UpperCAmelCase : List[str] = NotebookTrainingTracker(state.max_steps , lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): __UpperCAmelCase : Any = int(state.epoch) if int(state.epoch) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) __UpperCAmelCase : List[Any] = False def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): if not has_length(lowercase__): return if self.prediction_bar is None: if self.training_tracker is not None: __UpperCAmelCase : Union[str, Any] = self.training_tracker.add_child(len(lowercase__)) else: __UpperCAmelCase : Tuple = NotebookProgressBar(len(lowercase__)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): if self.prediction_bar is not None: self.prediction_bar.close() __UpperCAmelCase : Union[str, Any] = None def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __UpperCAmelCase : Union[str, Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __UpperCAmelCase : List[Any] = state.global_step self.training_tracker.write_line(lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , **lowercase__): if self.training_tracker is not None: __UpperCAmelCase : Tuple = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history): if "loss" in log: __UpperCAmelCase : Tuple = log['''loss'''] break if self.first_column == "Epoch": __UpperCAmelCase : List[str] = int(state.epoch) else: __UpperCAmelCase : Any = state.global_step __UpperCAmelCase : Union[str, Any] = '''eval''' for k in metrics: if k.endswith('''_loss'''): __UpperCAmelCase : int = re.sub(r'''\_loss$''' , '''''' , lowercase__) __UpperCAmelCase : List[Any] = metrics.pop('''total_flos''' , lowercase__) __UpperCAmelCase : List[str] = metrics.pop('''epoch''' , lowercase__) __UpperCAmelCase : int = metrics.pop(F"{metric_key_prefix}_runtime" , lowercase__) __UpperCAmelCase : Dict = metrics.pop(F"{metric_key_prefix}_samples_per_second" , lowercase__) __UpperCAmelCase : Any = metrics.pop(F"{metric_key_prefix}_steps_per_second" , lowercase__) __UpperCAmelCase : Optional[Any] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , lowercase__) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": __UpperCAmelCase : List[str] = v else: __UpperCAmelCase : Dict = k.split('''_''') __UpperCAmelCase : Optional[int] = ''' '''.join([part.capitalize() for part in splits[1:]]) __UpperCAmelCase : Optional[Any] = v self.training_tracker.write_line(lowercase__) self.training_tracker.remove_child() __UpperCAmelCase : List[Any] = None # Evaluation takes a long time so we should force the next update. __UpperCAmelCase : Any = True def A( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch)}/{state.num_train_epochs}" , force_update=lowercase__) __UpperCAmelCase : Optional[int] = None
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''mra''' def __init__( self , lowercase__=5_0_2_6_5 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1 , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__="absolute" , lowercase__=4 , lowercase__="full" , lowercase__=0 , lowercase__=0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = position_embedding_type __UpperCAmelCase : List[str] = block_per_row __UpperCAmelCase : Optional[int] = approx_mode __UpperCAmelCase : List[str] = initial_prior_first_n_blocks __UpperCAmelCase : List[Any] = initial_prior_diagonal_n_blocks
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 512} def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = set() __UpperCAmelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char __UpperCAmelCase : Union[str, Any] = set(lowercase_ ) return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Any = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="__start__" , lowercase__="__end__" , lowercase__="__unk__" , lowercase__="__null__" , **lowercase__ , ): super().__init__(unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : str = json.load(lowercase__) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[Any] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split()) for merge in merges] __UpperCAmelCase : List[str] = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Tuple = {} @property def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub('''([.,!?()])''' , r''' \1''' , lowercase__) __UpperCAmelCase : Optional[int] = re.sub('''(\')''' , r''' \1 ''' , lowercase__) __UpperCAmelCase : List[Any] = re.sub(r'''\s{2,}''' , ''' ''' , lowercase__) if "\n" in token: __UpperCAmelCase : int = token.replace('''\n''' , ''' __newln__''') __UpperCAmelCase : str = token.split(''' ''') __UpperCAmelCase : Any = [] for token in tokens: if not len(lowercase__): continue __UpperCAmelCase : List[str] = token.lower() __UpperCAmelCase : Tuple = tuple(lowercase__) __UpperCAmelCase : int = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) __UpperCAmelCase : List[str] = get_pairs(lowercase__) if not pairs: words.append(lowercase__) continue while True: __UpperCAmelCase : Optional[Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[Any] = 0 while i < len(lowercase__): try: __UpperCAmelCase : Optional[int] = word.index(lowercase__ , lowercase__) new_word.extend(word[i:j]) __UpperCAmelCase : List[Any] = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : List[Any] = tuple(lowercase__) __UpperCAmelCase : List[Any] = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Dict = get_pairs(lowercase__) __UpperCAmelCase : Union[str, Any] = '''@@ '''.join(lowercase__) __UpperCAmelCase : Any = word[:-4] __UpperCAmelCase : Union[str, Any] = word words.append(lowercase__) return " ".join(lowercase__) def A( self , lowercase__): __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = re.findall(r'''\S+\n?''' , lowercase__) for token in words: split_tokens.extend(list(self.bpe(lowercase__).split(''' '''))) return split_tokens def A( self , lowercase__): __UpperCAmelCase : Any = token.lower() return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__ , self.unk_token) def A( self , lowercase__): __UpperCAmelCase : List[str] = ''' '''.join(lowercase__).replace('''@@ ''' , '''''').strip() return out_string def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : int = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : List[str] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : List[str] = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : List[Any] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCAmelCase : str = 0 __UpperCAmelCase : Dict = len(lowercase_ ) - 1 __UpperCAmelCase : Optional[int] = 0 while index >= 0: __UpperCAmelCase : str = (ord(column_title[index] ) - 64) * pow(26 , lowercase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase = 3 def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' print('''Generating primitive root of p''' ) while True: __UpperCAmelCase : List[str] = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('''Generating prime p...''' ) __UpperCAmelCase : Optional[Any] = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. __UpperCAmelCase : List[str] = primitive_root(lowercase_ ) # one primitive root on modulo p. __UpperCAmelCase : int = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. __UpperCAmelCase : str = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) __UpperCAmelCase : str = (key_size, e_a, e_a, p) __UpperCAmelCase : int = (key_size, d) return public_key, private_key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: '''simple docstring''' if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print('''\nWARNING:''' ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __UpperCAmelCase , __UpperCAmelCase : str = generate_key(lowercase_ ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , '''w''' ) as fo: fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , '''w''' ) as fo: fo.write(f"{private_key[0]},{private_key[1]}" ) def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[str] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __UpperCAmelCase : Any = MaskFormerConfig(backbone_config=lowercase_ ) __UpperCAmelCase : str = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __UpperCAmelCase : int = 847 __UpperCAmelCase : Dict = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __UpperCAmelCase : Dict = 150 __UpperCAmelCase : Dict = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __UpperCAmelCase : Union[str, Any] = 171 __UpperCAmelCase : List[Any] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __UpperCAmelCase : Tuple = 133 __UpperCAmelCase : Optional[int] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __UpperCAmelCase : Tuple = 19 __UpperCAmelCase : Union[str, Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __UpperCAmelCase : Optional[int] = 65 __UpperCAmelCase : List[str] = '''mapillary-vistas-id2label.json''' __UpperCAmelCase : List[str] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Union[str, Any] = {int(lowercase_ ): v for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight") ) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = dct.pop(lowercase_ ) __UpperCAmelCase : Optional[int] = val def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) __UpperCAmelCase : List[Any] = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : List[Any] = in_proj_weight[:dim, :] __UpperCAmelCase : Tuple = in_proj_bias[: dim] __UpperCAmelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : str = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Any = in_proj_bias[-dim :] # fmt: on def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __UpperCAmelCase : Optional[int] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[: hidden_size, :] __UpperCAmelCase : Optional[int] = in_proj_bias[:config.hidden_size] __UpperCAmelCase : Tuple = in_proj_weight[hidden_size : hidden_size * 2, :] __UpperCAmelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : str = in_proj_weight[-hidden_size :, :] __UpperCAmelCase : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : List[Any] = in_proj_weight[: hidden_size, :] __UpperCAmelCase : List[str] = in_proj_bias[:config.hidden_size] __UpperCAmelCase : Tuple = in_proj_weight[hidden_size : hidden_size * 2, :] __UpperCAmelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Optional[Any] = in_proj_weight[-hidden_size :, :] __UpperCAmelCase : List[str] = in_proj_bias[-hidden_size :] # fmt: on def __SCREAMING_SNAKE_CASE ( ) -> torch.Tensor: '''simple docstring''' __UpperCAmelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = get_maskformer_config(lowercase_ ) # load original state_dict with open(lowercase_ , '''rb''' ) as f: __UpperCAmelCase : Optional[int] = pickle.load(lowercase_ ) __UpperCAmelCase : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __UpperCAmelCase : List[str] = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_swin_q_k_v(lowercase_ , config.backbone_config ) read_in_decoder_q_k_v(lowercase_ , lowercase_ ) # update to torch tensors for key, value in state_dict.items(): __UpperCAmelCase : Tuple = torch.from_numpy(lowercase_ ) # load 🤗 model __UpperCAmelCase : Optional[int] = MaskFormerForInstanceSegmentation(lowercase_ ) model.eval() for name, param in model.named_parameters(): print(lowercase_ , param.shape ) __UpperCAmelCase , __UpperCAmelCase : Any = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase_ ) == 0, f"Unexpected keys: {unexpected_keys}" # verify results __UpperCAmelCase : str = prepare_img() if "vistas" in model_name: __UpperCAmelCase : int = 65 elif "cityscapes" in model_name: __UpperCAmelCase : Union[str, Any] = 65535 else: __UpperCAmelCase : Optional[int] = 255 __UpperCAmelCase : int = True if '''ade''' in model_name else False __UpperCAmelCase : List[Any] = MaskFormerImageProcessor(ignore_index=lowercase_ , reduce_labels=lowercase_ ) __UpperCAmelCase : Tuple = image_processor(lowercase_ , return_tensors='''pt''' ) __UpperCAmelCase : Any = model(**lowercase_ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f"nielsr/{model_name}" ) image_processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : "DiagonalGaussianDistribution" class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Tuple = True @register_to_config def __init__( self , lowercase__ = 3 , lowercase__ = 3 , lowercase__ = ("DownEncoderBlock2D",) , lowercase__ = ("UpDecoderBlock2D",) , lowercase__ = (6_4,) , lowercase__ = 1 , lowercase__ = "silu" , lowercase__ = 4 , lowercase__ = 3_2 , lowercase__ = 3_2 , lowercase__ = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder __UpperCAmelCase : Dict = Encoder( in_channels=lowercase__ , out_channels=lowercase__ , down_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , act_fn=lowercase__ , norm_num_groups=lowercase__ , double_z=lowercase__ , ) # pass init params to Decoder __UpperCAmelCase : Any = Decoder( in_channels=lowercase__ , out_channels=lowercase__ , up_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , norm_num_groups=lowercase__ , act_fn=lowercase__ , ) __UpperCAmelCase : str = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) __UpperCAmelCase : Tuple = nn.Convad(lowercase__ , lowercase__ , 1) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = False # only relevant if vae tiling is enabled __UpperCAmelCase : Optional[int] = self.config.sample_size __UpperCAmelCase : str = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) __UpperCAmelCase : str = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) __UpperCAmelCase : List[str] = 0.2_5 def A( self , lowercase__ , lowercase__=False): if isinstance(lowercase__ , (Encoder, Decoder)): __UpperCAmelCase : Union[str, Any] = value def A( self , lowercase__ = True): __UpperCAmelCase : Optional[Any] = use_tiling def A( self): self.enable_tiling(lowercase__) def A( self): __UpperCAmelCase : int = True def A( self): __UpperCAmelCase : int = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A( self): __UpperCAmelCase : List[str] = {} def fn_recursive_add_processors(lowercase__ , lowercase__ , lowercase__): if hasattr(lowercase__ , '''set_processor'''): __UpperCAmelCase : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowercase__ , lowercase__) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase__ , lowercase__ , lowercase__) return processors def A( self , lowercase__): __UpperCAmelCase : str = len(self.attn_processors.keys()) if isinstance(lowercase__ , lowercase__) and len(lowercase__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowercase__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(lowercase__ , lowercase__ , lowercase__): if hasattr(lowercase__ , '''set_processor'''): if not isinstance(lowercase__ , lowercase__): module.set_processor(lowercase__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowercase__ , lowercase__) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase__ , lowercase__ , lowercase__) def A( self): self.set_attn_processor(AttnProcessor()) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase__ , return_dict=lowercase__) if self.use_slicing and x.shape[0] > 1: __UpperCAmelCase : List[Any] = [self.encoder(lowercase__) for x_slice in x.split(1)] __UpperCAmelCase : str = torch.cat(lowercase__) else: __UpperCAmelCase : Optional[Any] = self.encoder(lowercase__) __UpperCAmelCase : Union[str, Any] = self.quant_conv(lowercase__) __UpperCAmelCase : Union[str, Any] = DiagonalGaussianDistribution(lowercase__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase__) def A( self , lowercase__ , lowercase__ = True): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase__ , return_dict=lowercase__) __UpperCAmelCase : str = self.post_quant_conv(lowercase__) __UpperCAmelCase : Union[str, Any] = self.decoder(lowercase__) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): if self.use_slicing and z.shape[0] > 1: __UpperCAmelCase : Optional[int] = [self._decode(lowercase__).sample for z_slice in z.split(1)] __UpperCAmelCase : Any = torch.cat(lowercase__) else: __UpperCAmelCase : Optional[int] = self._decode(lowercase__).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = min(a.shape[2] , b.shape[2] , lowercase__) for y in range(lowercase__): __UpperCAmelCase : List[str] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = min(a.shape[3] , b.shape[3] , lowercase__) for x in range(lowercase__): __UpperCAmelCase : Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : str = int(self.tile_latent_min_size * self.tile_overlap_factor) __UpperCAmelCase : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __UpperCAmelCase : Optional[int] = [] for i in range(0 , x.shape[2] , lowercase__): __UpperCAmelCase : int = [] for j in range(0 , x.shape[3] , lowercase__): __UpperCAmelCase : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __UpperCAmelCase : int = self.encoder(lowercase__) __UpperCAmelCase : List[str] = self.quant_conv(lowercase__) row.append(lowercase__) rows.append(lowercase__) __UpperCAmelCase : str = [] for i, row in enumerate(lowercase__): __UpperCAmelCase : Any = [] for j, tile in enumerate(lowercase__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : Optional[Any] = self.blend_v(rows[i - 1][j] , lowercase__ , lowercase__) if j > 0: __UpperCAmelCase : Tuple = self.blend_h(row[j - 1] , lowercase__ , lowercase__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(lowercase__ , dim=3)) __UpperCAmelCase : int = torch.cat(lowercase__ , dim=2) __UpperCAmelCase : int = DiagonalGaussianDistribution(lowercase__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase__) def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) __UpperCAmelCase : Tuple = int(self.tile_sample_min_size * self.tile_overlap_factor) __UpperCAmelCase : List[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __UpperCAmelCase : Union[str, Any] = [] for i in range(0 , z.shape[2] , lowercase__): __UpperCAmelCase : str = [] for j in range(0 , z.shape[3] , lowercase__): __UpperCAmelCase : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __UpperCAmelCase : Union[str, Any] = self.post_quant_conv(lowercase__) __UpperCAmelCase : Tuple = self.decoder(lowercase__) row.append(lowercase__) rows.append(lowercase__) __UpperCAmelCase : Union[str, Any] = [] for i, row in enumerate(lowercase__): __UpperCAmelCase : List[Any] = [] for j, tile in enumerate(lowercase__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __UpperCAmelCase : Tuple = self.blend_v(rows[i - 1][j] , lowercase__ , lowercase__) if j > 0: __UpperCAmelCase : List[str] = self.blend_h(row[j - 1] , lowercase__ , lowercase__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(lowercase__ , dim=3)) __UpperCAmelCase : str = torch.cat(lowercase__ , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__) def A( self , lowercase__ , lowercase__ = False , lowercase__ = True , lowercase__ = None , ): __UpperCAmelCase : List[str] = sample __UpperCAmelCase : int = self.encode(lowercase__).latent_dist if sample_posterior: __UpperCAmelCase : Optional[int] = posterior.sample(generator=lowercase__) else: __UpperCAmelCase : str = posterior.mode() __UpperCAmelCase : List[Any] = self.decode(lowercase__).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__)
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format __UpperCAmelCase : int = PipelineDataFormat.from_str( format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase_ , lowercase_ ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = nlp __UpperCAmelCase : Any = reader @staticmethod def A( lowercase__): __UpperCAmelCase : Optional[int] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''') run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''') run_parser.add_argument('''--input''' , type=lowercase__ , help='''Path to the file to use for inference''') run_parser.add_argument('''--output''' , type=lowercase__ , help='''Path to the file that will be used post to write results.''') run_parser.add_argument('''--model''' , type=lowercase__ , help='''Name or path to the model to instantiate.''') run_parser.add_argument('''--config''' , type=lowercase__ , help='''Name or path to the model\'s config to instantiate.''') run_parser.add_argument( '''--tokenizer''' , type=lowercase__ , help='''Name of the tokenizer to use. (default: same as the model name)''') run_parser.add_argument( '''--column''' , type=lowercase__ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=lowercase__ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=lowercase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''') run_parser.set_defaults(func=lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self._nlp, [] for entry in self._reader: __UpperCAmelCase : Tuple = nlp(**lowercase__) if self._reader.is_multi_columns else nlp(lowercase__) if isinstance(lowercase__ , lowercase__): outputs.append(lowercase__) else: outputs += output # Saving data if self._nlp.binary_output: __UpperCAmelCase : Tuple = self._reader.save_binary(lowercase__) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}") else: self._reader.save(lowercase__)
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=1024 , lowercase_=1024 , lowercase_=False , **lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ ) __UpperCAmelCase : Optional[Any] = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''train''' , **lowercase_ ) __UpperCAmelCase : int = tok.pad_token_id def get_lens(lowercase_ ): __UpperCAmelCase : Tuple = tqdm( DataLoader(lowercase_ , batch_size=512 , num_workers=8 , shuffle=lowercase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __UpperCAmelCase : Any = [] for batch in dl: __UpperCAmelCase : str = batch['''input_ids'''].ne(lowercase_ ).sum(1 ).tolist() __UpperCAmelCase : List[str] = batch['''labels'''].ne(lowercase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase_ , lowercase_ ): max_lens.append(max(lowercase_ , lowercase_ ) ) else: max_lens.extend(lowercase_ ) return max_lens __UpperCAmelCase : List[Any] = get_lens(lowercase_ ) __UpperCAmelCase : Tuple = SeqaSeqDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ , type_path='''val''' , **lowercase_ ) __UpperCAmelCase : str = get_lens(lowercase_ ) pickle_save(lowercase_ , train_ds.len_file ) pickle_save(lowercase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
from __future__ import annotations lowerCAmelCase = [True] * 1_000_001 lowerCAmelCase = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): lowerCAmelCase = False i += 1 def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' return seive[n] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ = 1000000 ) -> list[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowercase_ ) and not contains_an_even_digit(lowercase_ ): __UpperCAmelCase : Union[str, Any] = str(lowercase_ ) __UpperCAmelCase : List[str] = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase_ ) )] if all(is_prime(lowercase_ ) for i in list_nums ): result.append(lowercase_ ) return result def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] _lowerCAmelCase : Optional[int] = '''LayoutLMv3ImageProcessor''' _lowerCAmelCase : List[str] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , lowercase__=None , lowercase__=None , **lowercase__): __UpperCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase : Tuple = kwargs.pop('''feature_extractor''') __UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase__ , lowercase__) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') # first, apply the image processor __UpperCAmelCase : Tuple = self.image_processor(images=lowercase__ , return_tensors=lowercase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : str = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Dict = features['''words'''] __UpperCAmelCase : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __UpperCAmelCase : List[str] = features.pop('''pixel_values''') if return_overflowing_tokens is True: __UpperCAmelCase : Union[str, Any] = self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping''']) __UpperCAmelCase : Any = images return encoded_inputs def A( self , lowercase__ , lowercase__): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __UpperCAmelCase : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(lowercase__) != len(lowercase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowercase__)} and {len(lowercase__)}") return images_with_overflow def A( self , *lowercase__ , **lowercase__): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.decode(*lowercase__ , **lowercase__) @property def A( self): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A( self): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def A( self): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : List[str] = parent __UpperCAmelCase : List[str] = 1_3 __UpperCAmelCase : Tuple = 7 __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : int = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Any = True __UpperCAmelCase : str = 9_9 __UpperCAmelCase : List[str] = 3_8_4 __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Any = 4 __UpperCAmelCase : Tuple = 3_7 __UpperCAmelCase : str = '''gelu''' __UpperCAmelCase : Any = 0.1 __UpperCAmelCase : Dict = 0.1 __UpperCAmelCase : Union[str, Any] = 5_1_2 __UpperCAmelCase : Tuple = 1_6 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Dict = 0.0_2 __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[Any] = 1_2_8 __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : str = 9 __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : int = None def A( self): __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = None __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = TFConvBertModel(config=lowercase__) __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : Any = [input_ids, input_mask] __UpperCAmelCase : Tuple = model(lowercase__) __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Any = TFConvBertForMaskedLM(config=lowercase__) __UpperCAmelCase : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : str = self.num_labels __UpperCAmelCase : Dict = TFConvBertForSequenceClassification(config=lowercase__) __UpperCAmelCase : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase : Tuple = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = self.num_choices __UpperCAmelCase : List[str] = TFConvBertForMultipleChoice(config=lowercase__) __UpperCAmelCase : Tuple = tf.tile(tf.expand_dims(lowercase__ , 1) , (1, self.num_choices, 1)) __UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(lowercase__ , 1) , (1, self.num_choices, 1)) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(lowercase__ , 1) , (1, self.num_choices, 1)) __UpperCAmelCase : List[str] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase : Any = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFConvBertForTokenClassification(config=lowercase__) __UpperCAmelCase : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase : Any = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = TFConvBertForQuestionAnswering(config=lowercase__) __UpperCAmelCase : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs __UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCAmelCase : List[Any] = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : int = False _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Optional[Any] = False def A( self): __UpperCAmelCase : Union[str, Any] = TFConvBertModelTester(self) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__) def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__) def A( self): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__) def A( self): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = True if hasattr(lowercase__ , '''use_cache'''): __UpperCAmelCase : Any = True __UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) __UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , '''key_length''' , lowercase__) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = self._prepare_for_class(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = model_class(lowercase__) __UpperCAmelCase : List[Any] = len(model(lowercase__)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ , saved_model=lowercase__) __UpperCAmelCase : Optional[int] = os.path.join(lowercase__ , '''saved_model''' , '''1''') __UpperCAmelCase : int = tf.keras.models.load_model(lowercase__) __UpperCAmelCase : Tuple = model(lowercase__) if self.is_encoder_decoder: __UpperCAmelCase : Optional[int] = outputs['''encoder_hidden_states'''] __UpperCAmelCase : Any = outputs['''encoder_attentions'''] else: __UpperCAmelCase : Optional[int] = outputs['''hidden_states'''] __UpperCAmelCase : Optional[int] = outputs['''attentions'''] self.assertEqual(len(lowercase__) , lowercase__) __UpperCAmelCase : Dict = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowercase__) , lowercase__) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowercase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A( self): __UpperCAmelCase : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = True __UpperCAmelCase : Optional[Any] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length) __UpperCAmelCase : int = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) __UpperCAmelCase : Optional[int] = getattr(self.model_tester , '''key_length''' , lowercase__) __UpperCAmelCase : int = getattr(self.model_tester , '''key_length''' , lowercase__) def check_decoder_attentions_output(lowercase__): __UpperCAmelCase : Dict = len(lowercase__) self.assertEqual(out_len % 2 , 0) __UpperCAmelCase : Tuple = outputs.decoder_attentions self.assertEqual(len(lowercase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase__): __UpperCAmelCase : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = False __UpperCAmelCase : List[str] = model_class(lowercase__) __UpperCAmelCase : Tuple = model(self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Any = len(lowercase__) self.assertEqual(config.output_hidden_states , lowercase__) check_encoder_attentions_output(lowercase__) if self.is_encoder_decoder: __UpperCAmelCase : str = model_class(lowercase__) __UpperCAmelCase : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__)) self.assertEqual(config.output_hidden_states , lowercase__) check_decoder_attentions_output(lowercase__) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCAmelCase : List[Any] = True __UpperCAmelCase : str = model_class(lowercase__) __UpperCAmelCase : List[str] = model(self._prepare_for_class(lowercase__ , lowercase__)) self.assertEqual(config.output_hidden_states , lowercase__) check_encoder_attentions_output(lowercase__) # Check attention is always last and order is fine __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Optional[int] = model_class(lowercase__) __UpperCAmelCase : Dict = model(self._prepare_for_class(lowercase__ , lowercase__)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__)) self.assertEqual(model.config.output_hidden_states , lowercase__) check_encoder_attentions_output(lowercase__) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Union[str, Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') __UpperCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]]) __UpperCAmelCase : str = model(lowercase__)[0] __UpperCAmelCase : Tuple = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1e-4)
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = KandinskyInpaintPipeline _lowerCAmelCase : List[Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _lowerCAmelCase : Any = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _lowerCAmelCase : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase : Union[str, Any] = False @property def A( self): return 3_2 @property def A( self): return 3_2 @property def A( self): return self.time_input_dim @property def A( self): return self.time_input_dim * 4 @property def A( self): return 1_0_0 @property def A( self): __UpperCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''') return tokenizer @property def A( self): torch.manual_seed(0) __UpperCAmelCase : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) __UpperCAmelCase : Dict = MultilingualCLIP(lowercase__) __UpperCAmelCase : Optional[Any] = text_encoder.eval() return text_encoder @property def A( self): torch.manual_seed(0) __UpperCAmelCase : Union[str, Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __UpperCAmelCase : Optional[int] = UNetaDConditionModel(**lowercase__) return model @property def A( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A( self): torch.manual_seed(0) __UpperCAmelCase : List[str] = VQModel(**self.dummy_movq_kwargs) return model def A( self): __UpperCAmelCase : Optional[Any] = self.dummy_text_encoder __UpperCAmelCase : List[Any] = self.dummy_tokenizer __UpperCAmelCase : str = self.dummy_unet __UpperCAmelCase : Optional[Any] = self.dummy_movq __UpperCAmelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __UpperCAmelCase : Tuple = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A( self , lowercase__ , lowercase__=0): __UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase__) # create init_image __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1)[0] __UpperCAmelCase : int = Image.fromarray(np.uinta(lowercase__)).convert('''RGB''').resize((2_5_6, 2_5_6)) # create mask __UpperCAmelCase : Dict = np.ones((6_4, 6_4) , dtype=np.floataa) __UpperCAmelCase : List[str] = 0 if str(lowercase__).startswith('''mps'''): __UpperCAmelCase : Dict = torch.manual_seed(lowercase__) else: __UpperCAmelCase : List[Any] = torch.Generator(device=lowercase__).manual_seed(lowercase__) __UpperCAmelCase : str = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A( self): __UpperCAmelCase : str = '''cpu''' __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**lowercase__) __UpperCAmelCase : Union[str, Any] = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = pipe(**self.get_dummy_inputs(lowercase__)) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : List[Any] = pipe( **self.get_dummy_inputs(lowercase__) , return_dict=lowercase__ , )[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}") assert image.shape == (1, 6_4, 6_4, 3) __UpperCAmelCase : int = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A( self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''') __UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') __UpperCAmelCase : List[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa) __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Optional[int] = '''a hat''' __UpperCAmelCase : int = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa) pipe_prior.to(lowercase__) __UpperCAmelCase : Any = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa) __UpperCAmelCase : int = pipeline.to(lowercase__) pipeline.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase , __UpperCAmelCase : Any = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __UpperCAmelCase : List[str] = pipeline( lowercase__ , image=lowercase__ , mask_image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) __UpperCAmelCase : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ , lowercase__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __SCREAMING_SNAKE_CASE ( lowercase_ = "laptop" ) -> DataFrame: '''simple docstring''' __UpperCAmelCase : str = f"https://www.amazon.in/laptop/s?k={product}" __UpperCAmelCase : Tuple = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } __UpperCAmelCase : Tuple = BeautifulSoup(requests.get(lowercase_ , headers=lowercase_ ).text ) # Initialize a Pandas dataframe with the column titles __UpperCAmelCase : Tuple = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: __UpperCAmelCase : int = item.ha.text __UpperCAmelCase : int = '''https://www.amazon.in/''' + item.ha.a['''href'''] __UpperCAmelCase : List[Any] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: __UpperCAmelCase : Any = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: __UpperCAmelCase : Optional[int] = '''Not available''' try: __UpperCAmelCase : Any = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: __UpperCAmelCase : str = '''''' try: __UpperCAmelCase : Optional[Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: __UpperCAmelCase : str = float('''nan''' ) except AttributeError: pass __UpperCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __UpperCAmelCase : Any = ''' ''' __UpperCAmelCase : Dict = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase = """headphones""" get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase : def __init__( self , lowercase__ , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : str = 1_3 __UpperCAmelCase : Union[str, Any] = 7 __UpperCAmelCase : str = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = True __UpperCAmelCase : Dict = 9_9 __UpperCAmelCase : str = 3_2 __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : Union[str, Any] = 3_7 __UpperCAmelCase : List[Any] = '''gelu''' __UpperCAmelCase : List[Any] = 0.1 __UpperCAmelCase : int = 0.1 __UpperCAmelCase : Union[str, Any] = 5_1_2 __UpperCAmelCase : str = 1_6 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Optional[Any] = 0.0_2 __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Any = 4 __UpperCAmelCase : List[Any] = None def A( self): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Any = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Tuple = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[int] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = TFEsmModel(config=lowercase__) __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase : List[Any] = model(lowercase__) __UpperCAmelCase : Tuple = [input_ids, input_mask] __UpperCAmelCase : Optional[int] = model(lowercase__) __UpperCAmelCase : Optional[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = TFEsmModel(config=lowercase__) __UpperCAmelCase : Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } __UpperCAmelCase : Dict = model(lowercase__) __UpperCAmelCase : Any = [input_ids, input_mask] __UpperCAmelCase : Optional[Any] = model(lowercase__ , encoder_hidden_states=lowercase__) # Also check the case where encoder outputs are not passed __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = TFEsmForMaskedLM(config=lowercase__) __UpperCAmelCase : Optional[int] = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : Union[str, Any] = TFEsmForTokenClassification(config=lowercase__) __UpperCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCAmelCase : List[str] = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : List[str] = False _lowerCAmelCase : Dict = False def A( self): __UpperCAmelCase : Optional[Any] = TFEsmModelTester(self) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__) @slow def A( self): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = TFEsmModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @unittest.skip('''Protein models do not support embedding resizing.''') def A( self): pass @unittest.skip('''Protein models do not support embedding resizing.''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(lowercase__) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __UpperCAmelCase : Any = model.get_bias() assert isinstance(lowercase__ , lowercase__) for k, v in name.items(): assert isinstance(lowercase__ , tf.Variable) else: __UpperCAmelCase : int = model.get_output_embeddings() assert x is None __UpperCAmelCase : List[Any] = model.get_bias() assert name is None @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Tuple = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''') __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]]) __UpperCAmelCase : Optional[Any] = model(lowercase__)[0] __UpperCAmelCase : Optional[Any] = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape) , lowercase__) # compare the actual values for a slice. __UpperCAmelCase : int = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2)) @slow def A( self): __UpperCAmelCase : int = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''') __UpperCAmelCase : Tuple = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]]) __UpperCAmelCase : Any = model(lowercase__)[0] # compare the actual values for a slice. __UpperCAmelCase : List[str] = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
import sys lowerCAmelCase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 1 for digit in s: product *= int(lowercase_ ) return product def __SCREAMING_SNAKE_CASE ( lowercase_ = N ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = -sys.maxsize - 1 __UpperCAmelCase : Optional[Any] = n[:13] __UpperCAmelCase : List[str] = 13 while cur_index < len(lowercase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __UpperCAmelCase : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: __UpperCAmelCase : int = max(lowercase_ , str_eval(lowercase_ ) ) __UpperCAmelCase : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'{solution() = }')
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(lowercase_ , lowercase_ ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase = 10 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for i in range(lowercase_ , lowercase_ ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : str = len(lowercase_ ) while left <= right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = (left + right) // 3 + 1 __UpperCAmelCase : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: __UpperCAmelCase : Any = two_third + 1 else: __UpperCAmelCase : Union[str, Any] = one_third + 1 __UpperCAmelCase : Any = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 __UpperCAmelCase : Tuple = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCAmelCase = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase = ite_ternary_search(collection, target) lowerCAmelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __UpperCAmelCase : Optional[int] = 6 __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Union[str, Any] = 1901 __UpperCAmelCase : Dict = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __UpperCAmelCase : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __UpperCAmelCase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 __UpperCAmelCase : Dict = day - days_per_month[month - 2] if month > 12: year += 1 __UpperCAmelCase : str = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
lowerCAmelCase = """Alexander Joslin""" import operator as op from .stack import Stack def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Any = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} __UpperCAmelCase : Stack[int] = Stack() __UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase_ ) elif i == ")": # RULE 4 __UpperCAmelCase : Union[str, Any] = operator_stack.peek() operator_stack.pop() __UpperCAmelCase : List[Any] = operand_stack.peek() operand_stack.pop() __UpperCAmelCase : Optional[int] = operand_stack.peek() operand_stack.pop() __UpperCAmelCase : Optional[Any] = operators[opr](lowercase_ , lowercase_ ) operand_stack.push(lowercase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=lowercase__).to(lowercase__) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCAmelCase : int = tokenizer('''Hello there''' , return_tensors='''pt''').input_ids __UpperCAmelCase : Optional[Any] = tokenizer('''Hi I am''' , return_tensors='''pt''').input_ids __UpperCAmelCase : Optional[Any] = model(input_ids.to(lowercase__) , labels=labels.to(lowercase__)).loss __UpperCAmelCase : Dict = -(labels.shape[-1] * loss.item()) __UpperCAmelCase : Any = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_UpperCamelCase )} , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowerCAmelCase : bool = field( default=_UpperCamelCase , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowerCAmelCase : bool = field( default=_UpperCamelCase , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowerCAmelCase : bool = field(default=_UpperCamelCase , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowerCAmelCase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowerCAmelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowerCAmelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowerCAmelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowerCAmelCase : bool = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = None , ) -> Any: '''simple docstring''' def _dataset(lowercase_ , lowercase_=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowercase_ , file_path=lowercase_ , block_size=args.block_size , ref_path=lowercase_ , ) return LineByLineTextDataset(tokenizer=lowercase_ , file_path=lowercase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase_ , file_path=lowercase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowercase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __UpperCAmelCase : int = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __UpperCAmelCase : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __UpperCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __UpperCAmelCase : Tuple = AutoModelWithLMHead.from_config(lowercase_ ) model.resize_token_embeddings(len(lowercase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __UpperCAmelCase : int = tokenizer.max_len # Our input block size will be the max possible for the model else: __UpperCAmelCase : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets __UpperCAmelCase : Tuple = ( get_dataset(lowercase_ , tokenizer=lowercase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __UpperCAmelCase : Dict = ( get_dataset(lowercase_ , tokenizer=lowercase_ , evaluate=lowercase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __UpperCAmelCase : Optional[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __UpperCAmelCase : str = DataCollatorForWholeWordMask( tokenizer=lowercase_ , mlm_probability=data_args.mlm_probability ) else: __UpperCAmelCase : str = DataCollatorForLanguageModeling( tokenizer=lowercase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __UpperCAmelCase : Dict = Trainer( model=lowercase_ , args=lowercase_ , data_collator=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , prediction_loss_only=lowercase_ , ) # Training if training_args.do_train: __UpperCAmelCase : List[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase : Optional[int] = trainer.evaluate() __UpperCAmelCase : Optional[int] = math.exp(eval_output['''eval_loss'''] ) __UpperCAmelCase : int = {'''perplexity''': perplexity} __UpperCAmelCase : Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowercase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowercase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowercase_ ) return results def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''marian''' _lowerCAmelCase : Optional[Any] = ['''past_key_values'''] _lowerCAmelCase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase__=5_8_1_0_1 , lowercase__=None , lowercase__=1_0_2_4 , lowercase__=1_2 , lowercase__=4_0_9_6 , lowercase__=1_6 , lowercase__=1_2 , lowercase__=4_0_9_6 , lowercase__=1_6 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_0_2_4 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=5_8_1_0_0 , lowercase__=False , lowercase__=5_8_1_0_0 , lowercase__=0 , lowercase__=0 , lowercase__=True , **lowercase__ , ): __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Optional[int] = decoder_vocab_size or vocab_size __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : Dict = encoder_ffn_dim __UpperCAmelCase : Any = encoder_layers __UpperCAmelCase : str = encoder_attention_heads __UpperCAmelCase : Any = decoder_ffn_dim __UpperCAmelCase : List[Any] = decoder_layers __UpperCAmelCase : Dict = decoder_attention_heads __UpperCAmelCase : str = dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : str = init_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Dict = decoder_layerdrop __UpperCAmelCase : Any = use_cache __UpperCAmelCase : Optional[int] = encoder_layers __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Any = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) class lowerCamelCase ( _UpperCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A( self): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCAmelCase : int = {0: '''batch'''} __UpperCAmelCase : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase : Any = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='''inputs''') elif self.task == "causal-lm": # TODO: figure this case out. __UpperCAmelCase : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ]) if self.use_past: __UpperCAmelCase , __UpperCAmelCase : Any = self.num_layers for i in range(lowercase__): __UpperCAmelCase : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __UpperCAmelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A( self): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Optional[int] = super().outputs else: __UpperCAmelCase : List[str] = super(lowercase__ , self).outputs if self.use_past: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.num_layers for i in range(lowercase__): __UpperCAmelCase : int = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__) # Generate decoder inputs __UpperCAmelCase : List[str] = seq_length if not self.use_past else 1 __UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__) __UpperCAmelCase : List[str] = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __UpperCAmelCase : List[str] = dict(**lowercase__ , **lowercase__) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = common_inputs['''input_ids'''].shape __UpperCAmelCase : Optional[Any] = common_inputs['''decoder_input_ids'''].shape[1] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.num_attention_heads __UpperCAmelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : List[Any] = decoder_seq_length + 3 __UpperCAmelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCAmelCase : int = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ , lowercase__)] , dim=1) __UpperCAmelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.num_layers __UpperCAmelCase : Optional[int] = min(lowercase__ , lowercase__) __UpperCAmelCase : Optional[Any] = max(lowercase__ , lowercase__) - min_num_layers __UpperCAmelCase : Any = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__), torch.zeros(lowercase__), torch.zeros(lowercase__), torch.zeros(lowercase__), )) # TODO: test this. __UpperCAmelCase : Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ , lowercase__): common_inputs["past_key_values"].append((torch.zeros(lowercase__), torch.zeros(lowercase__))) return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): __UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCAmelCase , __UpperCAmelCase : int = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase : Any = seqlen + 2 __UpperCAmelCase , __UpperCAmelCase : Dict = self.num_layers __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.num_attention_heads __UpperCAmelCase : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : Dict = common_inputs['''attention_mask'''].dtype __UpperCAmelCase : List[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__)] , dim=1) __UpperCAmelCase : List[str] = [ (torch.zeros(lowercase__), torch.zeros(lowercase__)) for _ in range(lowercase__) ] return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowercase__) __UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase : Dict = [''' '''.join([tokenizer.unk_token]) * seq_length] * batch_size __UpperCAmelCase : Any = dict(tokenizer(lowercase__ , return_tensors=lowercase__)) return common_inputs def A( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) else: __UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__) return common_inputs def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Any = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__) else: __UpperCAmelCase : str = super(lowercase__ , self)._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__) @property def A( self): return 1e-4
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class lowerCamelCase ( Generic[T] ): def __init__( self , lowercase__): __UpperCAmelCase : Optional[int] = data __UpperCAmelCase : str = self __UpperCAmelCase : Optional[Any] = 0 class lowerCamelCase ( Generic[T] ): def __init__( self): # map from node name to the node object __UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def A( self , lowercase__): # create a new set with x as its member __UpperCAmelCase : Union[str, Any] = DisjointSetTreeNode(lowercase__) def A( self , lowercase__): # find the set x belongs to (with path-compression) __UpperCAmelCase : Optional[int] = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase : Any = self.find_set(elem_ref.parent.data) return elem_ref.parent def A( self , lowercase__ , lowercase__): # helper function for union operation if nodea.rank > nodea.rank: __UpperCAmelCase : Dict = nodea else: __UpperCAmelCase : Tuple = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A( self , lowercase__ , lowercase__): # merge 2 disjoint sets self.link(self.find_set(lowercase__) , self.find_set(lowercase__)) class lowerCamelCase ( Generic[T] ): def __init__( self): # connections: map from the node to the neighbouring nodes (with weights) __UpperCAmelCase : dict[T, dict[T, int]] = {} def A( self , lowercase__): # add a node ONLY if its not present in the graph if node not in self.connections: __UpperCAmelCase : str = {} def A( self , lowercase__ , lowercase__ , lowercase__): # add an edge with the given weight self.add_node(lowercase__) self.add_node(lowercase__) __UpperCAmelCase : Tuple = weight __UpperCAmelCase : Dict = weight def A( self): __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda lowercase__: x[2]) # creating the disjoint set __UpperCAmelCase : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowercase__) # MST generation __UpperCAmelCase : Any = 0 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Tuple = GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = edges[index] index += 1 __UpperCAmelCase : List[str] = disjoint_set.find_set(lowercase__) __UpperCAmelCase : int = disjoint_set.find_set(lowercase__) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowercase__ , lowercase__ , lowercase__) disjoint_set.union(lowercase__ , lowercase__) return graph
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase = get_logger(__name__) lowerCAmelCase = R""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowerCamelCase : @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCamelCase : @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class lowerCamelCase ( _UpperCamelCase ): @add_start_docstrings(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , **lowercase__): for processor in self: __UpperCAmelCase : str = inspect.signature(processor.__call__).parameters if len(lowercase__) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys())} for " F"{processor.__class__} are passed to the logits processor.") __UpperCAmelCase : Optional[Any] = processor(lowercase__ , lowercase__ , lowercase__ , **lowercase__) else: __UpperCAmelCase : str = processor(lowercase__ , lowercase__ , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): if not isinstance(lowercase__ , lowercase__) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}") __UpperCAmelCase : Optional[int] = temperature def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = scores / self.temperature return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1): if not isinstance(lowercase__ , lowercase__) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(lowercase__ , lowercase__) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") __UpperCAmelCase : str = top_p __UpperCAmelCase : Optional[int] = filter_value __UpperCAmelCase : Optional[int] = min_tokens_to_keep def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase , __UpperCAmelCase : Dict = lax.top_k(lowercase__ , scores.shape[-1]) __UpperCAmelCase : Optional[int] = jnp.full_like(lowercase__ , self.filter_value) __UpperCAmelCase : Union[str, Any] = jax.nn.softmax(lowercase__ , axis=-1).cumsum(axis=-1) __UpperCAmelCase : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase : List[str] = jnp.roll(lowercase__ , 1) score_mask |= score_mask.at[:, 0].set(lowercase__) # min tokens to keep __UpperCAmelCase : List[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowercase__) __UpperCAmelCase : Tuple = jnp.where(lowercase__ , lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(lowercase__ , lowercase__)[-1] return next_scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = -float('''Inf''') , lowercase__ = 1): if not isinstance(lowercase__ , lowercase__) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}") __UpperCAmelCase : List[str] = max(lowercase__ , lowercase__) __UpperCAmelCase : Union[str, Any] = filter_value def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase , __UpperCAmelCase : Dict = scores.shape __UpperCAmelCase : Optional[Any] = jnp.full(batch_size * vocab_size , self.filter_value) __UpperCAmelCase : int = min(self.top_k , scores.shape[-1]) # Safety check __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = lax.top_k(lowercase__ , lowercase__) __UpperCAmelCase : List[Any] = jnp.broadcast_to((jnp.arange(lowercase__) * vocab_size)[:, None] , (batch_size, topk)).flatten() __UpperCAmelCase : Optional[Any] = topk_scores.flatten() __UpperCAmelCase : str = topk_indices.flatten() + shift __UpperCAmelCase : int = next_scores_flat.at[topk_indices_flat].set(lowercase__) __UpperCAmelCase : List[Any] = next_scores_flat.reshape(lowercase__ , lowercase__) return next_scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Dict = bos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = jnp.full(scores.shape , -float('''inf''')) __UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - 1) __UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.bos_token_id].set(0) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = max_length __UpperCAmelCase : str = eos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = jnp.full(scores.shape , -float('''inf''')) __UpperCAmelCase : int = 1 - jnp.bool_(cur_len - self.max_length + 1) __UpperCAmelCase : Dict = jnp.where(lowercase__ , new_scores.at[:, self.eos_token_id].set(0) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): if not isinstance(lowercase__ , lowercase__) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(lowercase__ , lowercase__) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}") __UpperCAmelCase : List[Any] = min_length __UpperCAmelCase : Optional[int] = eos_token_id def __call__( self , lowercase__ , lowercase__ , lowercase__): # create boolean flag to decide if min length penalty should be applied __UpperCAmelCase : List[str] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) __UpperCAmelCase : List[str] = jnp.where(lowercase__ , scores.at[:, self.eos_token_id].set(-float('''inf''')) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : int = list(lowercase__) __UpperCAmelCase : str = begin_index def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - self.begin_index) __UpperCAmelCase : Optional[Any] = jnp.where(lowercase__ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''')) , lowercase__) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('''inf''')) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__): __UpperCAmelCase : Any = dict(lowercase__) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase : List[str] = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(lowercase__) __UpperCAmelCase : Optional[int] = jnp.intaa(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__): def _force_token(lowercase__): __UpperCAmelCase : Optional[Any] = scores.shape[0] __UpperCAmelCase : Dict = self.force_token_array[generation_idx] __UpperCAmelCase : Union[str, Any] = jnp.ones_like(lowercase__ , dtype=scores.dtype) * -float('''inf''') __UpperCAmelCase : Tuple = jnp.zeros((batch_size, 1) , dtype=scores.dtype) __UpperCAmelCase : Any = lax.dynamic_update_slice(lowercase__ , lowercase__ , (0, current_token)) return new_scores __UpperCAmelCase : Tuple = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowercase__) , lambda: scores , ) , ) return scores class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = generate_config.eos_token_id __UpperCAmelCase : str = generate_config.no_timestamps_token_id __UpperCAmelCase : Optional[int] = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowercase__ , '''max_initial_timestamp_index'''): __UpperCAmelCase : Optional[int] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase : Optional[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase : Dict = model_config.vocab_size def __call__( self , lowercase__ , lowercase__ , lowercase__): # suppress <|notimestamps|> which is handled by without_timestamps __UpperCAmelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''')) def handle_pairs(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , lowercase__ , lowercase__) __UpperCAmelCase : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowercase__ , ) __UpperCAmelCase : Dict = jnp.where((cur_len - self.begin_index) < 2 , lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowercase__ , lowercase__ , ) return jnp.where( lowercase__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''')) , scores_k.at[: self.eos_token_id].set(-float('''inf''')) , ) , lowercase__ , ) __UpperCAmelCase : Any = jax.vmap(lowercase__)(lowercase__ , lowercase__) __UpperCAmelCase : Optional[int] = jnp.where(cur_len == self.begin_index , lowercase__ , lowercase__) __UpperCAmelCase : str = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowercase__ , ) __UpperCAmelCase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase : Union[str, Any] = jnp.where( lowercase__ , scores.at[:, last_allowed + 1 :].set(-float('''inf''')) , lowercase__ , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase : Dict = jax.nn.log_softmax(lowercase__ , axis=-1) def handle_cumulative_probs(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) __UpperCAmelCase : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''')) , lowercase__ , ) __UpperCAmelCase : int = jax.vmap(lowercase__)(lowercase__ , lowercase__) return scores
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = UniSpeechSatForSequenceClassification.from_pretrained(lowercase_ , config=lowercase_ ) __UpperCAmelCase : Dict = downstream_dict['''projector.weight'''] __UpperCAmelCase : List[str] = downstream_dict['''projector.bias'''] __UpperCAmelCase : Any = downstream_dict['''model.post_net.linear.weight'''] __UpperCAmelCase : Union[str, Any] = downstream_dict['''model.post_net.linear.bias'''] return model def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase_ , config=lowercase_ ) __UpperCAmelCase : Optional[Any] = downstream_dict['''model.linear.weight'''] __UpperCAmelCase : Optional[int] = downstream_dict['''model.linear.bias'''] return model def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = UniSpeechSatForXVector.from_pretrained(lowercase_ , config=lowercase_ ) __UpperCAmelCase : Tuple = downstream_dict['''connector.weight'''] __UpperCAmelCase : List[str] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : Dict = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __UpperCAmelCase : Optional[int] = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __UpperCAmelCase : Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __UpperCAmelCase : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __UpperCAmelCase : Any = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __UpperCAmelCase : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __UpperCAmelCase : int = downstream_dict['''objective.W'''] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.load(lowercase_ , map_location='''cpu''' ) __UpperCAmelCase : List[Any] = checkpoint['''Downstream'''] __UpperCAmelCase : int = UniSpeechSatConfig.from_pretrained(lowercase_ ) __UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained( lowercase_ , return_attention_mask=lowercase_ , do_normalize=lowercase_ ) __UpperCAmelCase : str = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __UpperCAmelCase : Optional[Any] = convert_classification(lowercase_ , lowercase_ , lowercase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __UpperCAmelCase : Tuple = convert_diarization(lowercase_ , lowercase_ , lowercase_ ) elif arch.endswith('''ForXVector''' ): __UpperCAmelCase : Dict = convert_xvector(lowercase_ , lowercase_ , lowercase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : int = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''deformable_detr''' _lowerCAmelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=3_0_0 , lowercase__=1_0_2_4 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=6 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=2_5_6 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=1.0 , lowercase__=True , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=4 , lowercase__=4 , lowercase__=4 , lowercase__=False , lowercase__=3_0_0 , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , lowercase__=0.2_5 , lowercase__=False , **lowercase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCAmelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[str] = backbone_config.get('''model_type''') __UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(lowercase__) __UpperCAmelCase : List[Any] = use_timm_backbone __UpperCAmelCase : Union[str, Any] = backbone_config __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[str] = num_queries __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : List[str] = encoder_ffn_dim __UpperCAmelCase : str = encoder_layers __UpperCAmelCase : Union[str, Any] = encoder_attention_heads __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : Union[str, Any] = decoder_attention_heads __UpperCAmelCase : int = dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : List[str] = activation_dropout __UpperCAmelCase : Union[str, Any] = activation_function __UpperCAmelCase : List[Any] = init_std __UpperCAmelCase : Optional[int] = init_xavier_std __UpperCAmelCase : Union[str, Any] = encoder_layerdrop __UpperCAmelCase : List[str] = auxiliary_loss __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : List[str] = backbone __UpperCAmelCase : Union[str, Any] = use_pretrained_backbone __UpperCAmelCase : List[Any] = dilation # deformable attributes __UpperCAmelCase : List[Any] = num_feature_levels __UpperCAmelCase : Optional[Any] = encoder_n_points __UpperCAmelCase : str = decoder_n_points __UpperCAmelCase : Any = two_stage __UpperCAmelCase : int = two_stage_num_proposals __UpperCAmelCase : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCAmelCase : Dict = class_cost __UpperCAmelCase : List[Any] = bbox_cost __UpperCAmelCase : Union[str, Any] = giou_cost # Loss coefficients __UpperCAmelCase : Tuple = mask_loss_coefficient __UpperCAmelCase : List[Any] = dice_loss_coefficient __UpperCAmelCase : int = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Any = eos_coefficient __UpperCAmelCase : List[Any] = focal_alpha __UpperCAmelCase : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase__ , **lowercase__) @property def A( self): return self.encoder_attention_heads @property def A( self): return self.d_model def A( self): __UpperCAmelCase : int = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __UpperCAmelCase : List[str] = self.backbone_config.to_dict() __UpperCAmelCase : int = self.__class__.model_type return output
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv2FeatureExtractor"""] lowerCAmelCase = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import qiskit def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCAmelCase : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : List[str] = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __UpperCAmelCase : Tuple = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
import os from collections.abc import Iterator def __SCREAMING_SNAKE_CASE ( lowercase_ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(lowercase_ ): __UpperCAmelCase : str = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase_ )[1] in (".py", ".ipynb"): yield os.path.join(lowercase_ , lowercase_ ).lstrip('''./''' ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: '''simple docstring''' return f"{i * ' '}*" if i else "\n##" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase_ ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(lowercase_ )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def __SCREAMING_SNAKE_CASE ( lowercase_ = "." ) -> None: '''simple docstring''' __UpperCAmelCase : Any = '''''' for filepath in sorted(good_file_paths(lowercase_ ) ): __UpperCAmelCase , __UpperCAmelCase : str = os.path.split(lowercase_ ) if filepath != old_path: __UpperCAmelCase : int = print_path(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = (filepath.count(os.sep ) + 1) if filepath else 0 __UpperCAmelCase : Optional[Any] = f"{filepath}/{filename}".replace(''' ''' , '''%20''' ) __UpperCAmelCase : List[Any] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f"{md_prefix(lowercase_ )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = to_pil_image(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = pil_image.size __UpperCAmelCase : Any = pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __UpperCAmelCase : Any = [idx for idx, word in enumerate(lowercase_ ) if not word.strip()] __UpperCAmelCase : Any = [word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] __UpperCAmelCase : int = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] __UpperCAmelCase : List[Any] = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] __UpperCAmelCase : Optional[Any] = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] __UpperCAmelCase : Any = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __UpperCAmelCase : Tuple = [] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): __UpperCAmelCase : str = [x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes __UpperCAmelCase : Any = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Optional[Any] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = 1 / 2_5_5 , lowercase__ = True , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = "" , **lowercase__ , ): super().__init__(**lowercase__) __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __UpperCAmelCase : Optional[Any] = get_size_dict(lowercase__) __UpperCAmelCase : int = do_resize __UpperCAmelCase : List[Any] = size __UpperCAmelCase : Any = resample __UpperCAmelCase : int = do_rescale __UpperCAmelCase : str = rescale_value __UpperCAmelCase : str = do_normalize __UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD __UpperCAmelCase : Optional[int] = apply_ocr __UpperCAmelCase : Tuple = ocr_lang __UpperCAmelCase : Optional[Any] = tesseract_config def A( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ): __UpperCAmelCase : Optional[int] = get_size_dict(lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") __UpperCAmelCase : List[Any] = (size['''height'''], size['''width''']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def A( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Tuple = size if size is not None else self.size __UpperCAmelCase : Optional[int] = get_size_dict(lowercase__) __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __UpperCAmelCase : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __UpperCAmelCase : str = tesseract_config if tesseract_config is not None else self.tesseract_config __UpperCAmelCase : Union[str, Any] = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''') # All transformations expect numpy arrays. __UpperCAmelCase : Any = [to_numpy_array(lowercase__) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''') __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Optional[Any] = [] for image in images: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = apply_tesseract(lowercase__ , lowercase__ , lowercase__) words_batch.append(lowercase__) boxes_batch.append(lowercase__) if do_resize: __UpperCAmelCase : int = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_rescale: __UpperCAmelCase : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: __UpperCAmelCase : Tuple = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] __UpperCAmelCase : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] __UpperCAmelCase : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowercase__) if apply_ocr: __UpperCAmelCase : str = words_batch __UpperCAmelCase : Any = boxes_batch return data
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = '''umt5''' _lowerCAmelCase : Optional[Any] = ['''past_key_values'''] def __init__( self , lowercase__=2_5_0_1_1_2 , lowercase__=5_1_2 , lowercase__=6_4 , lowercase__=1_0_2_4 , lowercase__=8 , lowercase__=None , lowercase__=6 , lowercase__=3_2 , lowercase__=1_2_8 , lowercase__=0.1 , lowercase__=1e-6 , lowercase__=1.0 , lowercase__="gated-gelu" , lowercase__=True , lowercase__=True , lowercase__="T5Tokenizer" , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=0 , **lowercase__ , ): super().__init__( is_encoder_decoder=lowercase__ , tokenizer_class=lowercase__ , tie_word_embeddings=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : str = d_model __UpperCAmelCase : str = d_kv __UpperCAmelCase : Dict = d_ff __UpperCAmelCase : Dict = num_layers __UpperCAmelCase : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase : str = num_heads __UpperCAmelCase : int = relative_attention_num_buckets __UpperCAmelCase : List[str] = relative_attention_max_distance __UpperCAmelCase : Tuple = dropout_rate __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : str = initializer_factor __UpperCAmelCase : List[str] = feed_forward_proj __UpperCAmelCase : Any = use_cache __UpperCAmelCase : int = self.feed_forward_proj.split('''-''') __UpperCAmelCase : str = act_info[-1] __UpperCAmelCase : Tuple = act_info[0] == '''gated''' if len(lowercase__) > 1 and act_info[0] != "gated" or len(lowercase__) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') if feed_forward_proj == "gated-gelu": __UpperCAmelCase : Union[str, Any] = '''gelu_new''' @property def A( self): return self.d_model @property def A( self): return self.num_heads @property def A( self): return self.num_layers class lowerCamelCase ( _UpperCamelCase ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A( self): __UpperCAmelCase : Dict = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __UpperCAmelCase : Optional[int] = '''past_encoder_sequence + sequence''' __UpperCAmelCase : int = {0: '''batch'''} __UpperCAmelCase : Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase : str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='''inputs''') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A( self): return 1_3 @property def A( self): return 5e-4
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Optional[int] = math.sqrt(lowercase_ ) __UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Dict = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowercase_ ): for j in range(0 , lowercase_ ): __UpperCAmelCase : List[str] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = np.zeros(img.shape ) __UpperCAmelCase : Tuple = get_gauss_kernel(lowercase_ , lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : int = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __UpperCAmelCase : Any = get_slice(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] __UpperCAmelCase : List[str] = vec_gaussian(lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = np.multiply(lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = np.multiply(lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = np.sum(lowercase_ ) / np.sum(lowercase_ ) __UpperCAmelCase : Any = val return imga def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple: '''simple docstring''' __UpperCAmelCase : int = args[1] if args[1:] else '''../image_data/lena.jpg''' __UpperCAmelCase : Optional[int] = float(args[2] ) if args[2:] else 1.0 __UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: __UpperCAmelCase : Union[str, Any] = int(args[4] ) __UpperCAmelCase : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: __UpperCAmelCase : List[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = parse_args(sys.argv) lowerCAmelCase = cva.imread(filename, 0) cva.imshow("""input image""", img) lowerCAmelCase = img / 255 lowerCAmelCase = out.astype("""float32""") lowerCAmelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase = out * 255 lowerCAmelCase = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = True , lowercase__ = "arrow" , **lowercase__ , ): super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Union[str, Any] = load_from_cache_file __UpperCAmelCase : Dict = file_format __UpperCAmelCase : Tuple = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def A( self): if self.streaming: return self.builder.as_streaming_dataset(split=self.split) __UpperCAmelCase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=3_2 , lowercase__=2 , lowercase__=3 , lowercase__=1_6 , lowercase__=[1, 2, 1] , lowercase__=[2, 2, 4] , lowercase__=2 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=True , lowercase__=0.0_2 , lowercase__=1e-5 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=1_0 , lowercase__=8 , ): __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[str] = embed_dim __UpperCAmelCase : int = depths __UpperCAmelCase : Optional[int] = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : Tuple = qkv_bias __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : int = drop_path_rate __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = use_absolute_embeddings __UpperCAmelCase : Any = patch_norm __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : str = is_training __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : Tuple = encoder_stride def A( self): __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def A( self): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = SwinvaModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Tuple = model(lowercase__) __UpperCAmelCase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __UpperCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = SwinvaForMaskedImageModeling(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = SwinvaForMaskedImageModeling(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCAmelCase : Dict = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Tuple = self.type_sequence_label_size __UpperCAmelCase : int = SwinvaForImageClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A( self): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Any = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase : Union[str, Any] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Dict = False _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = False def A( self): __UpperCAmelCase : str = SwinvaModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , embed_dim=3_7) def A( self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''') def A( self): pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''') def A( self): pass def A( self): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __UpperCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(lowercase__) __UpperCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Dict = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Tuple = outputs.attentions __UpperCAmelCase : Dict = len(self.model_tester.depths) self.assertEqual(len(lowercase__) , lowercase__) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : Optional[Any] = config.window_size**2 __UpperCAmelCase : Tuple = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(lowercase__) , lowercase__) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : int = len(lowercase__) # Check attention is always last and order is fine __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : int = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) if hasattr(self.model_tester , '''num_hidden_states_types'''): __UpperCAmelCase : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : List[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowercase__)) __UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(lowercase__) , lowercase__) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = model_class(lowercase__) model.to(lowercase__) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(lowercase__ , lowercase__)) __UpperCAmelCase : Optional[int] = outputs.hidden_states __UpperCAmelCase : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(lowercase__) , lowercase__) # Swinv2 has a different seq_length __UpperCAmelCase : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(lowercase__) , lowercase__) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = reshaped_hidden_states[0].shape __UpperCAmelCase : Union[str, Any] = ( reshaped_hidden_states[0].view(lowercase__ , lowercase__ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : Any = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width)) def A( self): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) @slow def A( self): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = SwinvaModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = _config_zero_init(lowercase__) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(config=lowercase__) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''') if is_vision_available() else None ) @slow def A( self): __UpperCAmelCase : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to( lowercase__) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __UpperCAmelCase : List[Any] = image_processor(images=lowercase__ , return_tensors='''pt''').to(lowercase__) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**lowercase__) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase__) __UpperCAmelCase : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4))
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = 0 for ch in input_str: __UpperCAmelCase : Union[str, Any] = ord(lowercase_ ) __UpperCAmelCase : str = pow(2 , lowercase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if len(lowercase_ ) != len(lowercase_ ): raise ValueError('''String lengths must match!''' ) __UpperCAmelCase : int = 0 for chara, chara in zip(lowercase_ , lowercase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __UpperCAmelCase : int = flax_key_tuple[:-1] + ('''weight''',) __UpperCAmelCase : Optional[Any] = torch.permute(lowercase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ): # linear layer __UpperCAmelCase : List[str] = flax_key_tuple[:-1] + ('''weight''',) __UpperCAmelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if "metadata" in layer: __UpperCAmelCase : Any = layer.split('''metadata''' ) __UpperCAmelCase : Optional[int] = ''''''.join(split_layer[0] )[:-1] __UpperCAmelCase : List[str] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __UpperCAmelCase : Any = layer.split('''kvstore''' ) __UpperCAmelCase : int = ''''''.join(split_layer[0] )[:-1] __UpperCAmelCase : List[str] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __UpperCAmelCase : List[str] = layer.split('''/''' ) __UpperCAmelCase : Union[str, Any] = '''/'''.join(split_layer[:-1] ) __UpperCAmelCase : Union[str, Any] = (split_layer[-1],) if "kvstore/path" in layer: __UpperCAmelCase : str = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __UpperCAmelCase : Tuple = '''file''' else: __UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = rename_keys(lowercase_ ) __UpperCAmelCase : Any = {} for k, v in current_block.items(): __UpperCAmelCase : List[Any] = v __UpperCAmelCase : int = new_current_block torch.save(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = WEIGHTS_NAME ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = convert_file_size_to_int(lowercase_ ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : int = {} __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Dict = 0 os.makedirs(lowercase_ , exist_ok=lowercase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __UpperCAmelCase : Optional[int] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __UpperCAmelCase : List[Any] = flatten_dict(lowercase_ , sep='''/''' ) __UpperCAmelCase : Dict = {} for layer in checkpoint_info.keys(): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_key_and_tensorstore_dict( lowercase_ , lowercase_ , lowercase_ ) if curr_real_layer_name in all_layers: __UpperCAmelCase : List[str] = content else: __UpperCAmelCase : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __UpperCAmelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __UpperCAmelCase : Optional[int] = torch.tensor(lowercase_ ) __UpperCAmelCase : Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __UpperCAmelCase , __UpperCAmelCase : Tuple = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowercase_ ) __UpperCAmelCase : Dict = '''/'''.join(lowercase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __UpperCAmelCase : int = os.path.join( lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[Any] = raw_weights.to(getattr(lowercase_ , lowercase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __UpperCAmelCase : Any = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{len(lowercase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __UpperCAmelCase : str = {} __UpperCAmelCase : str = {} for idx, shard in enumerate(lowercase_ ): __UpperCAmelCase : List[Any] = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin" ) # len(sharded_state_dicts):05d} __UpperCAmelCase : str = os.path.join(lowercase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) __UpperCAmelCase : int = shard for key in shard: __UpperCAmelCase : List[str] = shard_file # Add the metadata __UpperCAmelCase : Optional[Any] = {'''total_size''': total_size} __UpperCAmelCase : Tuple = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n''' f.write(lowercase_ ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __UpperCAmelCase : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __UpperCAmelCase : List[str] = TaTokenizer.from_pretrained('''t5-small''' ) __UpperCAmelCase : List[str] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __UpperCAmelCase : Optional[Any] = tokenizer(lowercase_ , return_tensors='''pt''' ).input_ids __UpperCAmelCase : Optional[int] = model.generate(lowercase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' for char in word: __UpperCAmelCase : Optional[int] = ord(lowercase_ ) if not _is_chinese_char(lowercase_ ): return 0 return 1 def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = set() for token in tokens: __UpperCAmelCase : int = len(lowercase_ ) > 1 and is_chinese(lowercase_ ) if chinese_word: word_set.add(lowercase_ ) __UpperCAmelCase : Union[str, Any] = list(lowercase_ ) return word_list def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if not chinese_word_set: return bert_tokens __UpperCAmelCase : List[str] = max([len(lowercase_ ) for w in chinese_word_set] ) __UpperCAmelCase : Tuple = bert_tokens __UpperCAmelCase , __UpperCAmelCase : List[Any] = 0, len(lowercase_ ) while start < end: __UpperCAmelCase : List[str] = True if is_chinese(bert_word[start] ): __UpperCAmelCase : Tuple = min(end - start , lowercase_ ) for i in range(lowercase_ , 1 , -1 ): __UpperCAmelCase : Optional[Any] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCAmelCase : Optional[Any] = '''##''' + bert_word[j] __UpperCAmelCase : str = start + i __UpperCAmelCase : List[Any] = False break if single_word: start += 1 return bert_word def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = [] for i in range(0 , len(lowercase_ ) , 100 ): __UpperCAmelCase : List[str] = ltp_tokenizer.seg(lines[i : i + 100] )[0] __UpperCAmelCase : List[Any] = [get_chinese_word(lowercase_ ) for r in res] ltp_res.extend(lowercase_ ) assert len(lowercase_ ) == len(lowercase_ ) __UpperCAmelCase : List[str] = [] for i in range(0 , len(lowercase_ ) , 100 ): __UpperCAmelCase : Any = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowercase_ , truncation=lowercase_ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(lowercase_ ) == len(lowercase_ ) __UpperCAmelCase : List[str] = [] for input_ids, chinese_word in zip(lowercase_ , lowercase_ ): __UpperCAmelCase : Optional[int] = [] for id in input_ids: __UpperCAmelCase : str = bert_tokenizer._convert_id_to_token(lowercase_ ) input_tokens.append(lowercase_ ) __UpperCAmelCase : int = add_sub_symbol(lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase_ ): if token[:2] == "##": __UpperCAmelCase : List[str] = token[2:] # save chinese tokens' pos if len(lowercase_ ) == 1 and _is_chinese_char(ord(lowercase_ ) ): ref_id.append(lowercase_ ) ref_ids.append(lowercase_ ) assert len(lowercase_ ) == len(lowercase_ ) return ref_ids def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : List[Any] = f.readlines() __UpperCAmelCase : Tuple = [line.strip() for line in data if len(lowercase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device __UpperCAmelCase : Dict = BertTokenizer.from_pretrained(args.bert ) __UpperCAmelCase : Tuple = prepare_ref(lowercase_ , lowercase_ , lowercase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __UpperCAmelCase : str = [json.dumps(lowercase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") lowerCAmelCase = parser.parse_args() main(args)
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = ['''image_processor''', '''tokenizer'''] _lowerCAmelCase : Optional[int] = '''LayoutLMv2ImageProcessor''' _lowerCAmelCase : str = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , lowercase__=None , lowercase__=None , **lowercase__): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __UpperCAmelCase : List[Any] = kwargs.pop('''feature_extractor''') __UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase__ , lowercase__) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''') # first, apply the image processor __UpperCAmelCase : str = self.image_processor(images=lowercase__ , return_tensors=lowercase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Optional[int] = features['''words'''] __UpperCAmelCase : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __UpperCAmelCase : int = features.pop('''pixel_values''') if return_overflowing_tokens is True: __UpperCAmelCase : str = self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping''']) __UpperCAmelCase : int = images return encoded_inputs def A( self , lowercase__ , lowercase__): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __UpperCAmelCase : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(lowercase__) != len(lowercase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowercase__)} and {len(lowercase__)}") return images_with_overflow def A( self , *lowercase__ , **lowercase__): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__) def A( self , *lowercase__ , **lowercase__): return self.tokenizer.decode(*lowercase__ , **lowercase__) @property def A( self): return ["input_ids", "bbox", "attention_mask", "image"] @property def A( self): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def A( self): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = (DEISMultistepScheduler,) _lowerCAmelCase : List[Any] = (('''num_inference_steps''', 2_5),) def A( self , **lowercase__): __UpperCAmelCase : Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase__) return config def A( self , lowercase__=0 , **lowercase__): __UpperCAmelCase : List[str] = dict(self.forward_default_kwargs) __UpperCAmelCase : Optional[int] = kwargs.pop('''num_inference_steps''' , lowercase__) __UpperCAmelCase : int = self.dummy_sample __UpperCAmelCase : Union[str, Any] = 0.1 * sample __UpperCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : int = scheduler_class(**lowercase__) scheduler.set_timesteps(lowercase__) # copy over dummy past residuals __UpperCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__) __UpperCAmelCase : str = scheduler_class.from_pretrained(lowercase__) new_scheduler.set_timesteps(lowercase__) # copy over dummy past residuals __UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = sample, sample for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1): __UpperCAmelCase : Any = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : Optional[Any] = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A( self): pass def A( self , lowercase__=0 , **lowercase__): __UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs) __UpperCAmelCase : List[str] = kwargs.pop('''num_inference_steps''' , lowercase__) __UpperCAmelCase : Tuple = self.dummy_sample __UpperCAmelCase : str = 0.1 * sample __UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) scheduler.set_timesteps(lowercase__) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__) __UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(lowercase__) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] __UpperCAmelCase : Tuple = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : str = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def A( self , lowercase__=None , **lowercase__): if scheduler is None: __UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] __UpperCAmelCase : List[Any] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config(**lowercase__) __UpperCAmelCase : int = scheduler_class(**lowercase__) __UpperCAmelCase : List[str] = 1_0 __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase__) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase : Dict = model(lowercase__ , lowercase__) __UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample return sample def A( self): __UpperCAmelCase : Any = dict(self.forward_default_kwargs) __UpperCAmelCase : Any = kwargs.pop('''num_inference_steps''' , lowercase__) for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : List[Any] = scheduler_class(**lowercase__) __UpperCAmelCase : Tuple = self.dummy_sample __UpperCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps'''): scheduler.set_timesteps(lowercase__) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps'''): __UpperCAmelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] __UpperCAmelCase : List[str] = scheduler.timesteps[5] __UpperCAmelCase : str = scheduler.timesteps[6] __UpperCAmelCase : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample __UpperCAmelCase : List[Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def A( self): # make sure that iterating over schedulers with same config names gives same results # for defaults __UpperCAmelCase : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config()) __UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=lowercase__) __UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 __UpperCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config) __UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config) __UpperCAmelCase : Tuple = self.full_loop(scheduler=lowercase__) __UpperCAmelCase : str = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 def A( self): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__) def A( self): self.check_over_configs(thresholding=lowercase__) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , algorithm_type='''deis''' , solver_order=lowercase__ , solver_type=lowercase__ , ) def A( self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__) def A( self): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) __UpperCAmelCase : str = self.full_loop( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , algorithm_type=lowercase__ , ) assert not torch.isnan(lowercase__).any(), "Samples have nan numbers" def A( self): self.check_over_configs(lower_order_final=lowercase__) self.check_over_configs(lower_order_final=lowercase__) def A( self): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase__ , time_step=0) def A( self): __UpperCAmelCase : Any = self.full_loop() __UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.2_3_9_1_6) < 1e-3 def A( self): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type='''v_prediction''') __UpperCAmelCase : Tuple = torch.mean(torch.abs(lowercase__)) assert abs(result_mean.item() - 0.0_9_1) < 1e-3 def A( self): __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : Any = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0) __UpperCAmelCase : Dict = scheduler_class(**lowercase__) __UpperCAmelCase : str = 1_0 __UpperCAmelCase : Union[str, Any] = self.dummy_model() __UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase__) for i, t in enumerate(scheduler.timesteps): __UpperCAmelCase : Optional[Any] = model(lowercase__ , lowercase__) __UpperCAmelCase : Dict = scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample assert sample.dtype == torch.floataa
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __UpperCAmelCase : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase : List[str] = '''''' else: __UpperCAmelCase : List[Any] = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) __UpperCAmelCase : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase : str = in_proj_bias[: config.hidden_size] __UpperCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = dct.pop(lowercase_ ) __UpperCAmelCase : Any = val def __SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = DeiTConfig() # all deit models have fine-tuned heads __UpperCAmelCase : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Tuple = 1000 __UpperCAmelCase : str = '''huggingface/label-files''' __UpperCAmelCase : Tuple = '''imagenet-1k-id2label.json''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : List[Any] = {int(lowercase_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Any = int(deit_name[-6:-4] ) __UpperCAmelCase : List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): __UpperCAmelCase : Tuple = 192 __UpperCAmelCase : Union[str, Any] = 768 __UpperCAmelCase : Optional[int] = 12 __UpperCAmelCase : str = 3 elif deit_name[9:].startswith('''small''' ): __UpperCAmelCase : Tuple = 384 __UpperCAmelCase : List[Any] = 1536 __UpperCAmelCase : Optional[int] = 12 __UpperCAmelCase : Union[str, Any] = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): __UpperCAmelCase : Optional[Any] = 1024 __UpperCAmelCase : Union[str, Any] = 4096 __UpperCAmelCase : Optional[int] = 24 __UpperCAmelCase : Optional[int] = 16 # load original model from timm __UpperCAmelCase : Union[str, Any] = timm.create_model(lowercase_ , pretrained=lowercase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase : Tuple = timm_model.state_dict() __UpperCAmelCase : Optional[Any] = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ , lowercase_ ) # load HuggingFace model __UpperCAmelCase : Tuple = DeiTForImageClassificationWithTeacher(lowercase_ ).eval() model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by DeiTImageProcessor __UpperCAmelCase : Any = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __UpperCAmelCase : Any = DeiTImageProcessor(size=lowercase_ , crop_size=config.image_size ) __UpperCAmelCase : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : List[str] = encoding['''pixel_values'''] __UpperCAmelCase : Optional[Any] = model(lowercase_ ) __UpperCAmelCase : int = timm_model(lowercase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase_ , outputs.logits , atol=1e-3 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCamelCase ( datasets.BuilderConfig ): _lowerCAmelCase : Optional[datasets.Features] = None class lowerCamelCase ( datasets.ArrowBasedBuilder ): _lowerCAmelCase : Union[str, Any] = PandasConfig def A( self): return datasets.DatasetInfo(features=self.config.features) def A( self , lowercase__): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") __UpperCAmelCase : int = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowercase__ , (str, list, tuple)): __UpperCAmelCase : str = data_files if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowercase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] __UpperCAmelCase : List[str] = [] for split_name, files in data_files.items(): if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCAmelCase : Dict = [dl_manager.iter_files(lowercase__) for file in files] splits.append(datasets.SplitGenerator(name=lowercase__ , gen_kwargs={'''files''': files})) return splits def A( self , lowercase__): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase : str = table_cast(lowercase__ , self.config.features.arrow_schema) return pa_table def A( self , lowercase__): for i, file in enumerate(itertools.chain.from_iterable(lowercase__)): with open(lowercase__ , '''rb''') as f: __UpperCAmelCase : Any = pa.Table.from_pandas(pd.read_pickle(lowercase__)) yield i, self._cast_table(lowercase__)
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Union[str, Any] = '''roformer''' def __init__( self , lowercase__=5_0_0_0_0 , lowercase__=None , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_5_3_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__=False , lowercase__=True , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size if embedding_size is None else embedding_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = rotary_value __UpperCAmelCase : Dict = use_cache class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : str = {0: '''batch''', 1: '''sequence'''} __UpperCAmelCase : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase = """src/transformers""" lowerCAmelCase = """docs/source/en/tasks""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase : int = f.readlines() # Find the start prompt. __UpperCAmelCase : str = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 __UpperCAmelCase : str = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowercase_ , set() ) __UpperCAmelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = _find_text_in_file( filename=os.path.join(lowercase_ , lowercase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __UpperCAmelCase : int = get_model_list_for_task(lowercase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ''' to fix this.''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase = False class lowerCamelCase ( unittest.TestCase ): def A( self , lowercase__=3_2): set_seed(0) __UpperCAmelCase : Dict = UNetaDModel(sample_size=lowercase__ , in_channels=3 , out_channels=3) __UpperCAmelCase : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A( self): __UpperCAmelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __UpperCAmelCase : Any = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) __UpperCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='''linear''' , clip_sample=lowercase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) __UpperCAmelCase : str = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowercase__) for _ in range(4)] __UpperCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2)).to(lowercase__) for _ in range(4)] __UpperCAmelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowercase__) for _ in range(4)] # train with a DDPM scheduler __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Dict = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : Dict = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2) model.train().to(lowercase__) for i in range(4): optimizer.zero_grad() __UpperCAmelCase : int = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __UpperCAmelCase : Union[str, Any] = model(lowercase__ , timesteps[i]).sample __UpperCAmelCase : str = torch.nn.functional.mse_loss(lowercase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5)) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5))
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : int = [0 for i in range(r + 1 )] # nc0 = 1 __UpperCAmelCase : List[Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __UpperCAmelCase : Any = min(lowercase_ , lowercase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : torch.FloatTensor class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): @register_to_config def __init__( self , lowercase__ = 3 , lowercase__ = 3 , lowercase__ = ("DownEncoderBlock2D",) , lowercase__ = ("UpDecoderBlock2D",) , lowercase__ = (6_4,) , lowercase__ = 1 , lowercase__ = "silu" , lowercase__ = 3 , lowercase__ = 3_2 , lowercase__ = 2_5_6 , lowercase__ = 3_2 , lowercase__ = None , lowercase__ = 0.1_8_2_1_5 , lowercase__ = "group" , ): super().__init__() # pass init params to Encoder __UpperCAmelCase : List[Any] = Encoder( in_channels=lowercase__ , out_channels=lowercase__ , down_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , act_fn=lowercase__ , norm_num_groups=lowercase__ , double_z=lowercase__ , ) __UpperCAmelCase : List[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels __UpperCAmelCase : Tuple = nn.Convad(lowercase__ , lowercase__ , 1) __UpperCAmelCase : int = VectorQuantizer(lowercase__ , lowercase__ , beta=0.2_5 , remap=lowercase__ , sane_index_shape=lowercase__) __UpperCAmelCase : Optional[Any] = nn.Convad(lowercase__ , lowercase__ , 1) # pass init params to Decoder __UpperCAmelCase : Union[str, Any] = Decoder( in_channels=lowercase__ , out_channels=lowercase__ , up_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , act_fn=lowercase__ , norm_num_groups=lowercase__ , norm_type=lowercase__ , ) @apply_forward_hook def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : int = self.encoder(lowercase__) __UpperCAmelCase : List[str] = self.quant_conv(lowercase__) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase__) @apply_forward_hook def A( self , lowercase__ , lowercase__ = False , lowercase__ = True): # also go through quantization layer if not force_not_quantize: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = self.quantize(lowercase__) else: __UpperCAmelCase : Dict = h __UpperCAmelCase : str = self.post_quant_conv(lowercase__) __UpperCAmelCase : List[str] = self.decoder(lowercase__ , quant if self.config.norm_type == '''spatial''' else None) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__) def A( self , lowercase__ , lowercase__ = True): __UpperCAmelCase : List[Any] = sample __UpperCAmelCase : List[Any] = self.encode(lowercase__).latents __UpperCAmelCase : Union[str, Any] = self.decode(lowercase__).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__)
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
import math from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' __UpperCAmelCase : float = xa __UpperCAmelCase : float = xa while True: if x_n == x_na or function(lowercase_ ) == function(lowercase_ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) __UpperCAmelCase : float = x_na - ( function(lowercase_ ) / ((function(lowercase_ ) - function(lowercase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCAmelCase : Dict = x_na __UpperCAmelCase : Tuple = x_na def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: '''simple docstring''' return math.pow(lowercase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowerCAmelCase = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowerCAmelCase = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowerCAmelCase = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def A( self , lowercase__): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''') __UpperCAmelCase : Optional[Any] = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: __UpperCAmelCase : Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __UpperCAmelCase : int = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}") # download the model checkpoint specified by self.config_name and set up the scorer __UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) __UpperCAmelCase : Optional[int] = score.BleurtScorer(os.path.join(lowercase__ , lowercase__)) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = self.scorer.score(references=lowercase__ , candidates=lowercase__) return {"scores": scores}
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase_ , lowercase_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __UpperCAmelCase : Optional[Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __UpperCAmelCase : Any = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=2 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=1_0_0_0 , ): __UpperCAmelCase : int = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Any = use_input_mask __UpperCAmelCase : Tuple = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Any = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Dict = range_bbox def A( self): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCAmelCase : List[Any] = bbox[i, j, 3] __UpperCAmelCase : Union[str, Any] = bbox[i, j, 1] __UpperCAmelCase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCAmelCase : Dict = bbox[i, j, 2] __UpperCAmelCase : str = bbox[i, j, 0] __UpperCAmelCase : int = t __UpperCAmelCase : Any = tf.convert_to_tensor(lowercase__) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : int = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : List[Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : int = TFLayoutLMModel(config=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : Dict = model(lowercase__ , lowercase__ , token_type_ids=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__ , lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = TFLayoutLMForMaskedLM(config=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : int = TFLayoutLMForSequenceClassification(config=lowercase__) __UpperCAmelCase : Dict = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : Any = TFLayoutLMForTokenClassification(config=lowercase__) __UpperCAmelCase : Any = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Dict = TFLayoutLMForQuestionAnswering(config=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__ , lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A( self): __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : str = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowerCAmelCase : Tuple = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[Any] = 1_0 def A( self): __UpperCAmelCase : str = TFLayoutLMModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__) def A( self): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__) def A( self): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__) @slow def A( self): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Any = TFLayoutLMModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @unittest.skip('''Onnx compliancy broke with TF 2.10''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Any = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __UpperCAmelCase : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __UpperCAmelCase : Optional[int] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __UpperCAmelCase : Optional[int] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''') __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = prepare_layoutlm_batch_inputs() # forward pass __UpperCAmelCase : str = model(input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) # test the sequence output on [0, :3, :3] __UpperCAmelCase : str = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-3)) # test the pooled output on [1, :3] __UpperCAmelCase : int = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowercase__ , atol=1e-3)) @slow def A( self): # initialize model with randomly initialized sequence classification head __UpperCAmelCase : Tuple = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass __UpperCAmelCase : Dict = model( input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar __UpperCAmelCase : List[str] = outputs.loss __UpperCAmelCase : Optional[int] = (2,) self.assertEqual(loss.shape , lowercase__) # test the shape of the logits __UpperCAmelCase : Union[str, Any] = outputs.logits __UpperCAmelCase : List[str] = (2, 2) self.assertEqual(logits.shape , lowercase__) @slow def A( self): # initialize model with randomly initialized token classification head __UpperCAmelCase : int = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=1_3) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass __UpperCAmelCase : Union[str, Any] = model( input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) # test the shape of the logits __UpperCAmelCase : Union[str, Any] = outputs.logits __UpperCAmelCase : int = tf.convert_to_tensor((2, 2_5, 1_3)) self.assertEqual(logits.shape , lowercase__) @slow def A( self): # initialize model with randomly initialized token classification head __UpperCAmelCase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''') __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = prepare_layoutlm_batch_inputs() # forward pass __UpperCAmelCase : Dict = model(input_ids=lowercase__ , bbox=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) # test the shape of the logits __UpperCAmelCase : Dict = tf.convert_to_tensor((2, 2_5)) self.assertEqual(outputs.start_logits.shape , lowercase__) self.assertEqual(outputs.end_logits.shape , lowercase__)
675
from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Optional[Any]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): __UpperCAmelCase : List[str] = new_id # turn into Numpy arrays __UpperCAmelCase : Tuple = np.array(lowercase_ ) __UpperCAmelCase : str = np.array(lowercase_ ) if reduce_labels: __UpperCAmelCase : List[Any] = 255 __UpperCAmelCase : str = label - 1 __UpperCAmelCase : Dict = 255 __UpperCAmelCase : str = label != ignore_index __UpperCAmelCase : Optional[int] = np.not_equal(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = pred_label[mask] __UpperCAmelCase : Any = np.array(lowercase_ )[mask] __UpperCAmelCase : Optional[Any] = pred_label[pred_label == label] __UpperCAmelCase : Optional[Any] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : Any = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[str] = np.histogram(lowercase_ , bins=lowercase_ , range=(0, num_labels - 1) )[0] __UpperCAmelCase : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = False , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) __UpperCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase_ , lowercase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> str: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = total_intersect_and_union( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # compute metrics __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() __UpperCAmelCase : Optional[Any] = total_area_intersect / total_area_union __UpperCAmelCase : List[str] = total_area_intersect / total_area_label __UpperCAmelCase : Optional[int] = np.nanmean(lowercase_ ) __UpperCAmelCase : int = np.nanmean(lowercase_ ) __UpperCAmelCase : List[str] = all_acc __UpperCAmelCase : Any = iou __UpperCAmelCase : str = acc if nan_to_num is not None: __UpperCAmelCase : Any = {metric: np.nan_to_num(lowercase_ , nan=lowercase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def A( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16'''))), }) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __UpperCAmelCase : str = mean_iou( results=lowercase__ , gt_seg_maps=lowercase__ , num_labels=lowercase__ , ignore_index=lowercase__ , nan_to_num=lowercase__ , label_map=lowercase__ , reduce_labels=lowercase__ , ) return iou_result
675
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCamelCase : def __init__( self , lowercase__): __UpperCAmelCase : Any = data __UpperCAmelCase : Node | None = None class lowerCamelCase : def __init__( self): __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None def __iter__( self): __UpperCAmelCase : Union[str, Any] = self.head while self.head: yield node.data __UpperCAmelCase : int = node.next if node == self.head: break def __len__( self): return sum(1 for _ in self) def __repr__( self): return "->".join(str(lowercase__) for item in iter(self)) def A( self , lowercase__): self.insert_nth(len(self) , lowercase__) def A( self , lowercase__): self.insert_nth(0 , lowercase__) def A( self , lowercase__ , lowercase__): if index < 0 or index > len(self): raise IndexError('''list index out of range.''') __UpperCAmelCase : int = Node(lowercase__) if self.head is None: __UpperCAmelCase : Optional[int] = new_node # first node points itself __UpperCAmelCase : List[str] = new_node elif index == 0: # insert at head __UpperCAmelCase : Any = self.head __UpperCAmelCase : Optional[Any] = new_node else: __UpperCAmelCase : Optional[Any] = self.head for _ in range(index - 1): __UpperCAmelCase : Any = temp.next __UpperCAmelCase : Dict = temp.next __UpperCAmelCase : Optional[Any] = new_node if index == len(self) - 1: # insert at tail __UpperCAmelCase : Optional[int] = new_node def A( self): return self.delete_nth(0) def A( self): return self.delete_nth(len(self) - 1) def A( self , lowercase__ = 0): if not 0 <= index < len(self): raise IndexError('''list index out of range.''') __UpperCAmelCase : Dict = self.head if self.head == self.tail: # just one node __UpperCAmelCase : List[str] = None elif index == 0: # delete head node __UpperCAmelCase : Optional[int] = self.tail.next.next __UpperCAmelCase : List[str] = self.head.next else: __UpperCAmelCase : Optional[int] = self.head for _ in range(index - 1): __UpperCAmelCase : Dict = temp.next __UpperCAmelCase : Union[str, Any] = temp.next __UpperCAmelCase : Optional[Any] = temp.next.next if index == len(self) - 1: # delete at tail __UpperCAmelCase : str = temp return delete_node.data def A( self): return len(self) == 0 def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Dict = CircularLinkedList() assert len(lowercase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase_ ) == i circular_linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
675
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : int = StableUnCLIPPipeline _lowerCAmelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS _lowerCAmelCase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCAmelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCAmelCase : Any = False def A( self): __UpperCAmelCase : Union[str, Any] = 3_2 __UpperCAmelCase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) __UpperCAmelCase : str = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0) __UpperCAmelCase : Any = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0) __UpperCAmelCase : Tuple = StableUnCLIPImageNormalizer(embedding_dim=lowercase__) __UpperCAmelCase : Dict = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCAmelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) __UpperCAmelCase : Tuple = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0) __UpperCAmelCase : List[str] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0) __UpperCAmelCase : Dict = AutoencoderKL() __UpperCAmelCase : List[Any] = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def A( self , lowercase__ , lowercase__=0): if str(lowercase__).startswith('''mps'''): __UpperCAmelCase : List[Any] = torch.manual_seed(lowercase__) else: __UpperCAmelCase : int = torch.Generator(device=lowercase__).manual_seed(lowercase__) __UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A( self): __UpperCAmelCase : Optional[Any] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=lowercase__) def A( self): __UpperCAmelCase : Any = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''') __UpperCAmelCase : int = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase : Tuple = pipe('''anime turle''' , generator=lowercase__ , output_type='''np''') __UpperCAmelCase : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ , lowercase__) def A( self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : Any = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa) __UpperCAmelCase : Tuple = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : List[str] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Any = IFInpaintingPipeline _lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _lowerCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def A( self): return self._get_dummy_components() def A( self , lowercase__ , lowercase__=0): if str(lowercase__).startswith('''mps'''): __UpperCAmelCase : List[Any] = torch.manual_seed(lowercase__) else: __UpperCAmelCase : List[str] = torch.Generator(device=lowercase__).manual_seed(lowercase__) __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase__)).to(lowercase__) __UpperCAmelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def A( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def A( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def A( self): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def A( self): self._test_save_load_local() def A( self): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
675
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCAmelCase : Optional[Any] = model_type_to_module_name(lowercase_ ) __UpperCAmelCase : Tuple = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(lowercase_ , lowercase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase_ , '''__name__''' , lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCAmelCase : Tuple = importlib.import_module('''transformers''' ) if hasattr(lowercase_ , lowercase_ ): return getattr(lowercase_ , lowercase_ ) return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , **lowercase_ , ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_file_from_repo( lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase_ , encoding='''utf-8''' ) as reader: return json.load(lowercase_ ) class lowerCamelCase : def __init__( self): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(lowercase__) def A( cls , lowercase__ , **lowercase__): __UpperCAmelCase : Optional[int] = kwargs.pop('''config''' , lowercase__) __UpperCAmelCase : List[str] = kwargs.pop('''trust_remote_code''' , lowercase__) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase , __UpperCAmelCase : int = ImageProcessingMixin.get_image_processor_dict(lowercase__ , **lowercase__) __UpperCAmelCase : Optional[Any] = config_dict.get('''image_processor_type''' , lowercase__) __UpperCAmelCase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {}): __UpperCAmelCase : str = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __UpperCAmelCase : Any = config_dict.pop('''feature_extractor_type''' , lowercase__) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''') __UpperCAmelCase : List[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''') if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): __UpperCAmelCase : Any = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __UpperCAmelCase : Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''') logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''') # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ , **lowercase__) # It could be in `config.image_processor_type`` __UpperCAmelCase : str = getattr(lowercase__ , '''image_processor_type''' , lowercase__) if hasattr(lowercase__ , '''auto_map''') and "AutoImageProcessor" in config.auto_map: __UpperCAmelCase : int = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __UpperCAmelCase : str = image_processor_class_from_name(lowercase__) __UpperCAmelCase : Union[str, Any] = image_processor_auto_map is not None __UpperCAmelCase : List[str] = image_processor_class is not None or type(lowercase__) in IMAGE_PROCESSOR_MAPPING __UpperCAmelCase : Optional[int] = resolve_trust_remote_code( lowercase__ , lowercase__ , lowercase__ , lowercase__) if has_remote_code and trust_remote_code: __UpperCAmelCase : List[str] = get_class_from_dynamic_module( lowercase__ , lowercase__ , **lowercase__) __UpperCAmelCase : List[str] = kwargs.pop('''code_revision''' , lowercase__) if os.path.isdir(lowercase__): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase__ , **lowercase__) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase__ , **lowercase__) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase__) in IMAGE_PROCESSOR_MAPPING: __UpperCAmelCase : Optional[int] = IMAGE_PROCESSOR_MAPPING[type(lowercase__)] return image_processor_class.from_dict(lowercase__ , **lowercase__) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}") @staticmethod def A( lowercase__ , lowercase__): IMAGE_PROCESSOR_MAPPING.register(lowercase__ , lowercase__)
675
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' __UpperCAmelCase : List[Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) __UpperCAmelCase : Any = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) __UpperCAmelCase : List[Any] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
675
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
from ...configuration_utils import PretrainedConfig lowerCAmelCase = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''tapas''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_0_2_4 , lowercase__=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__=1_0.0 , lowercase__=0 , lowercase__=1.0 , lowercase__=None , lowercase__=1.0 , lowercase__=False , lowercase__=None , lowercase__=1.0 , lowercase__=1.0 , lowercase__=False , lowercase__=False , lowercase__="ratio" , lowercase__=None , lowercase__=None , lowercase__=6_4 , lowercase__=3_2 , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=False , lowercase__=None , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_sizes __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters __UpperCAmelCase : Union[str, Any] = positive_label_weight __UpperCAmelCase : int = num_aggregation_labels __UpperCAmelCase : str = aggregation_loss_weight __UpperCAmelCase : Dict = use_answer_as_supervision __UpperCAmelCase : Any = answer_loss_importance __UpperCAmelCase : Union[str, Any] = use_normalized_answer_loss __UpperCAmelCase : int = huber_loss_delta __UpperCAmelCase : Optional[int] = temperature __UpperCAmelCase : List[Any] = aggregation_temperature __UpperCAmelCase : List[str] = use_gumbel_for_cells __UpperCAmelCase : List[str] = use_gumbel_for_aggregation __UpperCAmelCase : List[str] = average_approximation_function __UpperCAmelCase : Union[str, Any] = cell_selection_preference __UpperCAmelCase : List[str] = answer_loss_cutoff __UpperCAmelCase : str = max_num_rows __UpperCAmelCase : int = max_num_columns __UpperCAmelCase : Tuple = average_logits_per_cell __UpperCAmelCase : Union[str, Any] = select_one_column __UpperCAmelCase : List[str] = allow_empty_column_selection __UpperCAmelCase : Optional[int] = init_cell_selection_weights_to_zero __UpperCAmelCase : Any = reset_position_index_per_cell __UpperCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters __UpperCAmelCase : Optional[Any] = aggregation_labels __UpperCAmelCase : int = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase__): __UpperCAmelCase : Optional[Any] = {int(lowercase__): v for k, v in aggregation_labels.items()}
675
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[int] = BertJapaneseTokenizer _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = True def A( self): super().setUp() __UpperCAmelCase : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def A( self , lowercase__): __UpperCAmelCase : int = '''こんにちは、世界。 \nこんばんは、世界。''' __UpperCAmelCase : Union[str, Any] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def A( self , lowercase__): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.get_input_output_texts(lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__) __UpperCAmelCase : List[Any] = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__) return text, ids def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file) __UpperCAmelCase : Tuple = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''') self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def A( self): __UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : List[Any] = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : Dict = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : int = pickle.load(lowercase__) __UpperCAmelCase : int = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : Any = MecabTokenizer(mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : List[Any] = MecabTokenizer(mecab_dic='''unidic_lite''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : Optional[int] = MecabTokenizer(mecab_dic='''unidic''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): __UpperCAmelCase : Optional[Any] = MecabTokenizer(do_lower_case=lowercase__ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def A( self): try: __UpperCAmelCase : int = MecabTokenizer( do_lower_case=lowercase__ , normalize_text=lowercase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def A( self): __UpperCAmelCase : Optional[Any] = MecabTokenizer(normalize_text=lowercase__ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : Any = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : List[str] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : Any = pickle.load(lowercase__) __UpperCAmelCase : int = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) @require_sudachi def A( self): __UpperCAmelCase : Optional[int] = SudachiTokenizer(sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国''', '''人''', '''参政''', '''権''']) @require_sudachi def A( self): __UpperCAmelCase : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人''', '''参政権''']) @require_sudachi def A( self): __UpperCAmelCase : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人参政権''']) @require_sudachi def A( self): __UpperCAmelCase : str = SudachiTokenizer(do_lower_case=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : Optional[int] = SudachiTokenizer(normalize_text=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def A( self): __UpperCAmelCase : List[Any] = SudachiTokenizer(trim_whitespace=lowercase__ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''') self.assertIsNotNone(lowercase__) __UpperCAmelCase : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' __UpperCAmelCase : List[Any] = tokenizer.tokenize(lowercase__) self.assertListEqual(lowercase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowercase__ , '''wb''') as handle: pickle.dump(lowercase__ , lowercase__) with open(lowercase__ , '''rb''') as handle: __UpperCAmelCase : Union[str, Any] = pickle.load(lowercase__) __UpperCAmelCase : Tuple = tokenizer_new.tokenize(lowercase__) self.assertListEqual(lowercase__ , lowercase__) @require_jumanpp def A( self): __UpperCAmelCase : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Tuple = JumanppTokenizer(do_lower_case=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : List[Any] = JumanppTokenizer(normalize_text=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Optional[Any] = JumanppTokenizer(trim_whitespace=lowercase__) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def A( self): __UpperCAmelCase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''') , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def A( self): __UpperCAmelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __UpperCAmelCase : Optional[Any] = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : int = i __UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こんにちは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは''') , ['''こん''', '''##ばんは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''') , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは''']) def A( self): __UpperCAmelCase : Dict = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''') __UpperCAmelCase : str = tokenizer.subword_tokenizer __UpperCAmelCase : Optional[int] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''') self.assertListEqual(lowercase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。''']) __UpperCAmelCase : Tuple = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''') self.assertListEqual(lowercase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは''']) def A( self): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''') __UpperCAmelCase : List[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : List[str] = BertJapaneseTokenizer _lowerCAmelCase : Tuple = False def A( self): super().setUp() __UpperCAmelCase : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def A( self , **lowercase__): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowercase__) def A( self , lowercase__): __UpperCAmelCase : Tuple = '''こんにちは、世界。 \nこんばんは、世界。''' __UpperCAmelCase : Any = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): pass # TODO add if relevant def A( self): __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''') __UpperCAmelCase : Optional[int] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''') self.assertListEqual( lowercase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def A( self): __UpperCAmelCase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __UpperCAmelCase : Dict = {} for i, token in enumerate(lowercase__): __UpperCAmelCase : int = i __UpperCAmelCase : Tuple = CharacterTokenizer(vocab=lowercase__ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こ''', '''ん''', '''に''', '''ち''', '''は''']) self.assertListEqual(tokenizer.tokenize('''こんにちほ''') , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]''']) def A( self): __UpperCAmelCase : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''') __UpperCAmelCase : Optional[int] = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowercase__) __UpperCAmelCase : int = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowercase__) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__) __UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : str = '''cl-tohoku/bert-base-japanese''' __UpperCAmelCase : str = AutoTokenizer.from_pretrained(lowercase__) self.assertIsInstance(lowercase__ , lowercase__) class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Tuple = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertTokenizer.from_pretrained(lowercase__) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''')) __UpperCAmelCase : str = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertJapaneseTokenizer.from_pretrained(lowercase__) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.'''))
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
import os def __SCREAMING_SNAKE_CASE ( lowercase_ = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(lowercase_ ) , lowercase_ ) ) as in_file: __UpperCAmelCase : Any = in_file.read() __UpperCAmelCase : Tuple = [[int(lowercase_ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] __UpperCAmelCase : Optional[int] = [[0 for cell in row] for row in grid] __UpperCAmelCase : Dict = len(grid[0] ) __UpperCAmelCase : Optional[int] = [[0 for i in range(lowercase_ )] for j in range(lowercase_ )] __UpperCAmelCase : Any = grid[0][0] for i in range(1 , lowercase_ ): __UpperCAmelCase : str = grid[0][i] + dp[0][i - 1] for i in range(1 , lowercase_ ): __UpperCAmelCase : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , lowercase_ ): for j in range(1 , lowercase_ ): __UpperCAmelCase : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
675
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''bert''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : List[str] = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : List[Any] = classifier_dropout class lowerCamelCase ( _UpperCamelCase ): @property def A( self): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
675
1
from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
675
from random import shuffle import tensorflow as tf from numpy import array def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality __UpperCAmelCase : str = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCAmelCase : Union[str, Any] = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCAmelCase : Union[str, Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCAmelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCAmelCase : List[str] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCAmelCase : str = tf.placeholder('''float64''' , [dim] ) __UpperCAmelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCAmelCase : Dict = tf.placeholder('''int32''' ) __UpperCAmelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCAmelCase : Any = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCAmelCase : Tuple = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.placeholder('''float''' , [dim] ) __UpperCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCAmelCase : Union[str, Any] = tf.placeholder('''float''' , [noofclusters] ) __UpperCAmelCase : Optional[Any] = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCAmelCase : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCAmelCase : Union[str, Any] = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): __UpperCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCAmelCase : List[Any] = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCAmelCase : Optional[Any] = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster __UpperCAmelCase : Optional[Any] = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCAmelCase : str = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCAmelCase : List[str] = sess.run(lowercase_ ) __UpperCAmelCase : Tuple = sess.run(lowercase_ ) return centroids, assignments
675
1
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_UpperCamelCase ): _lowerCAmelCase : List[str] = ['''onnx'''] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''onnx''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''onnx''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''onnx'''])
675
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } lowerCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = {} with open(lowercase_ , '''r''' ) as file: for line_number, line in enumerate(lowercase_ ): __UpperCAmelCase : Any = line.strip() if line: __UpperCAmelCase : Optional[int] = line.split() __UpperCAmelCase : Union[str, Any] = line_number __UpperCAmelCase : str = words[0] __UpperCAmelCase : int = value return result def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split('''.''' ): __UpperCAmelCase : Any = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): __UpperCAmelCase : str = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase : Optional[Any] = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase : Optional[int] = getattr(lowercase_ , lowercase_ ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase : Tuple = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = shape_pointer.shape # let's reduce dimension __UpperCAmelCase : List[str] = value[0] else: __UpperCAmelCase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : int = value elif weight_type == "weight_g": __UpperCAmelCase : Any = value elif weight_type == "weight_v": __UpperCAmelCase : Dict = value elif weight_type == "bias": __UpperCAmelCase : List[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __UpperCAmelCase : Optional[Any] = getattr(lowercase_ , lowercase_ ) __UpperCAmelCase : str = value else: __UpperCAmelCase : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase_ ): __UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] __UpperCAmelCase : List[Any] = '''param''' if weight_type is not None and weight_type != "param": __UpperCAmelCase : Tuple = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase : List[Any] = '''.'''.join([key, hf_param_name] ) else: __UpperCAmelCase : Tuple = key __UpperCAmelCase : str = value if '''lm_head''' in full_key else value[0] lowerCAmelCase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase : str = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __UpperCAmelCase : List[str] = True if "*" in mapped_key: __UpperCAmelCase : Dict = name.split(lowercase_ )[0].split('''.''' )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: __UpperCAmelCase : Tuple = '''weight_g''' elif "weight_v" in name: __UpperCAmelCase : List[str] = '''weight_v''' elif "bias" in name: __UpperCAmelCase : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : int = '''weight''' else: __UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) else: set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return is_used return is_used def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Any = fairseq_model.state_dict() __UpperCAmelCase : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) __UpperCAmelCase : Union[str, Any] = True else: __UpperCAmelCase : Optional[Any] = load_wavaveca_layer(lowercase_ , lowercase_ , lowercase_ ) if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = full_name.split('''conv_layers.''' )[-1] __UpperCAmelCase : Optional[int] = name.split('''.''' ) __UpperCAmelCase : Any = int(items[0] ) __UpperCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCAmelCase : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False ) -> Dict: '''simple docstring''' if config_path is not None: __UpperCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase_ ) else: __UpperCAmelCase : Optional[int] = WavaVecaConfig() if is_seq_class: __UpperCAmelCase : str = read_txt_into_dict(lowercase_ ) __UpperCAmelCase : Union[str, Any] = idalabel __UpperCAmelCase : Dict = WavaVecaForSequenceClassification(lowercase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) feature_extractor.save_pretrained(lowercase_ ) elif is_finetuned: if dict_path: __UpperCAmelCase : List[Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : str = target_dict.pad_index __UpperCAmelCase : Optional[Any] = target_dict.bos_index __UpperCAmelCase : Optional[Any] = target_dict.eos_index __UpperCAmelCase : Dict = len(target_dict.symbols ) __UpperCAmelCase : Optional[Any] = os.path.join(lowercase_ , '''vocab.json''' ) if not os.path.isdir(lowercase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowercase_ ) ) return os.makedirs(lowercase_ , exist_ok=lowercase_ ) __UpperCAmelCase : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = 1 with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowercase_ , lowercase_ ) __UpperCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer( lowercase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowercase_ , ) __UpperCAmelCase : List[str] = True if config.feat_extract_norm == '''layer''' else False __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) __UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaForCTC(lowercase_ ) else: __UpperCAmelCase : Optional[int] = WavaVecaForPreTraining(lowercase_ ) if is_finetuned or is_seq_class: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __UpperCAmelCase : Dict = argparse.Namespace(task='''audio_pretraining''' ) __UpperCAmelCase : Optional[Any] = fairseq.tasks.setup_task(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase_ ) __UpperCAmelCase : Dict = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
675
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def A( self): __UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''') __UpperCAmelCase : Optional[int] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Dict = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''') def A( self): pass @slow @require_torch def A( self): __UpperCAmelCase : int = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog __UpperCAmelCase : Optional[Any] = load_dataset('''ashraq/esc50''') __UpperCAmelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array'''] __UpperCAmelCase : Union[str, Any] = audio_classifier(lowercase__ , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner''']) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) __UpperCAmelCase : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5) self.assertEqual( nested_simplify(lowercase__) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''') def A( self): pass
675
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = False if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCAmelCase = parser.parse_args() lowerCAmelCase = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } lowerCAmelCase = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } lowerCAmelCase = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: lowerCAmelCase = reader.read() lowerCAmelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): lowerCAmelCase = UNetaDModel(**config) else: lowerCAmelCase = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel lowerCAmelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase = config[key] del config[key] lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: lowerCAmelCase = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) lowerCAmelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue lowerCAmelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: lowerCAmelCase = param_value lowerCAmelCase = True if not has_changed: lowerCAmelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
675
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): super().__init__() self.register_modules(transformer=lowercase__ , vae=lowercase__ , scheduler=lowercase__) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): __UpperCAmelCase : Dict = int(lowercase__) __UpperCAmelCase : Tuple = dict(sorted(self.labels.items())) def A( self , lowercase__): if not isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = list(lowercase__) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 4.0 , lowercase__ = None , lowercase__ = 5_0 , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : List[str] = len(lowercase__) __UpperCAmelCase : str = self.transformer.config.sample_size __UpperCAmelCase : List[str] = self.transformer.config.in_channels __UpperCAmelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowercase__ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(lowercase__ , device=self.device).reshape(-1) __UpperCAmelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device) __UpperCAmelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowercase__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: __UpperCAmelCase : List[str] = latent_model_input[: len(lowercase__) // 2] __UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0) __UpperCAmelCase : Optional[Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__) __UpperCAmelCase : Any = t if not torch.is_tensor(lowercase__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[str] = latent_model_input.device.type == '''mps''' if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : List[str] = torch.tensor([timesteps] , dtype=lowercase__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: __UpperCAmelCase : List[str] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output __UpperCAmelCase : Any = self.transformer( lowercase__ , timestep=lowercase__ , class_labels=lowercase__).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , len(lowercase__) // 2 , dim=0) __UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : str = torch.cat([half_eps, half_eps] , dim=0) __UpperCAmelCase : Any = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.split(lowercase__ , lowercase__ , dim=1) else: __UpperCAmelCase : Any = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : Dict = self.scheduler.step(lowercase__ , lowercase__ , lowercase__).prev_sample if guidance_scale > 1: __UpperCAmelCase , __UpperCAmelCase : Any = latent_model_input.chunk(2 , dim=0) else: __UpperCAmelCase : List[Any] = latent_model_input __UpperCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : Optional[int] = self.vae.decode(lowercase__).sample __UpperCAmelCase : List[str] = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : str = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : Optional[int] = self.numpy_to_pil(lowercase__) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowercase__)
675
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__( features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) __UpperCAmelCase : Tuple = Generator( cache_dir=lowercase__ , features=lowercase__ , generator=lowercase__ , gen_kwargs=lowercase__ , **lowercase__ , ) def A( self): # Build iterable dataset if self.streaming: __UpperCAmelCase : Tuple = self.builder.as_streaming_dataset(split='''train''') # Build regular (map-style) dataset else: __UpperCAmelCase : Tuple = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) __UpperCAmelCase : List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=lowercase__ , in_memory=self.keep_in_memory) return dataset
675
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __UpperCAmelCase : Any = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Tuple = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Tuple = size __UpperCAmelCase : Union[str, Any] = do_normalize def A( self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ]), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase ( _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Dict = ImageGPTImageProcessor if is_vision_available() else None def A( self): __UpperCAmelCase : Optional[Any] = ImageGPTImageProcessingTester(self) @property def A( self): return self.image_processor_tester.prepare_image_processor_dict() def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , '''clusters''')) self.assertTrue(hasattr(lowercase__ , '''do_resize''')) self.assertTrue(hasattr(lowercase__ , '''size''')) self.assertTrue(hasattr(lowercase__ , '''do_normalize''')) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8}) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2}) def A( self): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) __UpperCAmelCase : Any = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , obj[key])) else: self.assertEqual(obj[key] , lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(lowercase__ , '''image_processor.json''') image_processor_first.to_json_file(lowercase__) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_json_file(lowercase__).to_dict() __UpperCAmelCase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) def A( self): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase__) __UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(lowercase__).to_dict() __UpperCAmelCase : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase__ , image_processor_second[key])) else: self.assertEqual(image_processor_first[key] , lowercase__) @unittest.skip('''ImageGPT requires clusters at initialization''') def A( self): pass def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) __UpperCAmelCase : Optional[Any] = Image.open(dataset[4]['''file'''] ) __UpperCAmelCase : Optional[int] = Image.open(dataset[5]['''file'''] ) __UpperCAmelCase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''') __UpperCAmelCase : Any = prepare_images() # test non-batched __UpperCAmelCase : int = image_processing(images[0] , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4)) __UpperCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase__) # test batched __UpperCAmelCase : int = image_processing(lowercase__ , return_tensors='''pt''') self.assertIsInstance(encoding.input_ids , torch.LongTensor) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4)) __UpperCAmelCase : Any = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase__)
675
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
from __future__ import annotations import bisect def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int: '''simple docstring''' if hi < 0: __UpperCAmelCase : Any = len(lowercase_ ) while lo < hi: __UpperCAmelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase : Optional[Any] = mid + 1 else: __UpperCAmelCase : Optional[int] = mid return lo def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> int: '''simple docstring''' if hi < 0: __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) while lo < hi: __UpperCAmelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase : Optional[Any] = mid + 1 else: __UpperCAmelCase : List[Any] = mid return lo def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) - 1 while left <= right: __UpperCAmelCase : Dict = left + (right - left) // 2 __UpperCAmelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase : Optional[int] = midpoint - 1 else: __UpperCAmelCase : Any = midpoint + 1 return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' __UpperCAmelCase : int = bisect.bisect_left(lowercase_ , lowercase_ ) if index != len(lowercase_ ) and sorted_collection[index] == item: return index return None def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' if right < left: return None __UpperCAmelCase : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase_ , lowercase_ , lowercase_ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase_ , lowercase_ , midpoint + 1 , lowercase_ ) if __name__ == "__main__": lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase = sorted(int(item) for item in user_input.split(""",""")) lowerCAmelCase = int(input("""Enter a single number to be found in the list:\n""")) lowerCAmelCase = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1
import logging import os from .state import PartialState class lowerCamelCase ( logging.LoggerAdapter ): @staticmethod def A( lowercase__): __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def A( self , lowercase__ , lowercase__ , *lowercase__ , **lowercase__): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''') __UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''' , lowercase__) __UpperCAmelCase : Dict = kwargs.pop('''in_order''' , lowercase__) if self.isEnabledFor(lowercase__): if self._should_log(lowercase__): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.process(lowercase__ , lowercase__) self.logger.log(lowercase__ , lowercase__ , *lowercase__ , **lowercase__) elif in_order: __UpperCAmelCase : List[str] = PartialState() for i in range(state.num_processes): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : str = self.process(lowercase__ , lowercase__) self.logger.log(lowercase__ , lowercase__ , *lowercase__ , **lowercase__) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' if log_level is None: __UpperCAmelCase : Optional[Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , lowercase_ ) __UpperCAmelCase : Any = logging.getLogger(lowercase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase_ , {} )
675
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class lowerCamelCase ( unittest.TestCase ): @cached_property def A( self): return AutoConfig.from_pretrained(lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Tuple = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def A( self): __UpperCAmelCase , *__UpperCAmelCase : Dict = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def A( self): with self.assertRaises(lowercase__): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__)
675
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] lowerCAmelCase = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , bootstrap_aggregation=lowercase_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''rougeLsum''' __UpperCAmelCase : Optional[int] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k] __UpperCAmelCase : str = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=[k] )[k] assert score > score_no_sep def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = ['''rouge1''', '''rouge2''', '''rougeL'''] __UpperCAmelCase : Optional[Any] = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ ) __UpperCAmelCase : Any = calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ , rouge_keys=lowercase_ ) assert score_sep == score_no_sep def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : int = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] __UpperCAmelCase : List[str] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ ) == calculate_rouge(lowercase_ , lowercase_ , newline_sep=lowercase_ ) def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] __UpperCAmelCase : List[Any] = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] __UpperCAmelCase : Union[str, Any] = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] , newline_sep=lowercase_ )['''rougeLsum'''] __UpperCAmelCase : Dict = calculate_rouge(lowercase_ , lowercase_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : List[str] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) __UpperCAmelCase : Dict = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(lowercase_ , lowercase_ ) __UpperCAmelCase : Tuple = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=lowercase_ ) assert isinstance(lowercase_ , lowercase_ )
675
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[str] = '''sew-d''' def __init__( self , lowercase__=3_2 , lowercase__=7_6_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=3_0_7_2 , lowercase__=2 , lowercase__=5_1_2 , lowercase__=2_5_6 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.0_2 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_2_8 , lowercase__=1_6 , lowercase__=True , lowercase__=0.0_5 , lowercase__=1_0 , lowercase__=2 , lowercase__=0.0 , lowercase__=1_0 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_5_6 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__) __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : int = feat_extract_norm __UpperCAmelCase : List[str] = feat_extract_activation __UpperCAmelCase : str = list(lowercase__) __UpperCAmelCase : Optional[int] = list(lowercase__) __UpperCAmelCase : Tuple = list(lowercase__) __UpperCAmelCase : Tuple = conv_bias __UpperCAmelCase : int = num_conv_pos_embeddings __UpperCAmelCase : int = num_conv_pos_embedding_groups __UpperCAmelCase : Any = len(self.conv_dim) __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = squeeze_factor __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = position_buckets __UpperCAmelCase : Tuple = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : str = norm_rel_ebd __UpperCAmelCase : Dict = list(lowercase__) __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Optional[Any] = feat_proj_dropout __UpperCAmelCase : Optional[Any] = final_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = feature_layer_norm_eps __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Tuple = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" F"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[int] = apply_spec_augment __UpperCAmelCase : List[str] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Optional[int] = mask_time_min_masks __UpperCAmelCase : Optional[int] = mask_feature_prob __UpperCAmelCase : List[str] = mask_feature_length __UpperCAmelCase : List[Any] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : Tuple = classifier_proj_size @property def A( self): return functools.reduce(operator.mul , self.conv_stride , 1)
675
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Tuple = '''realm''' def __init__( self , lowercase__=3_0_5_2_2 , lowercase__=7_6_8 , lowercase__=1_2_8 , lowercase__=1_2 , lowercase__=1_2 , lowercase__=8 , lowercase__=3_0_7_2 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1e-12 , lowercase__=2_5_6 , lowercase__=1_0 , lowercase__=1e-3 , lowercase__=5 , lowercase__=3_2_0 , lowercase__=1_3_3_5_3_7_1_8 , lowercase__=5_0_0_0 , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__) # Common config __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[Any] = retriever_proj_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Any = layer_norm_eps # Reader config __UpperCAmelCase : Optional[int] = span_hidden_size __UpperCAmelCase : Dict = max_span_width __UpperCAmelCase : int = reader_layer_norm_eps __UpperCAmelCase : int = reader_beam_size __UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config __UpperCAmelCase : Optional[int] = num_block_records __UpperCAmelCase : Optional[Any] = searcher_beam_size
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1
import math class lowerCamelCase : def __init__( self , lowercase__=0): # a graph with Node 0,1,...,N-1 __UpperCAmelCase : Any = n __UpperCAmelCase : int = [ [math.inf for j in range(0 , lowercase__)] for i in range(0 , lowercase__) ] # adjacency matrix for weight __UpperCAmelCase : Tuple = [ [math.inf for j in range(0 , lowercase__)] for i in range(0 , lowercase__) ] # dp[i][j] stores minimum distance from i to j def A( self , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Optional[Any] = w def A( self): for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __UpperCAmelCase : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def A( self , lowercase__ , lowercase__): return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
675
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : _lowerCAmelCase : Optional[Union[str, Path]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = False _lowerCAmelCase : bool = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 1 _lowerCAmelCase : Optional[Union[str, bool]] = None _lowerCAmelCase : bool = False _lowerCAmelCase : Optional[Dict] = None _lowerCAmelCase : Optional[str] = None def A( self): return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
675
1
def __SCREAMING_SNAKE_CASE ( lowercase_ = 4000000 ) -> int: '''simple docstring''' __UpperCAmelCase : int = [] __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase_ ) __UpperCAmelCase , __UpperCAmelCase : Dict = b, a + b return sum(lowercase_ ) if __name__ == "__main__": print(F'{solution() = }')
675
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __UpperCAmelCase : Dict = str(bin(lowercase_ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowercase_ ) )[2:] __UpperCAmelCase : List[Any] = max(len(lowercase_ ) , len(lowercase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase_ ) , b_binary.zfill(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
675
1
# Algorithm for the pigeonhole sorting def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = min(lowercase_ ) # min() finds the minimum value __UpperCAmelCase : str = max(lowercase_ ) # max() finds the maximum value __UpperCAmelCase : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __UpperCAmelCase : str = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowercase_ , lowercase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __UpperCAmelCase : int = 0 for count in range(lowercase_ ): while holes[count] > 0: holes[count] -= 1 __UpperCAmelCase : str = count + min_val i += 1 def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowercase_ ) print('''Sorted order is:''' , ''' '''.join(lowercase_ ) ) if __name__ == "__main__": main()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1