code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def A ( snake_case__ : Optional[int] , snake_case__ : List[str] ) -> List[str]:
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
__snake_case = flax_key_tuple[:-1] + ('weight',)
__snake_case = torch.permute(snake_case__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ):
# linear layer
__snake_case = flax_key_tuple[:-1] + ('weight',)
__snake_case = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__snake_case = flax_key_tuple[:-1] + ('weight',)
return flax_key_tuple, flax_tensor
def A ( snake_case__ : Tuple , snake_case__ : Any , snake_case__ : int ) -> Dict:
'''simple docstring'''
if "metadata" in layer:
__snake_case = layer.split('metadata' )
__snake_case = ''.join(split_layer[0] )[:-1]
__snake_case = [tuple(('metadata' + split_layer[1]).split('/' ) )]
elif "kvstore" in layer:
__snake_case = layer.split('kvstore' )
__snake_case = ''.join(split_layer[0] )[:-1]
__snake_case = [tuple(('kvstore' + split_layer[1]).split('/' ) )]
else:
__snake_case = layer.split('/' )
__snake_case = '/'.join(split_layer[:-1] )
__snake_case = (split_layer[-1],)
if "kvstore/path" in layer:
__snake_case = f"{switch_checkpoint_path}/{checkpoint_info[layer]}"
elif "kvstore/driver" in layer:
__snake_case = 'file'
else:
__snake_case = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def A ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ) -> int:
'''simple docstring'''
__snake_case = rename_keys(snake_case__ )
__snake_case = {}
for k, v in current_block.items():
__snake_case = v
__snake_case = new_current_block
torch.save(snake_case__ , snake_case__ )
def A ( snake_case__ : str , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str = WEIGHTS_NAME ) -> Optional[int]:
'''simple docstring'''
__snake_case = convert_file_size_to_int(snake_case__ )
__snake_case = []
__snake_case = {}
__snake_case = 0
__snake_case = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp:
__snake_case = serialization.msgpack_restore(fp.read() )['optimizer']['target']
__snake_case = flatten_dict(snake_case__ , sep='/' )
__snake_case = {}
for layer in checkpoint_info.keys():
__snake_case , __snake_case , __snake_case = get_key_and_tensorstore_dict(
snake_case__ , snake_case__ , snake_case__ )
if curr_real_layer_name in all_layers:
__snake_case = content
else:
__snake_case = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
__snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
__snake_case = torch.tensor(snake_case__ )
__snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
__snake_case , __snake_case = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case__ )
__snake_case = '/'.join(snake_case__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
__snake_case = os.path.join(
snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
__snake_case = {}
__snake_case = 0
__snake_case = raw_weights.to(getattr(snake_case__ , snake_case__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
__snake_case = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(snake_case__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
__snake_case = {}
__snake_case = {}
for idx, shard in enumerate(snake_case__ ):
__snake_case = weights_name.replace(
'.bin' , f"-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin" ) # len(sharded_state_dicts):05d}
__snake_case = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{idx+1:05d}-of-???.bin" ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
__snake_case = shard
for key in shard:
__snake_case = shard_file
# Add the metadata
__snake_case = {'total_size': total_size}
__snake_case = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' ) as f:
__snake_case = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n'
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def A ( ) -> Optional[int]:
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
__snake_case = SwitchTransformersConfig.from_pretrained('google/switch-base-8' )
config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' )
__snake_case = SwitchTransformersForConditionalGeneration.from_pretrained(
'/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' )
__snake_case = TaTokenizer.from_pretrained('t5-small' )
__snake_case = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'
__snake_case = tokenizer(snake_case__ , return_tensors='pt' ).input_ids
__snake_case = model.generate(snake_case__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 676 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def A ( *snake_case__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(snake_case__ , 'r' ) as fh:
fcntl.flock(snake_case__ , fcntl.LOCK_EX )
try:
print(*snake_case__ )
finally:
fcntl.flock(snake_case__ , fcntl.LOCK_UN )
UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
UpperCAmelCase__ : Any = torch.device("cuda", local_rank)
UpperCAmelCase__ : Union[str, Any] = socket.gethostname()
UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
UpperCAmelCase__ : Optional[int] = dist.get_rank()
UpperCAmelCase__ : List[str] = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 676 | 1 |
import sys
UpperCAmelCase__ : Tuple = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def A ( snake_case__ : str = N ) -> int:
'''simple docstring'''
__snake_case = -sys.maxsize - 1
for i in range(len(snake_case__ ) - 12 ):
__snake_case = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
__snake_case = product
return largest_product
if __name__ == "__main__":
print(F"""{solution() = }""")
| 676 |
from datetime import datetime
import requests
def A ( snake_case__ : str ) -> bytes:
'''simple docstring'''
__snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(snake_case__ ).content
if __name__ == "__main__":
UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip()
UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 676 | 1 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
UpperCAmelCase__ : int = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| 676 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
def _a ( self) -> Union[str, Any]:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__snake_case = ids_tensor([self.batch_size] , self.num_choices)
__snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self) -> Tuple:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , )
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = OpenLlamaModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]:
__snake_case = True
__snake_case = OpenLlamaModel(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
__snake_case = True
__snake_case = True
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
# first forward pass
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
__snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size)
__snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
__snake_case = torch.cat([input_ids, next_tokens] , dim=-1)
__snake_case = torch.cat([input_mask, next_mask] , dim=-1)
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
# select random slice
__snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item()
__snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
def _a ( self) -> Optional[Any]:
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = OpenLlamaModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7)
def _a ( self) -> int:
self.config_tester.run_common_tests()
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'single_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> int:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'multi_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def _a ( self) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)])
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ids_tensor([1, 1_0] , config.vocab_size)
__snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = OpenLlamaModel(lowercase_)
original_model.to(lowercase_)
original_model.eval()
__snake_case = original_model(lowercase_).last_hidden_state
__snake_case = original_model(lowercase_).last_hidden_state
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = {'type': scaling_type, 'factor': 10.0}
__snake_case = OpenLlamaModel(lowercase_)
scaled_model.to(lowercase_)
scaled_model.eval()
__snake_case = scaled_model(lowercase_).last_hidden_state
__snake_case = scaled_model(lowercase_).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
else:
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
| 676 | 1 |
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = CustomTokenizer
pass
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 0:
return False
__snake_case = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase__ : Union[str, Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = ["XGLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = ["XGLMTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = [
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XGLMForCausalLM",
"XGLMModel",
"XGLMPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxXGLMForCausalLM",
"FlaxXGLMModel",
"FlaxXGLMPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 676 |
import numpy as np
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> str:
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def _a ( self) -> Optional[int]:
__snake_case = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
return Dataset.from_dict(lowercase_)
def _a ( self) -> Tuple:
__snake_case = self._create_example_records()
__snake_case = Dataset.from_list(lowercase_)
self.assertListEqual(dset.column_names , ['col_1', 'col_2'])
for i, r in enumerate(lowercase_):
self.assertDictEqual(lowercase_ , example_records[i])
def _a ( self) -> Optional[Any]:
__snake_case = self._create_example_records()
__snake_case = Dataset.from_list(lowercase_)
__snake_case = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]})
self.assertEqual(dset.info , dset_from_dict.info)
def _a ( self) -> int: # checks what happens with missing columns
__snake_case = [{'col_1': 1}, {'col_2': 'x'}]
__snake_case = Dataset.from_list(lowercase_)
self.assertDictEqual(dset[0] , {'col_1': 1})
self.assertDictEqual(dset[1] , {'col_1': None}) # NB: first record is used for columns
def _a ( self) -> List[Any]: # checks if the type can be inferred from the second record
__snake_case = [{'col_1': []}, {'col_1': [1, 2]}]
__snake_case = Dataset.from_list(lowercase_)
self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64')))
def _a ( self) -> Optional[Any]:
__snake_case = Dataset.from_list([])
self.assertEqual(len(lowercase_) , 0)
self.assertListEqual(dset.column_names , [])
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 1 |
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = 42
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , lowercase_ = 1_6 , lowercase_ = 8_8 , lowercase_ = None , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = "geglu" , lowercase_ = True , lowercase_ = True , ) -> List[Any]:
super().__init__()
__snake_case = num_attention_heads
__snake_case = attention_head_dim
__snake_case = num_attention_heads * attention_head_dim
__snake_case = in_channels
__snake_case = torch.nn.GroupNorm(num_groups=lowercase_ , num_channels=lowercase_ , eps=1e-6 , affine=lowercase_)
__snake_case = nn.Linear(lowercase_ , lowercase_)
# 3. Define transformers blocks
__snake_case = nn.ModuleList(
[
BasicTransformerBlock(
lowercase_ , lowercase_ , lowercase_ , dropout=lowercase_ , cross_attention_dim=lowercase_ , activation_fn=lowercase_ , attention_bias=lowercase_ , double_self_attention=lowercase_ , norm_elementwise_affine=lowercase_ , )
for d in range(lowercase_)
])
__snake_case = nn.Linear(lowercase_ , lowercase_)
def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=1 , lowercase_=None , lowercase_ = True , ) -> List[str]:
__snake_case , __snake_case , __snake_case , __snake_case = hidden_states.shape
__snake_case = batch_frames // num_frames
__snake_case = hidden_states
__snake_case = hidden_states[None, :].reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
__snake_case = hidden_states.permute(0 , 2 , 1 , 3 , 4)
__snake_case = self.norm(lowercase_)
__snake_case = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , lowercase_ , lowercase_)
__snake_case = self.proj_in(lowercase_)
# 2. Blocks
for block in self.transformer_blocks:
__snake_case = block(
lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ , cross_attention_kwargs=lowercase_ , class_labels=lowercase_ , )
# 3. Output
__snake_case = self.proj_out(lowercase_)
__snake_case = (
hidden_states[None, None, :]
.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
.permute(0 , 3 , 4 , 1 , 2)
.contiguous()
)
__snake_case = hidden_states.reshape(lowercase_ , lowercase_ , lowercase_ , lowercase_)
__snake_case = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=lowercase_)
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
UpperCAmelCase__ : str = logging.get_logger(__name__)
class __lowercase :
def __init__( self , lowercase_ = None , lowercase_ = None , lowercase_=None , lowercase_=None) -> Union[str, Any]:
if not conversation_id:
__snake_case = uuid.uuida()
if past_user_inputs is None:
__snake_case = []
if generated_responses is None:
__snake_case = []
__snake_case = conversation_id
__snake_case = past_user_inputs
__snake_case = generated_responses
__snake_case = text
def __eq__( self , lowercase_) -> Optional[int]:
if not isinstance(lowercase_ , lowercase_):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def _a ( self , lowercase_ , lowercase_ = False) -> Optional[Any]:
if self.new_user_input:
if overwrite:
logger.warning(
F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten "
F"with: \"{text}\".")
__snake_case = text
else:
logger.warning(
F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input "
F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input")
else:
__snake_case = text
def _a ( self) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input)
__snake_case = None
def _a ( self , lowercase_) -> Union[str, Any]:
self.generated_responses.append(lowercase_)
def _a ( self) -> List[Any]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self) -> List[Any]:
__snake_case = F"Conversation id: {self.uuid} \n"
for is_user, text in self.iter_texts():
__snake_case = 'user' if is_user else 'bot'
output += F"{name} >> {text} \n"
return output
@add_end_docstrings(
lowerCamelCase__ , R'''
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
''' , )
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
super().__init__(*lowercase_ , **lowercase_)
if self.tokenizer.pad_token_id is None:
__snake_case = self.tokenizer.eos_token
def _a ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> Any:
__snake_case = {}
__snake_case = {}
__snake_case = {}
if min_length_for_response is not None:
__snake_case = min_length_for_response
if minimum_tokens is not None:
__snake_case = minimum_tokens
if "max_length" in generate_kwargs:
__snake_case = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(lowercase_)
return preprocess_params, forward_params, postprocess_params
def __call__( self , lowercase_ , lowercase_=0 , **lowercase_) -> Union[str, Any]:
__snake_case = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_)
if isinstance(lowercase_ , lowercase_) and len(lowercase_) == 1:
return outputs[0]
return outputs
def _a ( self , lowercase_ , lowercase_=3_2) -> Dict[str, Any]:
if not isinstance(lowercase_ , lowercase_):
raise ValueError('ConversationalPipeline, expects Conversation as inputs')
if conversation.new_user_input is None:
raise ValueError(
F"Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. "
'Add user inputs with the conversation\'s `add_user_input` method')
if hasattr(self.tokenizer , '_build_conversation_input_ids'):
__snake_case = self.tokenizer._build_conversation_input_ids(lowercase_)
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__snake_case = self._legacy_parse_and_tokenize(lowercase_)
if self.framework == "pt":
__snake_case = torch.LongTensor([input_ids])
elif self.framework == "tf":
__snake_case = tf.constant([input_ids])
return {"input_ids": input_ids, "conversation": conversation}
def _a ( self , lowercase_ , lowercase_=1_0 , **lowercase_) -> int:
__snake_case = generate_kwargs.get('max_length' , self.model.config.max_length)
__snake_case = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})")
__snake_case = max_length - minimum_tokens
__snake_case = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
__snake_case = model_inputs['attention_mask'][:, -trim:]
__snake_case = model_inputs.pop('conversation')
__snake_case = max_length
__snake_case = self.model.generate(**lowercase_ , **lowercase_)
if self.model.config.is_encoder_decoder:
__snake_case = 1
else:
__snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def _a ( self , lowercase_ , lowercase_=True) -> Dict:
__snake_case = model_outputs['output_ids']
__snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , )
__snake_case = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(lowercase_)
return conversation
def _a ( self , lowercase_) -> Dict:
__snake_case = self.tokenizer.eos_token_id
__snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) + [eos_token_id])
else:
input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_))
if len(lowercase_) > self.tokenizer.model_max_length:
__snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 676 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 | 1 |
import os
def A ( ) -> List[str]:
'''simple docstring'''
__snake_case = os.path.dirname(os.path.realpath(snake_case__ ) )
__snake_case = os.path.join(snake_case__ , 'triangle.txt' )
with open(snake_case__ ) as f:
__snake_case = f.readlines()
__snake_case = []
for line in triangle:
__snake_case = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(snake_case__ ) )
a.append(snake_case__ )
for i in range(1 , len(snake_case__ ) ):
for j in range(len(a[i] ) ):
__snake_case = a[i - 1][j] if j != len(a[i - 1] ) else 0
__snake_case = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(snake_case__ , snake_case__ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 676 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A ( snake_case__ : List[Any] ) -> Any:
'''simple docstring'''
__snake_case = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__snake_case = 4
__snake_case = 48
__snake_case = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = [6, 6, 6, 6]
__snake_case = 60
__snake_case = [6, 6, 6, 6]
__snake_case = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = 4
__snake_case = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__snake_case = 1
__snake_case = 1
__snake_case = 126
__snake_case = 7
__snake_case = 255.0
__snake_case = ''
return config
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
__snake_case = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
__snake_case = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
__snake_case = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__snake_case = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__snake_case = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__snake_case = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__snake_case = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__snake_case = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__snake_case = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__snake_case = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__snake_case = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
__snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
__snake_case = 'layernorm.weight'
if name == "norm.bias":
__snake_case = 'layernorm.bias'
if "conv_first" in name:
__snake_case = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__snake_case = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
__snake_case = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
__snake_case = name.replace('upsample.2' , 'upsample.convolution_1' )
__snake_case = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
__snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
__snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
__snake_case = 'swin2sr.' + name
return name
def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
__snake_case = key.split('.' )
__snake_case = int(key_split[1] )
__snake_case = int(key_split[4] )
__snake_case = config.embed_dim
if "weight" in key:
__snake_case = val[:dim, :]
__snake_case = val[dim : dim * 2, :]
__snake_case = val[-dim:, :]
else:
__snake_case = val[:dim]
__snake_case = val[dim : dim * 2]
__snake_case = val[-dim:]
pass
else:
__snake_case = val
return orig_state_dict
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = get_config(snake_case__ )
__snake_case = SwinaSRForImageSuperResolution(snake_case__ )
model.eval()
__snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )
__snake_case = convert_state_dict(snake_case__ , snake_case__ )
__snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0:
raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict" )
# verify values
__snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
__snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' )
__snake_case = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__snake_case = 126 if 'Jpeg' in checkpoint_url else 256
__snake_case = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__snake_case = transforms(snake_case__ ).unsqueeze(0 )
if config.num_channels == 1:
__snake_case = pixel_values[:, 0, :, :].unsqueeze(1 )
__snake_case = model(snake_case__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 )
print('Looks ok!' )
__snake_case = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
__snake_case = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}" )
processor.push_to_hub(f"caidas/{model_name}" )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 676 | 1 |
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = abs(snake_case__ )
__snake_case = 0
while n > 0:
res += n % 10
n //= 10
return res
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = abs(snake_case__ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
return sum(int(snake_case__ ) for c in str(abs(snake_case__ ) ) )
def A ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case__ : Callable , snake_case__ : int ) -> None:
__snake_case = f"{func.__name__}({value})"
__snake_case = timeit(f"__main__.{call}" , setup='import __main__' )
print(f"{call:56} = {func(snake_case__ )} -- {timing:.4f} seconds" )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(snake_case__ , snake_case__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
UpperCAmelCase__ : Union[str, Any] = "<<<<<<< This should probably be modified because it mentions: "
UpperCAmelCase__ : Tuple = "=======\n>>>>>>>\n"
UpperCAmelCase__ : Tuple = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
UpperCAmelCase__ : List[str] = [
# (pattern, replacement)
# Order is important here for some replacements
(r"tfds\.core", r"datasets"),
(r"tf\.io\.gfile\.GFile", r"open"),
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
(r"tfds\.features\.FeaturesDict\(", r"dict("),
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(r"tfds\.", r"datasets."),
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
(r"self\.builder_config", r"self.config"),
]
def A ( snake_case__ : Namespace ) -> Union[str, Any]:
'''simple docstring'''
return ConvertCommand(args.tfds_path , args.datasets_directory )
class __lowercase ( lowerCamelCase__ ):
@staticmethod
def _a ( lowercase_) -> int:
__snake_case = parser.add_parser(
'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , )
train_parser.add_argument(
'--tfds_path' , type=lowercase_ , required=lowercase_ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , )
train_parser.add_argument(
'--datasets_directory' , type=lowercase_ , required=lowercase_ , help='Path to the HuggingFace Datasets folder.')
train_parser.set_defaults(func=lowercase_)
def __init__( self , lowercase_ , lowercase_ , *lowercase_) -> Any:
__snake_case = get_logger('datasets-cli/converting')
__snake_case = tfds_path
__snake_case = datasets_directory
def _a ( self) -> Dict:
if os.path.isdir(self._tfds_path):
__snake_case = os.path.abspath(self._tfds_path)
elif os.path.isfile(self._tfds_path):
__snake_case = os.path.dirname(self._tfds_path)
else:
raise ValueError('--tfds_path is neither a directory nor a file. Please check path.')
__snake_case = os.path.abspath(self._datasets_directory)
self._logger.info(F"Converting datasets from {abs_tfds_path} to {abs_datasets_path}")
__snake_case = []
__snake_case = []
__snake_case = {}
if os.path.isdir(self._tfds_path):
__snake_case = os.listdir(lowercase_)
else:
__snake_case = [os.path.basename(self._tfds_path)]
for f_name in file_names:
self._logger.info(F"Looking at file {f_name}")
__snake_case = os.path.join(lowercase_ , lowercase_)
__snake_case = os.path.join(lowercase_ , lowercase_)
if not os.path.isfile(lowercase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('Skipping file')
continue
with open(lowercase_ , encoding='utf-8') as f:
__snake_case = f.readlines()
__snake_case = []
__snake_case = False
__snake_case = False
__snake_case = []
for line in lines:
__snake_case = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
__snake_case = 'import datasets\n'
elif "import tensorflow" in out_line:
# order is important here
__snake_case = ''
continue
elif "from absl import logging" in out_line:
__snake_case = 'from datasets import logging\n'
elif "getLogger" in out_line:
__snake_case = out_line.replace('getLogger' , 'get_logger')
elif any(expression in out_line for expression in TO_HIGHLIGHT):
__snake_case = True
__snake_case = list(filter(lambda lowercase_: e in out_line , lowercase_))
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_) + '\n')
out_lines.append(lowercase_)
out_lines.append(lowercase_)
continue
else:
for pattern, replacement in TO_CONVERT:
__snake_case = re.sub(lowercase_ , lowercase_ , lowercase_)
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
__snake_case = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowercase_)
tfds_imports.extend(imp.strip() for imp in match.group(1).split(','))
__snake_case = 'from . import ' + match.group(1)
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(F"Error converting {out_line.strip()}")
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
__snake_case = True
out_lines.append(lowercase_)
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
__snake_case = f_name.replace('.py' , '')
__snake_case = os.path.join(lowercase_ , lowercase_)
__snake_case = os.path.join(lowercase_ , lowercase_)
os.makedirs(lowercase_ , exist_ok=lowercase_)
self._logger.info(F"Adding directory {output_dir}")
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports})
else:
# Utilities will be moved at the end
utils_files.append(lowercase_)
if needs_manual_update:
with_manual_update.append(lowercase_)
with open(lowercase_ , 'w' , encoding='utf-8') as f:
f.writelines(lowercase_)
self._logger.info(F"Converted in {output_file}")
for utils_file in utils_files:
try:
__snake_case = os.path.basename(lowercase_)
__snake_case = imports_to_builder_map[f_name.replace('.py' , '')]
self._logger.info(F"Moving {dest_folder} to {utils_file}")
shutil.copy(lowercase_ , lowercase_)
except KeyError:
self._logger.error(F"Cannot find destination folder for {utils_file}. Please copy manually.")
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
F"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.")
| 676 |
from __future__ import annotations
class __lowercase :
def __init__( self , lowercase_) -> None:
__snake_case = data
__snake_case = None
__snake_case = None
def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def A ( snake_case__ : Node | None ) -> int:
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def A ( snake_case__ : Node ) -> bool:
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def A ( ) -> None: # Main function for testing.
'''simple docstring'''
__snake_case = Node(1 )
__snake_case = Node(2 )
__snake_case = Node(3 )
__snake_case = Node(4 )
__snake_case = Node(5 )
__snake_case = Node(6 )
__snake_case = Node(7 )
__snake_case = Node(8 )
__snake_case = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 676 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = CycleDiffusionPipeline
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''negative_prompt''',
'''height''',
'''width''',
'''negative_prompt_embeds''',
}
__UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''}
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} )
__UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _a ( self) -> Tuple:
torch.manual_seed(0)
__snake_case = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
__snake_case = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , )
torch.manual_seed(0)
__snake_case = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0)
__snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
__snake_case = CLIPTextModel(lowercase_)
__snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
__snake_case = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _a ( self , lowercase_ , lowercase_=0) -> List[Any]:
__snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_)
__snake_case = image / 2 + 0.5
if str(lowercase_).startswith('mps'):
__snake_case = torch.manual_seed(lowercase_)
else:
__snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_)
__snake_case = {
'prompt': 'An astronaut riding an elephant',
'source_prompt': 'An astronaut riding a horse',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'eta': 0.1,
'strength': 0.8,
'guidance_scale': 3,
'source_guidance_scale': 1,
'output_type': 'numpy',
}
return inputs
def _a ( self) -> Tuple:
__snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator
__snake_case = self.get_dummy_components()
__snake_case = CycleDiffusionPipeline(**lowercase_)
__snake_case = pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
__snake_case = self.get_dummy_inputs(lowercase_)
__snake_case = pipe(**lowercase_)
__snake_case = output.images
__snake_case = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__snake_case = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def _a ( self) -> Dict:
__snake_case = self.get_dummy_components()
for name, module in components.items():
if hasattr(lowercase_ , 'half'):
__snake_case = module.half()
__snake_case = CycleDiffusionPipeline(**lowercase_)
__snake_case = pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
__snake_case = self.get_dummy_inputs(lowercase_)
__snake_case = pipe(**lowercase_)
__snake_case = output.images
__snake_case = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__snake_case = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def _a ( self) -> Any:
return super().test_save_load_local()
@unittest.skip('non-deterministic pipeline')
def _a ( self) -> Optional[int]:
return super().test_inference_batch_single_identical()
@skip_mps
def _a ( self) -> int:
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def _a ( self) -> Optional[int]:
return super().test_save_load_optional_components()
@skip_mps
def _a ( self) -> Any:
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def _a ( self) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self) -> str:
__snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/cycle-diffusion/black_colored_car.png')
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy')
__snake_case = init_image.resize((5_1_2, 5_1_2))
__snake_case = 'CompVis/stable-diffusion-v1-4'
__snake_case = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler')
__snake_case = CycleDiffusionPipeline.from_pretrained(
lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision='fp16')
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
__snake_case = 'A black colored car'
__snake_case = 'A blue colored car'
__snake_case = torch.manual_seed(0)
__snake_case = pipe(
prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='np' , )
__snake_case = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image).max() < 5e-1
def _a ( self) -> Union[str, Any]:
__snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/cycle-diffusion/black_colored_car.png')
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy')
__snake_case = init_image.resize((5_1_2, 5_1_2))
__snake_case = 'CompVis/stable-diffusion-v1-4'
__snake_case = DDIMScheduler.from_pretrained(lowercase_ , subfolder='scheduler')
__snake_case = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_)
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
__snake_case = 'A black colored car'
__snake_case = 'A blue colored car'
__snake_case = torch.manual_seed(0)
__snake_case = pipe(
prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type='np' , )
__snake_case = output.images
assert np.abs(image - expected_image).max() < 2e-2
| 676 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''table-transformer'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowercase_ , lowercase_):
__snake_case = backbone_config.get('model_type')
__snake_case = CONFIG_MAPPING[backbone_model_type]
__snake_case = config_class.from_dict(lowercase_)
# set timm attributes to None
__snake_case , __snake_case , __snake_case = None, None, None
__snake_case = use_timm_backbone
__snake_case = backbone_config
__snake_case = num_channels
__snake_case = num_queries
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = init_xavier_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = encoder_layers
__snake_case = auxiliary_loss
__snake_case = position_embedding_type
__snake_case = backbone
__snake_case = use_pretrained_backbone
__snake_case = dilation
# Hungarian matcher
__snake_case = class_cost
__snake_case = bbox_cost
__snake_case = giou_cost
# Loss coefficients
__snake_case = mask_loss_coefficient
__snake_case = dice_loss_coefficient
__snake_case = bbox_loss_coefficient
__snake_case = giou_loss_coefficient
__snake_case = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_)
@property
def _a ( self) -> int:
return self.encoder_attention_heads
@property
def _a ( self) -> int:
return self.d_model
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def _a ( self) -> float:
return 1e-5
@property
def _a ( self) -> int:
return 1_2
| 676 | 1 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = StableUnCLIPPipeline
__UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = 3_2
__snake_case = embedder_hidden_size
# prior components
torch.manual_seed(0)
__snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
torch.manual_seed(0)
__snake_case = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ))
torch.manual_seed(0)
__snake_case = PriorTransformer(
num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0)
__snake_case = DDPMScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , )
# regular denoising components
torch.manual_seed(0)
__snake_case = StableUnCLIPImageNormalizer(embedding_dim=lowercase_)
__snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2')
torch.manual_seed(0)
__snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
torch.manual_seed(0)
__snake_case = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ))
torch.manual_seed(0)
__snake_case = UNetaDConditionModel(
sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0)
__snake_case = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0)
__snake_case = AutoencoderKL()
__snake_case = {
# prior components
'prior_tokenizer': prior_tokenizer,
'prior_text_encoder': prior_text_encoder,
'prior': prior,
'prior_scheduler': prior_scheduler,
# image noising components
'image_normalizer': image_normalizer,
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'unet': unet,
'scheduler': scheduler,
'vae': vae,
}
return components
def _a ( self , lowercase_ , lowercase_=0) -> Dict:
if str(lowercase_).startswith('mps'):
__snake_case = torch.manual_seed(lowercase_)
else:
__snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_)
__snake_case = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'prior_num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def _a ( self) -> str:
__snake_case = torch_device == 'cpu'
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_)
def _a ( self) -> Tuple:
__snake_case = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=lowercase_)
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def _a ( self) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self) -> Tuple:
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy')
__snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa)
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__snake_case = torch.Generator(device='cpu').manual_seed(0)
__snake_case = pipe('anime turle' , generator=lowercase_ , output_type='np')
__snake_case = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_)
def _a ( self) -> List[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa)
__snake_case = pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__snake_case = pipe(
'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , )
__snake_case = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 1_0**9
| 676 |
from maths.prime_check import is_prime
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if is_prime(snake_case__ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCAmelCase__ : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCAmelCase__ : Any = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode("utf-8").split()
UpperCAmelCase__ : Any = "|".join(sys.argv[1:])
UpperCAmelCase__ : Any = re.compile(rF"""^({joined_dirs}).*?\.py$""")
UpperCAmelCase__ : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 676 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
__snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
| 676 | 1 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase__ : Any = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
UpperCAmelCase__ : Tuple = 5
UpperCAmelCase__ : int = 10
@require_sentencepiece
@require_tokenizers
class __lowercase ( lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = SpeechaTextTokenizer
__UpperCAmelCase = False
__UpperCAmelCase = True
def _a ( self) -> Optional[Any]:
super().setUp()
__snake_case = sp.SentencePieceProcessor()
spm_model.Load(lowercase_)
__snake_case = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_) for id_ in range(len(lowercase_))]
__snake_case = dict(zip(lowercase_ , range(len(lowercase_))))
__snake_case = Path(self.tmpdirname)
save_json(lowercase_ , save_dir / VOCAB_FILES_NAMES['vocab_file'])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowercase_ , save_dir / VOCAB_FILES_NAMES['spm_file'])
__snake_case = SpeechaTextTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def _a ( self) -> Tuple:
__snake_case = '<pad>'
__snake_case = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_)
def _a ( self) -> List[Any]:
__snake_case = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(vocab_keys[-1] , 'j')
self.assertEqual(len(lowercase_) , 1_0_0_1)
def _a ( self) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1)
def _a ( self) -> Tuple:
__snake_case = SpeechaTextTokenizer.from_pretrained(self.tmpdirname)
__snake_case = tokenizer.tokenize('This is a test')
self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , )
__snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__snake_case = tokenizer.convert_tokens_to_ids(lowercase_)
self.assertListEqual(lowercase_ , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8])
__snake_case = tokenizer.convert_ids_to_tokens(lowercase_)
self.assertListEqual(
lowercase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def _a ( self) -> Tuple:
# fmt: off
__snake_case = {'input_ids': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class __lowercase ( unittest.TestCase ):
__UpperCAmelCase = '''valhalla/s2t_mustc_multilinguial_medium'''
__UpperCAmelCase = '''C\'est trop cool'''
__UpperCAmelCase = '''Esto es genial'''
@classmethod
def _a ( cls) -> Dict:
__snake_case = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def _a ( self) -> Any:
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4)
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6)
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9)
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 1_1)
def _a ( self) -> Dict:
self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0)
def _a ( self) -> Optional[Any]:
self.assertIn(lowercase_ , self.tokenizer.all_special_ids)
__snake_case = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2]
__snake_case = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_)
__snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_)
self.assertEqual(lowercase_ , lowercase_)
self.assertNotIn(self.tokenizer.eos_token , lowercase_)
def _a ( self) -> Optional[int]:
__snake_case = 'fr'
__snake_case = self.tokenizer(self.french_text).input_ids
self.assertEqual(encoded[0] , lowercase_)
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id)
def _a ( self) -> Optional[Any]:
__snake_case = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE])
__snake_case = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
| 676 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase__ : Optional[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def A ( snake_case__ : List[Any] ) -> str:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
__snake_case = k.replace(snake_case__ , snake_case__ )
return k
def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration:
'''simple docstring'''
__snake_case = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
__snake_case = PegasusConfig(**snake_case__ )
__snake_case = PegasusForConditionalGeneration(snake_case__ )
__snake_case = torch_model.model.state_dict()
__snake_case = {}
for k, v in tf_weights.items():
__snake_case = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
__snake_case = v.T
__snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
__snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
__snake_case = mapping['shared.weight']
__snake_case = mapping['shared.weight']
__snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
__snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
__snake_case = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
__snake_case = tf.train.list_variables(snake_case__ )
__snake_case = {}
__snake_case = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
__snake_case = any(pat in name for pat in ignore_name )
if skip_key:
continue
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
__snake_case = array
return tf_weights
def A ( snake_case__ : str , snake_case__ : str ) -> Tuple:
'''simple docstring'''
# save tokenizer first
__snake_case = Path(snake_case__ ).parent.name
__snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
__snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
__snake_case = get_tf_weights_as_numpy(snake_case__ )
__snake_case = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
__snake_case = task_specific_params
__snake_case = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
__snake_case = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
UpperCAmelCase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase__ : int = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase__ : str = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 676 | 1 |
from __future__ import annotations
import math
from collections.abc import Callable
def A ( snake_case__ : Callable[[int | float], int | float] , snake_case__ : int | float , snake_case__ : int | float , snake_case__ : int = 100 , ) -> float:
'''simple docstring'''
__snake_case = x_start
__snake_case = fnc(snake_case__ )
__snake_case = 0.0
for _ in range(snake_case__ ):
# Approximates curve as a sequence of linear lines and sums their length
__snake_case = (x_end - x_start) / steps + xa
__snake_case = fnc(snake_case__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__snake_case = xa
__snake_case = fxa
return length
if __name__ == "__main__":
def A ( snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
return math.sin(10 * x )
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")
UpperCAmelCase__ : int = 10
while i <= 10_00_00:
print(F"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10
| 676 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
super().__init__()
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .')
self.register_modules(
speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , )
def _a ( self , lowercase_ = "auto") -> Union[str, Any]:
if slice_size == "auto":
__snake_case = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase_)
def _a ( self) -> Any:
self.enable_attention_slicing(lowercase_)
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]:
__snake_case = self.speech_processor.feature_extractor(
lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device)
__snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0)
__snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[
0
]
if isinstance(lowercase_ , lowercase_):
__snake_case = 1
elif isinstance(lowercase_ , lowercase_):
__snake_case = len(lowercase_)
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(lowercase_)}.")
# get prompt text embeddings
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
__snake_case = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F" {self.tokenizer.model_max_length} tokens: {removed_text}")
__snake_case = text_input_ids[:, : self.tokenizer.model_max_length]
__snake_case = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__snake_case , __snake_case , __snake_case = text_embeddings.shape
__snake_case = text_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case = 42
if negative_prompt is None:
__snake_case = [''] * batch_size
elif type(lowercase_) is not type(lowercase_):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !="
F" {type(lowercase_)}.")
elif isinstance(lowercase_ , lowercase_):
__snake_case = [negative_prompt]
elif batch_size != len(lowercase_):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
' the batch size of `prompt`.')
else:
__snake_case = negative_prompt
__snake_case = text_input_ids.shape[-1]
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , )
__snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__snake_case = uncond_embeddings.shape[1]
__snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__snake_case = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to(
self.device)
else:
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_)
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
__snake_case = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(lowercase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__snake_case = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
__snake_case = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys())
__snake_case = {}
if accepts_eta:
__snake_case = eta
for i, t in enumerate(self.progress_bar(lowercase_)):
# expand the latents if we are doing classifier free guidance
__snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_)
# predict the noise residual
__snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample
# perform guidance
if do_classifier_free_guidance:
__snake_case , __snake_case = noise_pred.chunk(2)
__snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase_ , lowercase_ , lowercase_)
__snake_case = 1 / 0.1_8215 * latents
__snake_case = self.vae.decode(lowercase_).sample
__snake_case = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__snake_case = self.numpy_to_pil(lowercase_)
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
| 676 | 1 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_4 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=4 , lowercase_=4 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , ) -> int:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = rotary_dim
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = initializer_range
__snake_case = None
__snake_case = vocab_size - 1
__snake_case = vocab_size - 1
__snake_case = vocab_size - 1
def _a ( self) -> int:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def _a ( self) -> Optional[int]:
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = 2_0
__snake_case = model_class_name(lowercase_)
__snake_case = model.init_cache(input_ids.shape[0] , lowercase_)
__snake_case = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4')
__snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
__snake_case = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
__snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4')
__snake_case = model(
input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , )
__snake_case = model(lowercase_)
__snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}")
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any:
__snake_case = 2_0
__snake_case = model_class_name(lowercase_)
__snake_case = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
__snake_case = model.init_cache(input_ids.shape[0] , lowercase_)
__snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
__snake_case = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
__snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4')
__snake_case = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}")
@require_flax
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__UpperCAmelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def _a ( self) -> Optional[Any]:
__snake_case = FlaxGPTJModelTester(self)
def _a ( self) -> Any:
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_)
def _a ( self) -> List[str]:
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowercase_ , lowercase_ , lowercase_ , lowercase_)
@tooslow
def _a ( self) -> Optional[int]:
__snake_case = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left')
__snake_case = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowercase_ , truncation=lowercase_)
__snake_case = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B')
__snake_case = False
__snake_case = model.config.eos_token_id
__snake_case = jax.jit(model.generate)
__snake_case = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id).sequences
__snake_case = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_)
__snake_case = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowercase_ , lowercase_)
@is_pt_flax_cross_test
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
__snake_case = self._prepare_for_class(lowercase_ , lowercase_)
__snake_case = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case , __snake_case = pt_inputs['input_ids'].shape
__snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(lowercase_):
__snake_case = 0
__snake_case = 1
__snake_case = 0
__snake_case = 1
__snake_case = pt_model_class(lowercase_).eval()
__snake_case = model_class(lowercase_ , dtype=jnp.floataa)
__snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_)
__snake_case = fx_state
with torch.no_grad():
__snake_case = pt_model(**lowercase_).to_tuple()
__snake_case = fx_model(**lowercase_).to_tuple()
self.assertEqual(len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch')
for fx_output, pt_output in zip(lowercase_ , lowercase_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_)
__snake_case = model_class.from_pretrained(lowercase_ , from_pt=lowercase_)
__snake_case = fx_model_loaded(**lowercase_).to_tuple()
self.assertEqual(
len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch')
for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2)
@is_pt_flax_cross_test
def _a ( self) -> Optional[int]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
__snake_case = self._prepare_for_class(lowercase_ , lowercase_)
__snake_case = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case = pt_model_class(lowercase_).eval()
__snake_case = model_class(lowercase_ , dtype=jnp.floataa)
__snake_case = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params)
__snake_case , __snake_case = pt_inputs['input_ids'].shape
__snake_case = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(lowercase_):
__snake_case = 0
__snake_case = 1
__snake_case = 0
__snake_case = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__snake_case = pt_model(**lowercase_).to_tuple()
__snake_case = fx_model(**lowercase_).to_tuple()
self.assertEqual(len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch')
for fx_output, pt_output in zip(lowercase_ , lowercase_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_)
__snake_case = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_)
with torch.no_grad():
__snake_case = pt_model_loaded(**lowercase_).to_tuple()
self.assertEqual(
len(lowercase_) , len(lowercase_) , 'Output lengths differ between Flax and PyTorch')
for fx_output, pt_output in zip(lowercase_ , lowercase_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2)
@tooslow
def _a ( self) -> List[Any]:
for model_class_name in self.all_model_classes:
__snake_case = model_class_name.from_pretrained('EleutherAI/gpt-j-6B')
__snake_case = model(np.ones((1, 1)))
self.assertIsNotNone(lowercase_)
| 676 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple:
super().__init__(*lowercase_ , **lowercase_)
__snake_case = eval_examples
__snake_case = post_process_function
def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
__snake_case = gen_kwargs.copy()
__snake_case = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length
)
__snake_case = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams
)
__snake_case = gen_kwargs
__snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case = self.get_eval_dataloader(lowercase_)
__snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_)
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
else:
__snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
__snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_)
return metrics
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]:
__snake_case = gen_kwargs.copy()
__snake_case = self.get_test_dataloader(lowercase_)
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict')
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
| 676 | 1 |
from __future__ import annotations
UpperCAmelCase__ : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]:
'''simple docstring'''
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
__snake_case = 1
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
__snake_case = init[0]
__snake_case = init[1]
__snake_case = 0
__snake_case = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case = [[f, g, x, y]]
__snake_case = False # flag that is set when search is complete
__snake_case = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case = cell.pop()
__snake_case = next_cell[2]
__snake_case = next_cell[3]
__snake_case = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
__snake_case = x + DIRECTIONS[i][0]
__snake_case = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case = g + cost
__snake_case = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case = 1
__snake_case = i
__snake_case = []
__snake_case = goal[0]
__snake_case = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case = x - DIRECTIONS[action[x][y]][0]
__snake_case = y - DIRECTIONS[action[x][y]][1]
__snake_case = xa
__snake_case = ya
invpath.append([x, y] )
__snake_case = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ : int = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ : Optional[int] = 99
UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 676 |
from __future__ import annotations
UpperCAmelCase__ : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]:
'''simple docstring'''
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
__snake_case = 1
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
__snake_case = init[0]
__snake_case = init[1]
__snake_case = 0
__snake_case = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case = [[f, g, x, y]]
__snake_case = False # flag that is set when search is complete
__snake_case = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case = cell.pop()
__snake_case = next_cell[2]
__snake_case = next_cell[3]
__snake_case = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
__snake_case = x + DIRECTIONS[i][0]
__snake_case = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case = g + cost
__snake_case = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case = 1
__snake_case = i
__snake_case = []
__snake_case = goal[0]
__snake_case = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case = x - DIRECTIONS[action[x][y]][0]
__snake_case = y - DIRECTIONS[action[x][y]][1]
__snake_case = xa
__snake_case = ya
invpath.append([x, y] )
__snake_case = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ : int = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ : Optional[int] = 99
UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 676 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase__ : Any = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class __lowercase ( unittest.TestCase ):
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict:
__snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))]
if identifier is not None:
__snake_case = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_):
for n_ in n_identifier:
__snake_case = [file for file in files if n_ not in file]
else:
__snake_case = [file for file in files if n_identifier not in file]
__snake_case = ignore_files or []
ignore_files.append('__init__.py')
__snake_case = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , lowercase_)
if only_modules:
__snake_case = file.split('.')[0]
try:
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case = doctest.DocTestSuite(lowercase_)
__snake_case = unittest.TextTestRunner().run(lowercase_)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(F"{module_identifier} is not a module.")
else:
__snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def _a ( self) -> str:
__snake_case = Path('src/transformers')
__snake_case = 'modeling'
__snake_case = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = Path('src/transformers')
__snake_case = 'tokenization'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> List[str]:
__snake_case = Path('src/transformers')
__snake_case = 'configuration'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('src/transformers')
__snake_case = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(lowercase_ , n_identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('docs/source')
__snake_case = ['favicon.ico']
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
| 676 | 1 |
def A ( snake_case__ : int , snake_case__ : int ) -> str:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('iterations must be defined as integers' )
if not isinstance(snake_case__ , snake_case__ ) or not number >= 1:
raise ValueError(
'starting number must be\n and integer and be more than 0' )
if not iterations >= 1:
raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' )
__snake_case = ''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(snake_case__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations(snake_case__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
snake_case__ : int , snake_case__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__snake_case = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case__ )
for item in array )
__snake_case = answer
return answer
__snake_case = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = [0] * (target + 1)
__snake_case = 1
for i in range(1 , target + 1 ):
for j in range(snake_case__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = 3
UpperCAmelCase__ : Optional[int] = 5
UpperCAmelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 676 | 1 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
__snake_case = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 676 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> List[str]:
__snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]})
return dset
def _a ( self) -> Optional[int]:
import faiss
__snake_case = self._create_dummy_dataset()
__snake_case = dset.map(
lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_)
__snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT)
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
dset.drop_index('vecs')
def _a ( self) -> str:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> int:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name)
dset.load_faiss_index('vecs2' , tmp_file.name)
os.unlink(tmp_file.name)
__snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> List[Any]:
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs')
dset.drop_index('vecs')
self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa)))
def _a ( self) -> Any:
from elasticsearch import Elasticsearch
__snake_case = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 3_0)
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}}
__snake_case = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=lowercase_)
__snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29')
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[int]:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsNotNone(index.faiss_index)
self.assertEqual(index.faiss_index.ntotal , 5)
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa))
self.assertEqual(index.faiss_index.ntotal , 1_0)
# single query
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1))
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
# batched queries
__snake_case = np.eye(5 , dtype=np.floataa)[::-1]
__snake_case , __snake_case = index.search_batch(lowercase_)
self.assertRaises(lowercase_ , index.search_batch , queries[0])
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([4, 3, 2, 1, 0] , lowercase_)
def _a ( self) -> str:
import faiss
__snake_case = FaissIndex(string_factory='Flat')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
__snake_case = FaissIndex(string_factory='LSH')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexLSH)
with self.assertRaises(lowercase_):
__snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5))
def _a ( self) -> Optional[int]:
import faiss
__snake_case = faiss.IndexFlat(5)
__snake_case = FaissIndex(custom_index=lowercase_)
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
def _a ( self) -> Tuple:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
index.add_vectors(np.eye(5 , dtype=np.floataa))
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
index.save(tmp_file.name)
__snake_case = FaissIndex.load(tmp_file.name)
os.unlink(tmp_file.name)
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
@require_faiss
def A ( snake_case__ : List[str] ) -> List[Any]:
'''simple docstring'''
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__snake_case = 'index.faiss'
__snake_case = f"mock://{index_name}"
index.save(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = np.zeros(5 , dtype=np.floataa )
__snake_case = 1
__snake_case , __snake_case = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[Any]:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = Elasticsearch()
__snake_case = {'acknowledged': True}
__snake_case = ElasticSearchIndex(es_client=lowercase_)
mocked_bulk.return_value([(True, None)] * 3)
index.add_documents(['foo', 'bar', 'foobar'])
# single query
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# single query with timeout
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# batched queries
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
# batched queries with timeout
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
| 676 | 1 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class __lowercase ( unittest.TestCase ):
def _a ( self) -> List[Any]:
__snake_case = tf.convert_to_tensor(
[
[
8.222_0991, # 3rd highest value; idx. 0
-0.562_0044,
5.2322_9752,
4.038_6393,
-6.879_8378,
-0.5478_5802,
-3.201_2153,
2.9277_7176,
1.8817_1953,
7.3534_1276, # 5th highest value; idx. 9
8.4320_7833, # 2nd highest value; idx. 10
-9.8571_1836,
-5.9620_9236,
-1.1303_9161,
-7.111_5294,
-0.836_9633,
-5.318_6408,
7.0642_7407,
0.8136_9344,
-0.8202_3817,
-5.917_9796,
0.5881_3443,
-6.9977_8438,
4.7155_1189,
-0.1877_1637,
7.4402_0759, # 4th highest value; idx. 25
9.3845_0987, # 1st highest value; idx. 26
2.1266_2941,
-9.3256_2038,
2.3565_2522,
], # cummulative prob of 5 highest values <= 0.6
[
0.5842_5518,
4.5313_9238,
-5.5751_0464,
-6.2803_0699,
-7.1952_9503,
-4.0212_2551,
1.3933_7037,
-6.0670_7057,
1.5948_0517,
-9.64_3119,
0.0390_7799,
0.6723_1762,
-8.8820_6726,
6.2711_5922, # 4th highest value; idx. 13
2.2852_0723,
4.8276_7506,
4.3042_1368,
8.827_5313, # 2nd highest value; idx. 17
5.4402_9958, # 5th highest value; idx. 18
-4.473_5794,
7.3857_9536, # 3rd highest value; idx. 20
-2.9105_1663,
2.6194_6077,
-2.567_4762,
-9.4895_9302,
-4.0292_2645,
-1.3541_6918,
9.6770_2323, # 1st highest value; idx. 27
-5.8947_8553,
1.8537_0467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__snake_case = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__snake_case = tf.convert_to_tensor(
[8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__snake_case = tf_top_k_top_p_filtering(lowercase_ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4)
__snake_case = output[output != -float('inf')]
__snake_case = tf.cast(
tf.where(tf.not_equal(lowercase_ , tf.constant(-float('inf') , dtype=tf.floataa))) , dtype=tf.intaa , )
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-12)
tf.debugging.assert_equal(lowercase_ , lowercase_)
@require_tf
class __lowercase ( unittest.TestCase , lowerCamelCase__ ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
__UpperCAmelCase = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def _a ( self) -> Optional[Any]:
# TF-only test: tf.saved_model export
__snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2')
__snake_case = 2
__snake_case = 2
class __lowercase ( tf.Module ):
def __init__( self , lowercase_) -> List[str]:
super(lowercase_ , self).__init__()
__snake_case = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids'),
tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask'),
) , jit_compile=lowercase_ , )
def _a ( self , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = self.model.generate(
input_ids=lowercase_ , attention_mask=lowercase_ , max_new_tokens=lowercase_ , return_dict_in_generate=lowercase_ , )
return {"sequences": outputs["sequences"]}
__snake_case = [[2, 0], [1_0_2, 1_0_3]]
__snake_case = [[1, 0], [1, 1]]
__snake_case = DummyModel(model=lowercase_)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': dummy_model.serving})
__snake_case = tf.saved_model.load(lowercase_).signatures['serving_default']
for batch_size in range(1 , len(lowercase_) + 1):
__snake_case = {
'input_ids': tf.constant(dummy_input_ids[:batch_size]),
'attention_mask': tf.constant(dummy_attention_masks[:batch_size]),
}
__snake_case = serving_func(**lowercase_)['sequences']
__snake_case = test_model.generate(**lowercase_ , max_new_tokens=lowercase_)
tf.debugging.assert_equal(lowercase_ , lowercase_)
@slow
def _a ( self) -> Any:
# TF-only test: tf.saved_model export
__snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2')
__snake_case = 1
__snake_case = 2
class __lowercase ( tf.Module ):
def __init__( self , lowercase_) -> Union[str, Any]:
super(lowercase_ , self).__init__()
__snake_case = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids'),
tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask'),
) , jit_compile=lowercase_ , )
def _a ( self , lowercase_ , lowercase_) -> Dict:
__snake_case = self.model.generate(
input_ids=lowercase_ , attention_mask=lowercase_ , max_new_tokens=lowercase_ , return_dict_in_generate=lowercase_ , )
return {"sequences": outputs["sequences"]}
__snake_case = [[2], [1_0_2, 1_0_3]]
__snake_case = [[1], [1, 1]]
__snake_case = DummyModel(model=lowercase_)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': dummy_model.serving})
__snake_case = tf.saved_model.load(lowercase_).signatures['serving_default']
for input_row in range(len(lowercase_)):
__snake_case = {
'input_ids': tf.constant([dummy_input_ids[input_row]]),
'attention_mask': tf.constant([dummy_attention_masks[input_row]]),
}
__snake_case = serving_func(**lowercase_)['sequences']
__snake_case = test_model.generate(**lowercase_ , max_new_tokens=lowercase_)
tf.debugging.assert_equal(lowercase_ , lowercase_)
@slow
@require_tensorflow_text
def _a ( self) -> Optional[int]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=lowercase_)
class __lowercase ( tf.keras.layers.Layer ):
def __init__( self) -> Dict:
super().__init__()
__snake_case = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(lowercase_ , 'spiece.model') , 'rb').read())
__snake_case = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5')
def _a ( self , lowercase_ , *lowercase_ , **lowercase_) -> Optional[Any]:
__snake_case = self.tokenizer.tokenize(lowercase_)
__snake_case , __snake_case = text.pad_model_inputs(
lowercase_ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id)
__snake_case = self.model.generate(input_ids=lowercase_ , attention_mask=lowercase_)
return self.tokenizer.detokenize(lowercase_)
__snake_case = CompleteSentenceTransformer()
__snake_case = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs')
__snake_case = complete_model(lowercase_)
__snake_case = tf.keras.Model(lowercase_ , lowercase_)
keras_model.save(lowercase_)
def _a ( self) -> Any:
# Has PT equivalent: this test relies on random sampling
__snake_case = {
'do_sample': True,
'num_beams': 1,
'top_p': 0.7,
'top_k': 1_0,
'temperature': 0.7,
}
__snake_case = 1_4
__snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2')
__snake_case = 'Hello, my dog is cute and'
__snake_case = tokenizer(lowercase_ , return_tensors='tf')
__snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2')
__snake_case = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(':/CPU:0'):
tf.random.set_seed(0)
__snake_case = model.generate(**lowercase_ , eos_token_id=lowercase_ , **lowercase_)
self.assertTrue(expectation == len(generated_tokens[0]))
__snake_case = [6_3_8, 1_9_8]
with tf.device(':/CPU:0'):
tf.random.set_seed(0)
__snake_case = model.generate(**lowercase_ , eos_token_id=lowercase_ , **lowercase_)
self.assertTrue(expectation == len(generated_tokens[0]))
def _a ( self) -> Union[str, Any]:
# Has PT equivalent: ample use of framework-specific code
__snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart')
__snake_case = 'Hugging Face is a technology company based in New York and Paris.'
__snake_case = bart_tokenizer(lowercase_ , return_tensors='tf').input_ids
__snake_case = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart')
__snake_case = bart_model.generate(lowercase_).numpy()
class __lowercase ( lowerCamelCase__ ):
def _a ( self , lowercase_ , lowercase_=None , **lowercase_) -> Dict:
return super().call(lowercase_ , **lowercase_)
__snake_case = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart')
__snake_case = bart_model.generate(lowercase_ , foo='bar').numpy()
self.assertTrue(np.array_equal(lowercase_ , lowercase_))
class __lowercase ( bart_model.model.encoder.__class__ ):
def _a ( self , lowercase_ , **lowercase_) -> Optional[Any]:
return super().call(lowercase_ , **lowercase_)
__snake_case = FakeEncoder(bart_model.config , bart_model.model.shared)
__snake_case = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__snake_case = bart_model.generate(lowercase_).numpy()
with self.assertRaises(lowercase_):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(lowercase_ , foo='bar')
| 676 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = args.log_outputs
__snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
__snake_case = load_metric('wer' )
__snake_case = load_metric('cer' )
# compute metrics
__snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] )
__snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
__snake_case = f"WER: {wer_result}\nCER: {cer_result}"
print(snake_case__ )
with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f:
f.write(snake_case__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case = f"log_{dataset_id}_predictions.txt"
__snake_case = f"log_{dataset_id}_targets.txt"
with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t:
# mapping function to write output
def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
p.write(f"{i}" + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f"{i}" + '\n' )
t.write(batch['target'] + '\n' )
result.map(snake_case__ , with_indices=snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case = re.sub(snake_case__ , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
__snake_case = ' '.join(text.split(snake_case__ ) )
return text
def A ( snake_case__ : int ) -> Optional[int]:
'''simple docstring'''
# load dataset
__snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case = feature_extractor.sampling_rate
# resample audio
__snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) )
# load eval pipeline
if args.device is None:
__snake_case = 0 if torch.cuda.is_available() else -1
__snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case__ : Optional[Any] ):
__snake_case = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case = prediction['text']
__snake_case = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
__snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case__ , snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
UpperCAmelCase__ : str = parser.parse_args()
main(args)
| 676 | 1 |
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
def A ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : str=False ) -> Dict:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
if not is_sharded:
__snake_case = os.path.abspath(snake_case__ )
logger.info(f"Loading PyTorch weights from {pt_path}" )
__snake_case = torch.load(snake_case__ , map_location='cpu' )
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." )
__snake_case = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
__snake_case = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ )
return flax_state_dict
def A ( snake_case__ : Tuple[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, jnp.ndarray] , snake_case__ : str , ) -> (Tuple[str], np.ndarray):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(snake_case__ : Tuple[str] ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
__snake_case = pt_tuple_key[:-1] + ('scale',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
__snake_case = pt_tuple_key[:-1] + ('mean',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
__snake_case = pt_tuple_key[:-1] + ('var',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
__snake_case = pt_tuple_key[:-1] + ('embedding',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
__snake_case = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
__snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
__snake_case = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
__snake_case = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
__snake_case = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
__snake_case = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
__snake_case = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
__snake_case = pt_tuple_key[-2] + '_g'
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
__snake_case = pt_tuple_key[-2] + '_v'
if name is not None:
__snake_case = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A ( snake_case__ : List[Any] , snake_case__ : Dict ) -> Any:
'''simple docstring'''
# convert pytorch tensor to numpy
__snake_case = {k: v.numpy() for k, v in pt_state_dict.items()}
__snake_case = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
__snake_case = flax_model.params['params']
else:
__snake_case = flax_model.params
__snake_case = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
__snake_case = flatten_dict(flax_model.params['batch_stats'] )
random_flax_state_dict.update(snake_case__ )
__snake_case = {}
__snake_case = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
__snake_case = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__snake_case = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
__snake_case = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
__snake_case = pt_tuple_key[1:]
# Correctly rename weight parameters
__snake_case , __snake_case = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
__snake_case = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
__snake_case = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
__snake_case = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
__snake_case = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
__snake_case = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ) -> Dict:
'''simple docstring'''
import torch
# Load the index
__snake_case = {}
for shard_file in shard_filenames:
# load using msgpack utils
__snake_case = torch.load(snake_case__ )
__snake_case = {k: v.numpy() for k, v in pt_state_dict.items()}
__snake_case = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
__snake_case = flax_model.params['params']
__snake_case = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) )
else:
__snake_case = flax_model.params
__snake_case = flatten_dict(snake_case__ )
__snake_case = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
__snake_case = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__snake_case = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
__snake_case = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
__snake_case = pt_tuple_key[1:]
# Correctly rename weight parameters
__snake_case , __snake_case = rename_key_and_reshape_tensor(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# add model prefix if necessary
__snake_case = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
__snake_case = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
__snake_case = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
__snake_case = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__ , snake_case__ )
continue
# also add unexpected weight so that warning is thrown
__snake_case = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
__snake_case = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def A ( snake_case__ : Optional[int] , snake_case__ : Optional[Any] ) -> int:
'''simple docstring'''
__snake_case = os.path.abspath(snake_case__ )
logger.info(f"Loading Flax weights from {flax_checkpoint_path}" )
# import correct flax class
__snake_case = getattr(snake_case__ , 'Flax' + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__ , 'rb' ) as state_f:
try:
__snake_case = from_bytes(snake_case__ , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
def A ( snake_case__ : List[str] , snake_case__ : str ) -> Any:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
__snake_case = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
__snake_case = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ )
__snake_case = flatten_dict(snake_case__ )
__snake_case = pt_model.state_dict()
__snake_case = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
__snake_case = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
__snake_case = []
__snake_case = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
__snake_case = flax_key_tuple[0] == pt_model.base_model_prefix
__snake_case = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
__snake_case = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
__snake_case = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
__snake_case = flax_key_tuple[:-1] + ('weight',)
__snake_case = jnp.transpose(snake_case__ , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
__snake_case = flax_key_tuple[:-1] + ('weight',)
__snake_case = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__snake_case = flax_key_tuple[:-1] + ('weight',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
__snake_case = flax_key_tuple[:-1] + ('running_mean',)
elif "var" in flax_key_tuple[-1]:
__snake_case = flax_key_tuple[:-1] + ('running_var',)
if "batch_stats" in flax_state:
__snake_case = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
__snake_case = '.'.join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
__snake_case = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
__snake_case = key.split('.' )
__snake_case = None
if key_components[-3::2] == ["parametrizations", "original0"]:
__snake_case = key_components[-2] + '_g'
elif key_components[-3::2] == ["parametrizations", "original1"]:
__snake_case = key_components[-2] + '_v'
if name is not None:
__snake_case = key_components[:-3] + [name]
__snake_case = '.'.join(snake_case__ )
__snake_case = key
if flax_key in special_pt_names:
__snake_case = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
__snake_case = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor
__snake_case = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
__snake_case = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
else:
logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" )
if len(snake_case__ ) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
' use it for predictions and inference.' )
else:
logger.warning(
f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"
'If your task is similar to the task the model of the checkpoint was trained on, '
f"you can already use {pt_model.__class__.__name__} for predictions without further training." )
return pt_model
| 676 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def A ( *snake_case__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(snake_case__ , 'r' ) as fh:
fcntl.flock(snake_case__ , fcntl.LOCK_EX )
try:
print(*snake_case__ )
finally:
fcntl.flock(snake_case__ , fcntl.LOCK_UN )
UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
UpperCAmelCase__ : Any = torch.device("cuda", local_rank)
UpperCAmelCase__ : Union[str, Any] = socket.gethostname()
UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
UpperCAmelCase__ : Optional[int] = dist.get_rank()
UpperCAmelCase__ : List[str] = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 676 | 1 |
import os
from collections import namedtuple
import pytest
from datasets import ClassLabel, Features, Sequence, Value
from datasets.commands.test import TestCommand
from datasets.info import DatasetInfo, DatasetInfosDict
UpperCAmelCase__ : Optional[int] = namedtuple(
"_TestCommandArgs",
[
"dataset",
"name",
"cache_dir",
"data_dir",
"all_configs",
"save_infos",
"ignore_verifications",
"force_redownload",
"clear_cache",
],
defaults=[None, None, None, False, False, False, False, False],
)
def A ( snake_case__ : Tuple , snake_case__ : List[str] ) -> Tuple:
'''simple docstring'''
return (abs(source - target ) / target) < 0.01
@pytest.mark.integration
def A ( snake_case__ : Optional[int] ) -> List[str]:
'''simple docstring'''
__snake_case = _TestCommandArgs(dataset=snake_case__ , all_configs=snake_case__ , save_infos=snake_case__ )
__snake_case = TestCommand(*snake_case__ )
test_command.run()
__snake_case = os.path.join(snake_case__ , 'README.md' )
assert os.path.exists(snake_case__ )
__snake_case = DatasetInfosDict.from_directory(snake_case__ )
__snake_case = DatasetInfosDict(
{
'default': DatasetInfo(
features=Features(
{
'tokens': Sequence(Value('string' ) ),
'ner_tags': Sequence(
ClassLabel(names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] ) ),
'langs': Sequence(Value('string' ) ),
'spans': Sequence(Value('string' ) ),
} ) , splits=[
{
'name': 'train',
'num_bytes': 235_1563,
'num_examples': 1_0000,
},
{
'name': 'validation',
'num_bytes': 23_8418,
'num_examples': 1000,
},
] , download_size=394_0680 , dataset_size=258_9981 , )
} )
assert dataset_infos.keys() == expected_dataset_infos.keys()
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
__snake_case , __snake_case = getattr(dataset_infos['default'] , snake_case__ ), getattr(expected_dataset_infos['default'] , snake_case__ )
if key == "num_bytes":
assert is_apercent_close(snake_case__ , snake_case__ )
elif key == "splits":
assert list(snake_case__ ) == list(snake_case__ )
for split in result:
assert result[split].name == expected[split].name
assert result[split].num_examples == expected[split].num_examples
assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes )
else:
result == expected
| 676 |
from datetime import datetime
import requests
def A ( snake_case__ : str ) -> bytes:
'''simple docstring'''
__snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(snake_case__ ).content
if __name__ == "__main__":
UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip()
UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 676 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
def _a ( self) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _a ( self) -> List[str]:
__snake_case = 1
__snake_case = 3
__snake_case = (3_2, 3_2)
__snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase_)
return image
@property
def _a ( self) -> Optional[Any]:
torch.manual_seed(0)
__snake_case = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
return model
@property
def _a ( self) -> Union[str, Any]:
torch.manual_seed(0)
__snake_case = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def _a ( self) -> Tuple:
torch.manual_seed(0)
__snake_case = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(lowercase_)
@property
def _a ( self) -> Dict:
def extract(*lowercase_ , **lowercase_):
class __lowercase :
def __init__( self) -> Union[str, Any]:
__snake_case = torch.ones([0])
def _a ( self , lowercase_) -> Dict:
self.pixel_values.to(lowercase_)
return self
return Out()
return extract
def _a ( self) -> Tuple:
__snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator
__snake_case = self.dummy_cond_unet
__snake_case = PNDMScheduler(skip_prk_steps=lowercase_)
__snake_case = self.dummy_vae
__snake_case = self.dummy_text_encoder
__snake_case = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta')
__snake_case = 7_7
__snake_case = self.dummy_image.to(lowercase_)
__snake_case = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
__snake_case = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
__snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_)
__snake_case = alt_pipe.to(lowercase_)
alt_pipe.set_progress_bar_config(disable=lowercase_)
__snake_case = 'A painting of a squirrel eating a burger'
__snake_case = torch.Generator(device=lowercase_).manual_seed(0)
__snake_case = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowercase_ , )
__snake_case = output.images
__snake_case = torch.Generator(device=lowercase_).manual_seed(0)
__snake_case = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowercase_ , return_dict=lowercase_ , )[0]
__snake_case = image[0, -3:, -3:, -1]
__snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__snake_case = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def _a ( self) -> int:
__snake_case = self.dummy_cond_unet
__snake_case = PNDMScheduler(skip_prk_steps=lowercase_)
__snake_case = self.dummy_vae
__snake_case = self.dummy_text_encoder
__snake_case = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta')
__snake_case = 7_7
__snake_case = self.dummy_image.to(lowercase_)
# put models in fp16
__snake_case = unet.half()
__snake_case = vae.half()
__snake_case = bert.half()
# make sure here that pndm scheduler skips prk
__snake_case = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
__snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_)
__snake_case = alt_pipe.to(lowercase_)
alt_pipe.set_progress_bar_config(disable=lowercase_)
__snake_case = 'A painting of a squirrel eating a burger'
__snake_case = torch.manual_seed(0)
__snake_case = alt_pipe(
[prompt] , generator=lowercase_ , num_inference_steps=2 , output_type='np' , image=lowercase_ , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU')
def _a ( self) -> Any:
__snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
# resize to resolution that is divisible by 8 but not 16 or 32
__snake_case = init_image.resize((7_6_0, 5_0_4))
__snake_case = 'BAAI/AltDiffusion'
__snake_case = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
__snake_case = 'A fantasy landscape, trending on artstation'
__snake_case = torch.manual_seed(0)
__snake_case = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type='np' , )
__snake_case = output.images[0]
__snake_case = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
__snake_case = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def _a ( self) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self) -> Tuple:
__snake_case = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
__snake_case = init_image.resize((7_6_8, 5_1_2))
__snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy')
__snake_case = 'BAAI/AltDiffusion'
__snake_case = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_)
pipe.set_progress_bar_config(disable=lowercase_)
pipe.enable_attention_slicing()
__snake_case = 'A fantasy landscape, trending on artstation'
__snake_case = torch.manual_seed(0)
__snake_case = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type='np' , )
__snake_case = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-2
| 676 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
def _a ( self) -> Union[str, Any]:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__snake_case = ids_tensor([self.batch_size] , self.num_choices)
__snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self) -> Tuple:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , )
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = OpenLlamaModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]:
__snake_case = True
__snake_case = OpenLlamaModel(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
__snake_case = True
__snake_case = True
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
# first forward pass
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
__snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size)
__snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
__snake_case = torch.cat([input_ids, next_tokens] , dim=-1)
__snake_case = torch.cat([input_mask, next_mask] , dim=-1)
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
# select random slice
__snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item()
__snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
def _a ( self) -> Optional[Any]:
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = OpenLlamaModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7)
def _a ( self) -> int:
self.config_tester.run_common_tests()
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'single_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> int:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'multi_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def _a ( self) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)])
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ids_tensor([1, 1_0] , config.vocab_size)
__snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = OpenLlamaModel(lowercase_)
original_model.to(lowercase_)
original_model.eval()
__snake_case = original_model(lowercase_).last_hidden_state
__snake_case = original_model(lowercase_).last_hidden_state
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = {'type': scaling_type, 'factor': 10.0}
__snake_case = OpenLlamaModel(lowercase_)
scaled_model.to(lowercase_)
scaled_model.eval()
__snake_case = scaled_model(lowercase_).last_hidden_state
__snake_case = scaled_model(lowercase_).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
else:
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
| 676 | 1 |
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations(snake_case__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
snake_case__ : int , snake_case__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__snake_case = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case__ )
for item in array )
__snake_case = answer
return answer
__snake_case = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = [0] * (target + 1)
__snake_case = 1
for i in range(1 , target + 1 ):
for j in range(snake_case__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = 3
UpperCAmelCase__ : Optional[int] = 5
UpperCAmelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 0:
return False
__snake_case = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowercase ( lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = LxmertTokenizer
__UpperCAmelCase = LxmertTokenizerFast
__UpperCAmelCase = True
__UpperCAmelCase = True
def _a ( self) -> List[str]:
super().setUp()
__snake_case = [
'[UNK]',
'[CLS]',
'[SEP]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
def _a ( self , lowercase_) -> List[str]:
__snake_case = 'UNwant\u00E9d,running'
__snake_case = 'unwanted, running'
return input_text, output_text
def _a ( self) -> Optional[int]:
__snake_case = self.tokenizer_class(self.vocab_file)
__snake_case = tokenizer.tokenize('UNwant\u00E9d,running')
self.assertListEqual(lowercase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [7, 4, 5, 1_0, 8, 9])
def _a ( self) -> Optional[Any]:
if not self.test_rust_tokenizer:
return
__snake_case = self.get_tokenizer()
__snake_case = self.get_rust_tokenizer()
__snake_case = 'I was born in 92000, and this is falsé.'
__snake_case = tokenizer.tokenize(lowercase_)
__snake_case = rust_tokenizer.tokenize(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
__snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
__snake_case = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
__snake_case = self.get_rust_tokenizer()
__snake_case = tokenizer.encode(lowercase_)
__snake_case = rust_tokenizer.encode(lowercase_)
self.assertListEqual(lowercase_ , lowercase_)
| 676 |
import numpy as np
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def A ( snake_case__ : str , snake_case__ : str , snake_case__ : str ) -> Union[str, Any]:
'''simple docstring'''
def get_masked_lm_array(snake_case__ : str ):
__snake_case = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
if "kernel" in name:
__snake_case = array.transpose()
return torch.from_numpy(snake_case__ )
def get_encoder_array(snake_case__ : str ):
__snake_case = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
if "kernel" in name:
__snake_case = array.transpose()
return torch.from_numpy(snake_case__ )
def get_encoder_layer_array(snake_case__ : int , snake_case__ : str ):
__snake_case = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
if "kernel" in name:
__snake_case = array.transpose()
return torch.from_numpy(snake_case__ )
def get_encoder_attention_layer_array(snake_case__ : int , snake_case__ : str , snake_case__ : Optional[Any] ):
__snake_case = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
__snake_case = array.reshape(snake_case__ )
if "kernel" in name:
__snake_case = array.transpose()
return torch.from_numpy(snake_case__ )
print(f"Loading model based on config from {config_path}..." )
__snake_case = BertConfig.from_json_file(snake_case__ )
__snake_case = BertForMaskedLM(snake_case__ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case = layer.attention.self
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_query_dense/kernel' , self_attn.query.weight.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_query_dense/bias' , self_attn.query.bias.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_key_dense/kernel' , self_attn.key.weight.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_key_dense/bias' , self_attn.key.bias.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_value_dense/kernel' , self_attn.value.weight.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case = layer.attention.output
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_output_dense/kernel' , self_output.dense.weight.data.shape )
__snake_case = get_encoder_attention_layer_array(
snake_case__ , '_output_dense/bias' , self_output.dense.bias.data.shape )
__snake_case = get_encoder_layer_array(snake_case__ , '_attention_layer_norm/gamma' )
__snake_case = get_encoder_layer_array(snake_case__ , '_attention_layer_norm/beta' )
# Intermediate
__snake_case = layer.intermediate
__snake_case = get_encoder_layer_array(snake_case__ , '_intermediate_dense/kernel' )
__snake_case = get_encoder_layer_array(snake_case__ , '_intermediate_dense/bias' )
# Output
__snake_case = layer.output
__snake_case = get_encoder_layer_array(snake_case__ , '_output_dense/kernel' )
__snake_case = get_encoder_layer_array(snake_case__ , '_output_dense/bias' )
__snake_case = get_encoder_layer_array(snake_case__ , '_output_layer_norm/gamma' )
__snake_case = get_encoder_layer_array(snake_case__ , '_output_layer_norm/beta' )
# Embeddings
__snake_case = get_encoder_array('_position_embedding_layer/embeddings' )
__snake_case = get_encoder_array('_type_embedding_layer/embeddings' )
__snake_case = get_encoder_array('_embedding_norm_layer/gamma' )
__snake_case = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
__snake_case = model.cls.predictions.transform
__snake_case = get_masked_lm_array('dense/kernel' )
__snake_case = get_masked_lm_array('dense/bias' )
__snake_case = get_masked_lm_array('layer_norm/gamma' )
__snake_case = get_masked_lm_array('layer_norm/beta' )
__snake_case = get_masked_lm_array('embedding_table' )
# Pooling
__snake_case = BertPooler(config=snake_case__ )
__snake_case = get_encoder_array('_pooler_layer/kernel' )
__snake_case = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(snake_case__ )
# Integration test - should load without any errors ;)
__snake_case = BertForMaskedLM.from_pretrained(snake_case__ )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
UpperCAmelCase__ : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 1 |
from collections.abc import Sequence
def A ( snake_case__ : Sequence[float] , snake_case__ : float ) -> float:
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(snake_case__ ) )
def A ( snake_case__ : Sequence[float] , snake_case__ : float ) -> float:
'''simple docstring'''
__snake_case = 0.0
for coeff in reversed(snake_case__ ):
__snake_case = result * x + coeff
return result
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCAmelCase__ : Dict = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
def A ( snake_case__ : int ) -> list:
'''simple docstring'''
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('The given input must be positive' )
# get the generated string sequence
__snake_case = gray_code_sequence_string(snake_case__ )
#
# convert them to integers
for i in range(len(snake_case__ ) ):
__snake_case = int(sequence[i] , 2 )
return sequence
def A ( snake_case__ : int ) -> list:
'''simple docstring'''
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__snake_case = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__snake_case = gray_code_sequence_string(bit_count - 1 )
__snake_case = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__snake_case = '0' + smaller_sequence[i]
sequence.append(snake_case__ )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__snake_case = '1' + smaller_sequence[i]
sequence.append(snake_case__ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 | 1 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = 42
__UpperCAmelCase = None
def A ( snake_case__ : Dict , snake_case__ : List[str]=0.999 , snake_case__ : Tuple="cosine" , ) -> Optional[Any]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(snake_case__ : str ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(snake_case__ : str ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
__snake_case = []
for i in range(snake_case__ ):
__snake_case = i / num_diffusion_timesteps
__snake_case = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) )
return torch.tensor(snake_case__ , dtype=torch.floataa )
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase = 1
@register_to_config
def __init__( self , lowercase_ = 1_0_0_0 , lowercase_ = 0.0001 , lowercase_ = 0.02 , lowercase_ = "linear" , lowercase_ = None , lowercase_ = True , lowercase_ = True , lowercase_ = 0 , lowercase_ = "epsilon" , lowercase_ = 1.0 , **lowercase_ , ) -> Any:
if kwargs.get('set_alpha_to_one' , lowercase_) is not None:
__snake_case = (
'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'
)
deprecate('set_alpha_to_one' , '1.0.0' , lowercase_ , standard_warn=lowercase_)
__snake_case = kwargs['set_alpha_to_one']
if trained_betas is not None:
__snake_case = torch.tensor(lowercase_ , dtype=torch.floataa)
elif beta_schedule == "linear":
__snake_case = torch.linspace(lowercase_ , lowercase_ , lowercase_ , dtype=torch.floataa)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__snake_case = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase_ , dtype=torch.floataa) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__snake_case = betas_for_alpha_bar(lowercase_)
else:
raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}")
__snake_case = 1.0 - self.betas
__snake_case = torch.cumprod(self.alphas , dim=0)
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
__snake_case = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
__snake_case = 1.0
# setable values
__snake_case = None
__snake_case = torch.from_numpy(np.arange(0 , lowercase_).copy().astype(np.intaa))
def _a ( self , lowercase_ , lowercase_ = None) -> torch.FloatTensor:
return sample
def _a ( self , lowercase_ , lowercase_ = None) -> Tuple:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
F" maximal {self.config.num_train_timesteps} timesteps.")
__snake_case = num_inference_steps
__snake_case = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__snake_case = (np.arange(0 , lowercase_) * step_ratio).round().copy().astype(np.intaa)
__snake_case = torch.from_numpy(lowercase_).to(lowercase_)
self.timesteps += self.config.steps_offset
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , lowercase_ = False , lowercase_ = None , lowercase_ = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
# 1. get previous step value (=t+1)
__snake_case = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
__snake_case = self.alphas_cumprod[timestep]
__snake_case = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
__snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
__snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
__snake_case = model_output
elif self.config.prediction_type == "sample":
__snake_case = model_output
__snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
__snake_case = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
__snake_case = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
' `v_prediction`')
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
__snake_case = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range)
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_)
def __len__( self) -> List[str]:
return self.config.num_train_timesteps
| 676 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A ( snake_case__ : List[Any] ) -> Any:
'''simple docstring'''
__snake_case = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__snake_case = 4
__snake_case = 48
__snake_case = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = [6, 6, 6, 6]
__snake_case = 60
__snake_case = [6, 6, 6, 6]
__snake_case = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = 4
__snake_case = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__snake_case = 1
__snake_case = 1
__snake_case = 126
__snake_case = 7
__snake_case = 255.0
__snake_case = ''
return config
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
__snake_case = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
__snake_case = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
__snake_case = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__snake_case = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__snake_case = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__snake_case = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__snake_case = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__snake_case = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__snake_case = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__snake_case = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__snake_case = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
__snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
__snake_case = 'layernorm.weight'
if name == "norm.bias":
__snake_case = 'layernorm.bias'
if "conv_first" in name:
__snake_case = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__snake_case = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
__snake_case = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
__snake_case = name.replace('upsample.2' , 'upsample.convolution_1' )
__snake_case = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
__snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
__snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
__snake_case = 'swin2sr.' + name
return name
def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
__snake_case = key.split('.' )
__snake_case = int(key_split[1] )
__snake_case = int(key_split[4] )
__snake_case = config.embed_dim
if "weight" in key:
__snake_case = val[:dim, :]
__snake_case = val[dim : dim * 2, :]
__snake_case = val[-dim:, :]
else:
__snake_case = val[:dim]
__snake_case = val[dim : dim * 2]
__snake_case = val[-dim:]
pass
else:
__snake_case = val
return orig_state_dict
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = get_config(snake_case__ )
__snake_case = SwinaSRForImageSuperResolution(snake_case__ )
model.eval()
__snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )
__snake_case = convert_state_dict(snake_case__ , snake_case__ )
__snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0:
raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict" )
# verify values
__snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
__snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' )
__snake_case = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__snake_case = 126 if 'Jpeg' in checkpoint_url else 256
__snake_case = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__snake_case = transforms(snake_case__ ).unsqueeze(0 )
if config.num_channels == 1:
__snake_case = pixel_values[:, 0, :, :].unsqueeze(1 )
__snake_case = model(snake_case__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 )
print('Looks ok!' )
__snake_case = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
__snake_case = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}" )
processor.push_to_hub(f"caidas/{model_name}" )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 676 | 1 |
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
UpperCAmelCase__ : Any = "http://www.mocksite.com/file1.txt"
UpperCAmelCase__ : Dict = "\"text\": [\"foo\", \"foo\"]"
UpperCAmelCase__ : Union[str, Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8"
class __lowercase :
__UpperCAmelCase = 200
__UpperCAmelCase = {'''Content-Length''': '''100'''}
__UpperCAmelCase = {}
def _a ( self , **lowercase_) -> str:
return [bytes(lowercase_ , 'utf-8')]
def A ( *snake_case__ : int , **snake_case__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
return MockResponse()
@pytest.mark.parametrize('urls_type' , [str, list, dict] )
def A ( snake_case__ : Dict , snake_case__ : str , snake_case__ : int ) -> List[Any]:
'''simple docstring'''
import requests
monkeypatch.setattr(snake_case__ , 'request' , snake_case__ )
__snake_case = URL
if issubclass(snake_case__ , snake_case__ ):
__snake_case = url
elif issubclass(snake_case__ , snake_case__ ):
__snake_case = [url]
elif issubclass(snake_case__ , snake_case__ ):
__snake_case = {'train': url}
__snake_case = 'dummy'
__snake_case = 'downloads'
__snake_case = tmp_path
__snake_case = DownloadConfig(
cache_dir=os.path.join(snake_case__ , snake_case__ ) , use_etag=snake_case__ , )
__snake_case = DownloadManager(dataset_name=snake_case__ , download_config=snake_case__ )
__snake_case = dl_manager.download(snake_case__ )
__snake_case = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(snake_case__ , snake_case__ ):
__snake_case = [downloaded_paths]
__snake_case = [urls]
elif isinstance(snake_case__ , snake_case__ ):
assert "train" in downloaded_paths.keys()
__snake_case = downloaded_paths.values()
__snake_case = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(snake_case__ , snake_case__ ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
__snake_case = Path(snake_case__ )
__snake_case = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
__snake_case = downloaded_path.read_text()
assert content == CONTENT
__snake_case = downloaded_path.with_suffix('.json' )
assert metadata_downloaded_path.exists()
__snake_case = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize('paths_type' , [str, list, dict] )
def A ( snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
__snake_case = str(snake_case__ )
if issubclass(snake_case__ , snake_case__ ):
__snake_case = filename
elif issubclass(snake_case__ , snake_case__ ):
__snake_case = [filename]
elif issubclass(snake_case__ , snake_case__ ):
__snake_case = {'train': filename}
__snake_case = 'dummy'
__snake_case = xz_file.parent
__snake_case = 'extracted'
__snake_case = DownloadConfig(
cache_dir=snake_case__ , use_etag=snake_case__ , )
__snake_case = DownloadManager(dataset_name=snake_case__ , download_config=snake_case__ )
__snake_case = dl_manager.extract(snake_case__ )
__snake_case = paths
for extracted_paths in [extracted_paths]:
if isinstance(snake_case__ , snake_case__ ):
__snake_case = [extracted_paths]
__snake_case = [paths]
elif isinstance(snake_case__ , snake_case__ ):
assert "train" in extracted_paths.keys()
__snake_case = extracted_paths.values()
__snake_case = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(snake_case__ , snake_case__ ):
assert extracted_path == dl_manager.extracted_paths[input_path]
__snake_case = Path(snake_case__ )
__snake_case = extracted_path.parts
assert parts[-1] == hash_url_to_filename(snake_case__ , etag=snake_case__ )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
__snake_case = extracted_path.read_text()
__snake_case = text_file.read_text()
assert extracted_file_content == expected_file_content
def A ( snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
assert path.endswith('.jsonl' )
for num_items, line in enumerate(snake_case__ , start=1 ):
__snake_case = json.loads(line.decode('utf-8' ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] )
def A ( snake_case__ : Any , snake_case__ : List[Any] ) -> Tuple:
'''simple docstring'''
__snake_case = request.getfixturevalue(snake_case__ )
__snake_case = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ):
_test_jsonl(snake_case__ , snake_case__ )
assert num_jsonl == 2
@pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] )
def A ( snake_case__ : List[str] , snake_case__ : Optional[Any] ) -> int:
'''simple docstring'''
__snake_case = request.getfixturevalue(snake_case__ )
__snake_case = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ):
_test_jsonl(snake_case__ , snake_case__ )
assert num_tar == 1
assert num_jsonl == 2
def A ( snake_case__ : List[Any] ) -> int:
'''simple docstring'''
__snake_case = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(snake_case__ ) , start=1 ):
assert os.path.basename(snake_case__ ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
from __future__ import annotations
class __lowercase :
def __init__( self , lowercase_) -> None:
__snake_case = data
__snake_case = None
__snake_case = None
def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def A ( snake_case__ : Node | None ) -> int:
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def A ( snake_case__ : Node ) -> bool:
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def A ( ) -> None: # Main function for testing.
'''simple docstring'''
__snake_case = Node(1 )
__snake_case = Node(2 )
__snake_case = Node(3 )
__snake_case = Node(4 )
__snake_case = Node(5 )
__snake_case = Node(6 )
__snake_case = Node(7 )
__snake_case = Node(8 )
__snake_case = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 676 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase__ : List[Any] = logging.getLogger(__name__)
@dataclass
class __lowercase :
__UpperCAmelCase = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
__UpperCAmelCase = field(
default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} )
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
__UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
@dataclass
class __lowercase :
__UpperCAmelCase = field(
metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} )
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , )
__UpperCAmelCase = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def A ( ) -> List[str]:
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
' --overwrite_output_dir to overcome.' )
__snake_case = import_module('tasks' )
try:
__snake_case = getattr(snake_case__ , model_args.task_type )
__snake_case = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , snake_case__ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__snake_case = token_classification_task.get_labels(data_args.labels )
__snake_case = dict(enumerate(snake_case__ ) )
__snake_case = len(snake_case__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel=snake_case__ , labelaid={label: i for i, label in enumerate(snake_case__ )} , cache_dir=model_args.cache_dir , )
__snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__snake_case = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , )
# Get datasets
__snake_case = (
TokenClassificationDataset(
token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__snake_case = (
TokenClassificationDataset(
token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> Tuple[List[int], List[int]]:
__snake_case = np.argmax(snake_case__ , axis=2 )
__snake_case , __snake_case = preds.shape
__snake_case = [[] for _ in range(snake_case__ )]
__snake_case = [[] for _ in range(snake_case__ )]
for i in range(snake_case__ ):
for j in range(snake_case__ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(snake_case__ : EvalPrediction ) -> Dict:
__snake_case , __snake_case = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(snake_case__ , snake_case__ ),
"precision": precision_score(snake_case__ , snake_case__ ),
"recall": recall_score(snake_case__ , snake_case__ ),
"f1": fa_score(snake_case__ , snake_case__ ),
}
# Data collator
__snake_case = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__snake_case = Trainer(
model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__snake_case = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case = trainer.evaluate()
__snake_case = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(snake_case__ , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , snake_case__ , snake_case__ )
writer.write('%s = %s\n' % (key, value) )
results.update(snake_case__ )
# Predict
if training_args.do_predict:
__snake_case = TokenClassificationDataset(
token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__snake_case , __snake_case , __snake_case = trainer.predict(snake_case__ )
__snake_case , __snake_case = align_predictions(snake_case__ , snake_case__ )
__snake_case = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(snake_case__ , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , snake_case__ , snake_case__ )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__snake_case = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(snake_case__ , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(snake_case__ , snake_case__ , snake_case__ )
return results
def A ( snake_case__ : Any ) -> int:
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 676 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''table-transformer'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowercase_ , lowercase_):
__snake_case = backbone_config.get('model_type')
__snake_case = CONFIG_MAPPING[backbone_model_type]
__snake_case = config_class.from_dict(lowercase_)
# set timm attributes to None
__snake_case , __snake_case , __snake_case = None, None, None
__snake_case = use_timm_backbone
__snake_case = backbone_config
__snake_case = num_channels
__snake_case = num_queries
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = init_xavier_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = encoder_layers
__snake_case = auxiliary_loss
__snake_case = position_embedding_type
__snake_case = backbone
__snake_case = use_pretrained_backbone
__snake_case = dilation
# Hungarian matcher
__snake_case = class_cost
__snake_case = bbox_cost
__snake_case = giou_cost
# Loss coefficients
__snake_case = mask_loss_coefficient
__snake_case = dice_loss_coefficient
__snake_case = bbox_loss_coefficient
__snake_case = giou_loss_coefficient
__snake_case = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_)
@property
def _a ( self) -> int:
return self.encoder_attention_heads
@property
def _a ( self) -> int:
return self.d_model
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def _a ( self) -> float:
return 1e-5
@property
def _a ( self) -> int:
return 1_2
| 676 | 1 |
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
@dataclass
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self , **lowercase_) -> str:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__snake_case = deprecated_arg[3:]
__snake_case = not kwargs.pop(lowercase_)
logger.warning(
F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"
F" {positive_arg}={kwargs[positive_arg]}")
__snake_case = kwargs.pop('tpu_name' , self.tpu_name)
__snake_case = kwargs.pop('device_idx' , self.device_idx)
__snake_case = kwargs.pop('eager_mode' , self.eager_mode)
__snake_case = kwargs.pop('use_xla' , self.use_xla)
super().__init__(**lowercase_)
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={'''help''': '''Name of TPU'''} , )
__UpperCAmelCase = field(
default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , )
__UpperCAmelCase = field(default=lowerCamelCase__ , metadata={'''help''': '''Benchmark models in eager model.'''} )
__UpperCAmelCase = field(
default=lowerCamelCase__ , metadata={
'''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.'''
} , )
@cached_property
def _a ( self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'])
__snake_case = None
if self.tpu:
try:
if self.tpu_name:
__snake_case = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
else:
__snake_case = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__snake_case = None
return tpu
@cached_property
def _a ( self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ['tf'])
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu)
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
__snake_case = tf.distribute.TPUStrategy(self._setup_tpu)
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU')
__snake_case = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}")
else:
tf.config.set_visible_devices([] , 'GPU') # disable GPU
__snake_case = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}")
return strategy
@property
def _a ( self) -> bool:
requires_backends(self , ['tf'])
return self._setup_tpu is not None
@property
def _a ( self) -> "tf.distribute.Strategy":
requires_backends(self , ['tf'])
return self._setup_strategy
@property
def _a ( self) -> Tuple:
requires_backends(self , ['tf'])
return tf.config.list_physical_devices('GPU')
@property
def _a ( self) -> int:
requires_backends(self , ['tf'])
if self.cuda:
return len(self.gpu_list)
return 0
@property
def _a ( self) -> bool:
return self.n_gpu > 0
| 676 |
from maths.prime_check import is_prime
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if is_prime(snake_case__ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=1_0 , lowercase_=3 , lowercase_=2 , lowercase_=2 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_="divided_space_time" , lowercase_=None , ) -> List[Any]:
__snake_case = parent
__snake_case = batch_size
__snake_case = image_size
__snake_case = num_channels
__snake_case = patch_size
__snake_case = num_frames
__snake_case = is_training
__snake_case = use_labels
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = attention_type
__snake_case = initializer_range
__snake_case = scope
__snake_case = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__snake_case = (image_size // patch_size) ** 2
__snake_case = (num_frames) * self.num_patches_per_frame + 1
def _a ( self) -> Any:
__snake_case = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size])
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.num_labels)
__snake_case = self.get_config()
return config, pixel_values, labels
def _a ( self) -> Dict:
__snake_case = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__snake_case = self.num_labels
return config
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Optional[int]:
__snake_case = TimesformerModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[str]:
__snake_case = TimesformerForVideoClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_)
# verify the logits shape
__snake_case = torch.Size((self.batch_size, self.num_labels))
self.parent.assertEqual(result.logits.shape , lowercase_)
def _a ( self) -> List[Any]:
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
__UpperCAmelCase = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> str:
__snake_case = TimesformerModelTester(self)
__snake_case = ConfigTester(
self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7)
def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> Any:
__snake_case = copy.deepcopy(lowercase_)
if return_labels:
if model_class in get_values(lowercase_):
__snake_case = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_)
return inputs_dict
def _a ( self) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='TimeSformer does not use inputs_embeds')
def _a ( self) -> Dict:
pass
def _a ( self) -> Union[str, Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(lowercase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
__snake_case = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear))
def _a ( self) -> List[str]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(lowercase_)
__snake_case = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case = [*signature.parameters.keys()]
__snake_case = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowercase_)
def _a ( self) -> Tuple:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> int:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowercase_)
@slow
def _a ( self) -> Union[str, Any]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = TimesformerModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def _a ( self) -> Optional[Any]:
if not self.has_attentions:
pass
else:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = True
for model_class in self.all_model_classes:
__snake_case = self.model_tester.seq_length
__snake_case = self.model_tester.num_frames
__snake_case = True
__snake_case = False
__snake_case = True
__snake_case = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_))
__snake_case = outputs.attentions
self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case = True
__snake_case = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_))
__snake_case = outputs.attentions
self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers)
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__snake_case = len(lowercase_)
# Check attention is always last and order is fine
__snake_case = True
__snake_case = True
__snake_case = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_))
self.assertEqual(out_len + 1 , len(lowercase_))
__snake_case = outputs.attentions
self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers)
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def _a ( self) -> List[str]:
def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_):
__snake_case = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_))
__snake_case = outputs.hidden_states
__snake_case = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowercase_) , lowercase_)
__snake_case = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
def A ( ) -> str:
'''simple docstring'''
__snake_case = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
__snake_case = np.load(snake_case__ )
return list(snake_case__ )
@require_torch
@require_vision
class __lowercase ( unittest.TestCase ):
@cached_property
def _a ( self) -> Optional[int]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5])
if is_vision_available()
else None
)
@slow
def _a ( self) -> Any:
__snake_case = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400').to(
lowercase_)
__snake_case = self.default_image_processor
__snake_case = prepare_video()
__snake_case = image_processor(video[:8] , return_tensors='pt').to(lowercase_)
# forward pass
with torch.no_grad():
__snake_case = model(**lowercase_)
# verify the logits
__snake_case = torch.Size((1, 4_0_0))
self.assertEqual(outputs.logits.shape , lowercase_)
__snake_case = torch.tensor([-0.3016, -0.7713, -0.4205]).to(lowercase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
| 676 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
__snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
| 676 | 1 |
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = 0
__UpperCAmelCase = False
__UpperCAmelCase = 3.0
class __lowercase ( unittest.TestCase ):
def _a ( self) -> List[str]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {})
self.assertDictEqual(MockClass(a=2).to_kwargs() , {'a': 2})
self.assertDictEqual(MockClass(a=2 , b=lowercase_).to_kwargs() , {'a': 2, 'b': True})
self.assertDictEqual(MockClass(a=2 , c=2.25).to_kwargs() , {'a': 2, 'c': 2.25})
@require_cuda
def _a ( self) -> List[Any]:
# If no defaults are changed, `to_kwargs` returns an empty dict.
__snake_case = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2)
AcceleratorState._reset_state()
__snake_case = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler])
print(accelerator.use_fpaa)
__snake_case = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0)
self.assertEqual(scaler._growth_factor , 2.0)
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5)
self.assertEqual(scaler._growth_interval , 2_0_0_0)
self.assertEqual(scaler._enabled , lowercase_)
@require_multi_gpu
def _a ( self) -> str:
__snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)]
execute_subprocess_async(lowercase_ , env=os.environ.copy())
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
UpperCAmelCase__ : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
UpperCAmelCase__ : int = torch.nn.Linear(1_00, 2_00)
UpperCAmelCase__ : Optional[Any] = accelerator.prepare(model)
# Check the values changed in kwargs
UpperCAmelCase__ : Tuple = ""
UpperCAmelCase__ : Any = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 676 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase__ : Optional[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def A ( snake_case__ : List[Any] ) -> str:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
__snake_case = k.replace(snake_case__ , snake_case__ )
return k
def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration:
'''simple docstring'''
__snake_case = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
__snake_case = PegasusConfig(**snake_case__ )
__snake_case = PegasusForConditionalGeneration(snake_case__ )
__snake_case = torch_model.model.state_dict()
__snake_case = {}
for k, v in tf_weights.items():
__snake_case = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
__snake_case = v.T
__snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
__snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
__snake_case = mapping['shared.weight']
__snake_case = mapping['shared.weight']
__snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
__snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
__snake_case = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
__snake_case = tf.train.list_variables(snake_case__ )
__snake_case = {}
__snake_case = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
__snake_case = any(pat in name for pat in ignore_name )
if skip_key:
continue
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
__snake_case = array
return tf_weights
def A ( snake_case__ : str , snake_case__ : str ) -> Tuple:
'''simple docstring'''
# save tokenizer first
__snake_case = Path(snake_case__ ).parent.name
__snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
__snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
__snake_case = get_tf_weights_as_numpy(snake_case__ )
__snake_case = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
__snake_case = task_specific_params
__snake_case = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
__snake_case = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
UpperCAmelCase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase__ : int = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase__ : str = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 676 | 1 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def A ( ) -> Tuple:
'''simple docstring'''
__snake_case = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
__snake_case = Dataset.from_dict(snake_case__ )
return dataset
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> List[str]:
__snake_case = get_dataset()
__snake_case = make_duplicate_clusters(lowercase_ , 0.85)
self.assertEqual(len(duplicate_clusters[0]) , 2)
def _a ( self) -> List[str]:
__snake_case = get_dataset()
__snake_case , __snake_case = deduplicate_dataset(lowercase_)
self.assertEqual(len(lowercase_) , 2)
print(lowercase_)
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2)
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowercase_)
| 676 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
super().__init__()
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .')
self.register_modules(
speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , )
def _a ( self , lowercase_ = "auto") -> Union[str, Any]:
if slice_size == "auto":
__snake_case = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase_)
def _a ( self) -> Any:
self.enable_attention_slicing(lowercase_)
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]:
__snake_case = self.speech_processor.feature_extractor(
lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device)
__snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0)
__snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[
0
]
if isinstance(lowercase_ , lowercase_):
__snake_case = 1
elif isinstance(lowercase_ , lowercase_):
__snake_case = len(lowercase_)
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(lowercase_)}.")
# get prompt text embeddings
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
__snake_case = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F" {self.tokenizer.model_max_length} tokens: {removed_text}")
__snake_case = text_input_ids[:, : self.tokenizer.model_max_length]
__snake_case = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__snake_case , __snake_case , __snake_case = text_embeddings.shape
__snake_case = text_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case = 42
if negative_prompt is None:
__snake_case = [''] * batch_size
elif type(lowercase_) is not type(lowercase_):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !="
F" {type(lowercase_)}.")
elif isinstance(lowercase_ , lowercase_):
__snake_case = [negative_prompt]
elif batch_size != len(lowercase_):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
' the batch size of `prompt`.')
else:
__snake_case = negative_prompt
__snake_case = text_input_ids.shape[-1]
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , )
__snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__snake_case = uncond_embeddings.shape[1]
__snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__snake_case = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to(
self.device)
else:
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_)
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
__snake_case = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(lowercase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__snake_case = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
__snake_case = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys())
__snake_case = {}
if accepts_eta:
__snake_case = eta
for i, t in enumerate(self.progress_bar(lowercase_)):
# expand the latents if we are doing classifier free guidance
__snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_)
# predict the noise residual
__snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample
# perform guidance
if do_classifier_free_guidance:
__snake_case , __snake_case = noise_pred.chunk(2)
__snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase_ , lowercase_ , lowercase_)
__snake_case = 1 / 0.1_8215 * latents
__snake_case = self.vae.decode(lowercase_).sample
__snake_case = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__snake_case = self.numpy_to_pil(lowercase_)
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
| 676 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
super().__init__(*lowercase_ , **lowercase_)
requires_backends(self , 'vision')
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING)
def _a ( self , lowercase_=None , lowercase_=None , lowercase_=None) -> Optional[int]:
__snake_case = {}
__snake_case = {}
if prompt is not None:
__snake_case = prompt
if generate_kwargs is not None:
__snake_case = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
__snake_case = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one')
__snake_case = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , lowercase_ , **lowercase_) -> Tuple:
return super().__call__(lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_=None) -> Tuple:
__snake_case = load_image(lowercase_)
if prompt is not None:
if not isinstance(lowercase_ , lowercase_):
raise ValueError(
F"Received an invalid text input, got - {type(lowercase_)} - but expected a single string. "
'Note also that one single text can be provided for conditional image to text generation.')
__snake_case = self.model.config.model_type
if model_type == "git":
__snake_case = self.image_processor(images=lowercase_ , return_tensors=self.framework)
__snake_case = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_).input_ids
__snake_case = [self.tokenizer.cls_token_id] + input_ids
__snake_case = torch.tensor(lowercase_).unsqueeze(0)
model_inputs.update({'input_ids': input_ids})
elif model_type == "pix2struct":
__snake_case = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework)
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
__snake_case = self.image_processor(images=lowercase_ , return_tensors=self.framework)
__snake_case = self.tokenizer(lowercase_ , return_tensors=self.framework)
model_inputs.update(lowercase_)
else:
raise ValueError(F"Model type {model_type} does not support conditional text generation")
else:
__snake_case = self.image_processor(images=lowercase_ , return_tensors=self.framework)
if self.model.config.model_type == "git" and prompt is None:
__snake_case = None
return model_inputs
def _a ( self , lowercase_ , lowercase_=None) -> Optional[Any]:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , lowercase_)
and all(x is None for x in model_inputs['input_ids'])
):
__snake_case = None
if generate_kwargs is None:
__snake_case = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
__snake_case = model_inputs.pop(self.model.main_input_name)
__snake_case = self.model.generate(lowercase_ , **lowercase_ , **lowercase_)
return model_outputs
def _a ( self , lowercase_) -> Tuple:
__snake_case = []
for output_ids in model_outputs:
__snake_case = {
'generated_text': self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_)
return records
| 676 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple:
super().__init__(*lowercase_ , **lowercase_)
__snake_case = eval_examples
__snake_case = post_process_function
def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
__snake_case = gen_kwargs.copy()
__snake_case = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length
)
__snake_case = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams
)
__snake_case = gen_kwargs
__snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case = self.get_eval_dataloader(lowercase_)
__snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_)
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
else:
__snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
__snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_)
return metrics
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]:
__snake_case = gen_kwargs.copy()
__snake_case = self.get_test_dataloader(lowercase_)
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict')
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
| 676 | 1 |
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase__ : Dict = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
UpperCAmelCase__ : str = {
"Salesforce/codegen-350M-mono": 20_48,
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = ['''input_ids''', '''attention_mask''']
__UpperCAmelCase = CodeGenTokenizer
def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="<|endoftext|>" , lowercase_="<|endoftext|>" , lowercase_="<|endoftext|>" , lowercase_=False , **lowercase_ , ) -> Tuple:
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , )
if kwargs.pop('add_bos_token' , lowercase_):
__snake_case = kwargs.pop('name_or_path' , '')
raise ValueError(
'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'
'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'
F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'
' so that the fast tokenizer works correctly.')
__snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , lowercase_) != add_prefix_space:
__snake_case = getattr(lowercase_ , pre_tok_state.pop('type'))
__snake_case = add_prefix_space
__snake_case = pre_tok_class(**lowercase_)
__snake_case = add_prefix_space
def _a ( self , *lowercase_ , **lowercase_) -> BatchEncoding:
__snake_case = kwargs.get('is_split_into_words' , lowercase_)
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowercase_ , **lowercase_)
def _a ( self , *lowercase_ , **lowercase_) -> BatchEncoding:
__snake_case = kwargs.get('is_split_into_words' , lowercase_)
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]:
__snake_case = self._tokenizer.model.save(lowercase_ , name=lowercase_)
return tuple(lowercase_)
def _a ( self , lowercase_ , lowercase_ = False , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> str:
__snake_case = super().decode(
token_ids=lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , )
if truncate_before_pattern is not None and len(lowercase_) > 0:
__snake_case = self.truncate(lowercase_ , lowercase_)
return decoded_text
def _a ( self , lowercase_ , lowercase_) -> str:
def find_re(lowercase_ , lowercase_ , lowercase_):
__snake_case = pattern.search(lowercase_ , lowercase_)
return m.start() if m else -1
__snake_case = [re.compile(lowercase_ , re.MULTILINE) for pattern in truncate_before_pattern]
__snake_case = list(re.finditer('^print' , lowercase_ , re.MULTILINE))
if len(lowercase_) > 1:
__snake_case = completion[: prints[1].start()]
__snake_case = list(re.finditer('^def' , lowercase_ , re.MULTILINE))
if len(lowercase_) > 1:
__snake_case = completion[: defs[1].start()]
__snake_case = 0
__snake_case = [
pos for pos in [find_re(lowercase_ , lowercase_ , lowercase_) for terminal in terminals] if pos != -1
]
if len(lowercase_) > 0:
return completion[: min(lowercase_)]
else:
return completion
| 676 |
from __future__ import annotations
UpperCAmelCase__ : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]:
'''simple docstring'''
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
__snake_case = 1
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
__snake_case = init[0]
__snake_case = init[1]
__snake_case = 0
__snake_case = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case = [[f, g, x, y]]
__snake_case = False # flag that is set when search is complete
__snake_case = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case = cell.pop()
__snake_case = next_cell[2]
__snake_case = next_cell[3]
__snake_case = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
__snake_case = x + DIRECTIONS[i][0]
__snake_case = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case = g + cost
__snake_case = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case = 1
__snake_case = i
__snake_case = []
__snake_case = goal[0]
__snake_case = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case = x - DIRECTIONS[action[x][y]][0]
__snake_case = y - DIRECTIONS[action[x][y]][1]
__snake_case = xa
__snake_case = ya
invpath.append([x, y] )
__snake_case = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ : int = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ : Optional[int] = 99
UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
UpperCAmelCase__ : List[str] = {"tokenization_byt5": ["ByT5Tokenizer"]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase__ : Any = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class __lowercase ( unittest.TestCase ):
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict:
__snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))]
if identifier is not None:
__snake_case = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_):
for n_ in n_identifier:
__snake_case = [file for file in files if n_ not in file]
else:
__snake_case = [file for file in files if n_identifier not in file]
__snake_case = ignore_files or []
ignore_files.append('__init__.py')
__snake_case = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , lowercase_)
if only_modules:
__snake_case = file.split('.')[0]
try:
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case = doctest.DocTestSuite(lowercase_)
__snake_case = unittest.TextTestRunner().run(lowercase_)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(F"{module_identifier} is not a module.")
else:
__snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def _a ( self) -> str:
__snake_case = Path('src/transformers')
__snake_case = 'modeling'
__snake_case = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = Path('src/transformers')
__snake_case = 'tokenization'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> List[str]:
__snake_case = Path('src/transformers')
__snake_case = 'configuration'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('src/transformers')
__snake_case = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(lowercase_ , n_identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('docs/source')
__snake_case = ['favicon.ico']
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
| 676 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class __lowercase ( unittest.TestCase ):
def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=3_0 , lowercase_=4_0_0 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 2_5_5 , lowercase_=True , ) -> str:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
__snake_case = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3}
__snake_case = parent
__snake_case = batch_size
__snake_case = num_channels
__snake_case = min_resolution
__snake_case = max_resolution
__snake_case = do_resize
__snake_case = size
__snake_case = do_normalize
__snake_case = image_mean
__snake_case = image_std
__snake_case = do_rescale
__snake_case = rescale_factor
__snake_case = do_pad
def _a ( self) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a ( self , lowercase_ , lowercase_=False) -> Any:
if not batched:
__snake_case = image_inputs[0]
if isinstance(lowercase_ , Image.Image):
__snake_case , __snake_case = image.size
else:
__snake_case , __snake_case = image.shape[1], image.shape[2]
if w < h:
__snake_case = int(self.size['shortest_edge'] * h / w)
__snake_case = self.size['shortest_edge']
elif w > h:
__snake_case = self.size['shortest_edge']
__snake_case = int(self.size['shortest_edge'] * w / h)
else:
__snake_case = self.size['shortest_edge']
__snake_case = self.size['shortest_edge']
else:
__snake_case = []
for image in image_inputs:
__snake_case , __snake_case = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
__snake_case = max(lowercase_ , key=lambda lowercase_: item[0])[0]
__snake_case = max(lowercase_ , key=lambda lowercase_: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowercase ( lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None
def _a ( self) -> Any:
__snake_case = ConditionalDetrImageProcessingTester(self)
@property
def _a ( self) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self) -> List[Any]:
__snake_case = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase_ , 'image_mean'))
self.assertTrue(hasattr(lowercase_ , 'image_std'))
self.assertTrue(hasattr(lowercase_ , 'do_normalize'))
self.assertTrue(hasattr(lowercase_ , 'do_resize'))
self.assertTrue(hasattr(lowercase_ , 'size'))
def _a ( self) -> List[Any]:
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3})
self.assertEqual(image_processor.do_pad , lowercase_)
__snake_case = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowercase_)
self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4})
self.assertEqual(image_processor.do_pad , lowercase_)
def _a ( self) -> Optional[int]:
pass
def _a ( self) -> Tuple:
# Initialize image_processing
__snake_case = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image)
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_)
__snake_case = image_processing(lowercase_ , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self) -> List[Any]:
# Initialize image_processing
__snake_case = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray)
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case = image_processing(lowercase_ , return_tensors='pt').pixel_values
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self) -> Optional[Any]:
# Initialize image_processing
__snake_case = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_)
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor)
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case = image_processing(lowercase_ , return_tensors='pt').pixel_values
__snake_case , __snake_case = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _a ( self) -> Optional[int]:
# prepare image and target
__snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f:
__snake_case = json.loads(f.read())
__snake_case = {'image_id': 3_9_7_6_9, 'annotations': target}
# encode them
__snake_case = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50')
__snake_case = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt')
# verify pixel values
__snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6])
self.assertEqual(encoding['pixel_values'].shape , lowercase_)
__snake_case = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4))
# verify area
__snake_case = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438])
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_))
# verify boxes
__snake_case = torch.Size([6, 4])
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_)
__snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3))
# verify image_id
__snake_case = torch.tensor([3_9_7_6_9])
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_))
# verify is_crowd
__snake_case = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_))
# verify class_labels
__snake_case = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7])
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_))
# verify orig_size
__snake_case = torch.tensor([4_8_0, 6_4_0])
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_))
# verify size
__snake_case = torch.tensor([8_0_0, 1_0_6_6])
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_))
@slow
def _a ( self) -> Tuple:
# prepare image, target and masks_path
__snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f:
__snake_case = json.loads(f.read())
__snake_case = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target}
__snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic')
# encode them
__snake_case = ConditionalDetrImageProcessor(format='coco_panoptic')
__snake_case = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt')
# verify pixel values
__snake_case = torch.Size([1, 3, 8_0_0, 1_0_6_6])
self.assertEqual(encoding['pixel_values'].shape , lowercase_)
__snake_case = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4))
# verify area
__snake_case = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_))
# verify boxes
__snake_case = torch.Size([6, 4])
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_)
__snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3))
# verify image_id
__snake_case = torch.tensor([3_9_7_6_9])
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_))
# verify is_crowd
__snake_case = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_))
# verify class_labels
__snake_case = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3])
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_))
# verify masks
__snake_case = 8_2_2_8_7_3
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_)
# verify orig_size
__snake_case = torch.tensor([4_8_0, 6_4_0])
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_))
# verify size
__snake_case = torch.tensor([8_0_0, 1_0_6_6])
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_))
| 676 |
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations(snake_case__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
snake_case__ : int , snake_case__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__snake_case = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case__ )
for item in array )
__snake_case = answer
return answer
__snake_case = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = [0] * (target + 1)
__snake_case = 1
for i in range(1 , target + 1 ):
for j in range(snake_case__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = 3
UpperCAmelCase__ : Optional[int] = 5
UpperCAmelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 676 | 1 |
from __future__ import annotations
def A ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ) -> None:
'''simple docstring'''
__snake_case = len(snake_case__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(snake_case__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , )
def A ( snake_case__ : int ) -> None:
'''simple docstring'''
__snake_case = []
depth_first_search([] , [] , [] , snake_case__ , snake_case__ )
# Print all the boards
for board in boards:
for column in board:
print(snake_case__ )
print('' )
print(len(snake_case__ ) , 'solutions were found.' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 676 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> List[str]:
__snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]})
return dset
def _a ( self) -> Optional[int]:
import faiss
__snake_case = self._create_dummy_dataset()
__snake_case = dset.map(
lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_)
__snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT)
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
dset.drop_index('vecs')
def _a ( self) -> str:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> int:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name)
dset.load_faiss_index('vecs2' , tmp_file.name)
os.unlink(tmp_file.name)
__snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> List[Any]:
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs')
dset.drop_index('vecs')
self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa)))
def _a ( self) -> Any:
from elasticsearch import Elasticsearch
__snake_case = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 3_0)
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}}
__snake_case = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=lowercase_)
__snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29')
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[int]:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsNotNone(index.faiss_index)
self.assertEqual(index.faiss_index.ntotal , 5)
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa))
self.assertEqual(index.faiss_index.ntotal , 1_0)
# single query
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1))
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
# batched queries
__snake_case = np.eye(5 , dtype=np.floataa)[::-1]
__snake_case , __snake_case = index.search_batch(lowercase_)
self.assertRaises(lowercase_ , index.search_batch , queries[0])
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([4, 3, 2, 1, 0] , lowercase_)
def _a ( self) -> str:
import faiss
__snake_case = FaissIndex(string_factory='Flat')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
__snake_case = FaissIndex(string_factory='LSH')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexLSH)
with self.assertRaises(lowercase_):
__snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5))
def _a ( self) -> Optional[int]:
import faiss
__snake_case = faiss.IndexFlat(5)
__snake_case = FaissIndex(custom_index=lowercase_)
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
def _a ( self) -> Tuple:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
index.add_vectors(np.eye(5 , dtype=np.floataa))
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
index.save(tmp_file.name)
__snake_case = FaissIndex.load(tmp_file.name)
os.unlink(tmp_file.name)
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
@require_faiss
def A ( snake_case__ : List[str] ) -> List[Any]:
'''simple docstring'''
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__snake_case = 'index.faiss'
__snake_case = f"mock://{index_name}"
index.save(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = np.zeros(5 , dtype=np.floataa )
__snake_case = 1
__snake_case , __snake_case = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[Any]:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = Elasticsearch()
__snake_case = {'acknowledged': True}
__snake_case = ElasticSearchIndex(es_client=lowercase_)
mocked_bulk.return_value([(True, None)] * 3)
index.add_documents(['foo', 'bar', 'foobar'])
# single query
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# single query with timeout
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# batched queries
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
# batched queries with timeout
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
| 676 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Optional[int] = {
"openai/imagegpt-small": "",
"openai/imagegpt-medium": "",
"openai/imagegpt-large": "",
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''imagegpt'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase_=5_1_2 + 1 , lowercase_=3_2 * 3_2 , lowercase_=5_1_2 , lowercase_=2_4 , lowercase_=8 , lowercase_=None , lowercase_="quick_gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1e-5 , lowercase_=0.02 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , **lowercase_ , ) -> Union[str, Any]:
__snake_case = vocab_size
__snake_case = n_positions
__snake_case = n_embd
__snake_case = n_layer
__snake_case = n_head
__snake_case = n_inner
__snake_case = activation_function
__snake_case = resid_pdrop
__snake_case = embd_pdrop
__snake_case = attn_pdrop
__snake_case = layer_norm_epsilon
__snake_case = initializer_range
__snake_case = scale_attn_weights
__snake_case = use_cache
__snake_case = scale_attn_by_inverse_layer_idx
__snake_case = reorder_and_upcast_attn
__snake_case = tie_word_embeddings
super().__init__(tie_word_embeddings=lowercase_ , **lowercase_)
class __lowercase ( lowerCamelCase__ ):
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
])
def _a ( self , lowercase_ , lowercase_ = 1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 3_2 , ) -> Mapping[str, Any]:
__snake_case = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_)
__snake_case = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_))
return inputs
| 676 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = args.log_outputs
__snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
__snake_case = load_metric('wer' )
__snake_case = load_metric('cer' )
# compute metrics
__snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] )
__snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
__snake_case = f"WER: {wer_result}\nCER: {cer_result}"
print(snake_case__ )
with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f:
f.write(snake_case__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case = f"log_{dataset_id}_predictions.txt"
__snake_case = f"log_{dataset_id}_targets.txt"
with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t:
# mapping function to write output
def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
p.write(f"{i}" + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f"{i}" + '\n' )
t.write(batch['target'] + '\n' )
result.map(snake_case__ , with_indices=snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case = re.sub(snake_case__ , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
__snake_case = ' '.join(text.split(snake_case__ ) )
return text
def A ( snake_case__ : int ) -> Optional[int]:
'''simple docstring'''
# load dataset
__snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case = feature_extractor.sampling_rate
# resample audio
__snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) )
# load eval pipeline
if args.device is None:
__snake_case = 0 if torch.cuda.is_available() else -1
__snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case__ : Optional[Any] ):
__snake_case = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case = prediction['text']
__snake_case = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
__snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case__ , snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
UpperCAmelCase__ : str = parser.parse_args()
main(args)
| 676 | 1 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase__ : str = logging.get_logger(__name__)
# General docstring
UpperCAmelCase__ : Optional[Any] = "RegNetConfig"
# Base docstring
UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040"
UpperCAmelCase__ : int = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase__ : str = "facebook/regnet-y-040"
UpperCAmelCase__ : Optional[int] = "tabby, tabby cat"
UpperCAmelCase__ : Optional[int] = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ = 3 , lowercase_ = 1 , lowercase_ = 1 , lowercase_ = "relu" , ) -> List[str]:
super().__init__()
__snake_case = nn.Convad(
lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , groups=lowercase_ , bias=lowercase_ , )
__snake_case = nn.BatchNormad(lowercase_)
__snake_case = ACTaFN[activation] if activation is not None else nn.Identity()
def _a ( self , lowercase_) -> int:
__snake_case = self.convolution(lowercase_)
__snake_case = self.normalization(lowercase_)
__snake_case = self.activation(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_) -> Optional[int]:
super().__init__()
__snake_case = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
__snake_case = config.num_channels
def _a ( self , lowercase_) -> Any:
__snake_case = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.')
__snake_case = self.embedder(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ = 2) -> Union[str, Any]:
super().__init__()
__snake_case = nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_)
__snake_case = nn.BatchNormad(lowercase_)
def _a ( self , lowercase_) -> Tensor:
__snake_case = self.convolution(lowercase_)
__snake_case = self.normalization(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_) -> List[str]:
super().__init__()
__snake_case = nn.AdaptiveAvgPoolad((1, 1))
__snake_case = nn.Sequential(
nn.Convad(lowercase_ , lowercase_ , kernel_size=1) , nn.ReLU() , nn.Convad(lowercase_ , lowercase_ , kernel_size=1) , nn.Sigmoid() , )
def _a ( self , lowercase_) -> int:
# b c h w -> b c 1 1
__snake_case = self.pooler(lowercase_)
__snake_case = self.attention(lowercase_)
__snake_case = hidden_state * attention
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1) -> Any:
super().__init__()
__snake_case = in_channels != out_channels or stride != 1
__snake_case = max(1 , out_channels // config.groups_width)
__snake_case = (
RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_) if should_apply_shortcut else nn.Identity()
)
__snake_case = nn.Sequential(
RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_) , )
__snake_case = ACTaFN[config.hidden_act]
def _a ( self , lowercase_) -> Optional[int]:
__snake_case = hidden_state
__snake_case = self.layer(lowercase_)
__snake_case = self.shortcut(lowercase_)
hidden_state += residual
__snake_case = self.activation(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1) -> Dict:
super().__init__()
__snake_case = in_channels != out_channels or stride != 1
__snake_case = max(1 , out_channels // config.groups_width)
__snake_case = (
RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_) if should_apply_shortcut else nn.Identity()
)
__snake_case = nn.Sequential(
RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act) , RegNetSELayer(lowercase_ , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_) , )
__snake_case = ACTaFN[config.hidden_act]
def _a ( self , lowercase_) -> Union[str, Any]:
__snake_case = hidden_state
__snake_case = self.layer(lowercase_)
__snake_case = self.shortcut(lowercase_)
hidden_state += residual
__snake_case = self.activation(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 2 , lowercase_ = 2 , ) -> Dict:
super().__init__()
__snake_case = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__snake_case = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowercase_ , lowercase_ , lowercase_ , stride=lowercase_ , ) , *[layer(lowercase_ , lowercase_ , lowercase_) for _ in range(depth - 1)] , )
def _a ( self , lowercase_) -> Union[str, Any]:
__snake_case = self.layers(lowercase_)
return hidden_state
class __lowercase ( nn.Module ):
def __init__( self , lowercase_) -> Union[str, Any]:
super().__init__()
__snake_case = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
__snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:]):
self.stages.append(RegNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_))
def _a ( self , lowercase_ , lowercase_ = False , lowercase_ = True) -> BaseModelOutputWithNoAttention:
__snake_case = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__snake_case = hidden_states + (hidden_state,)
__snake_case = stage_module(lowercase_)
if output_hidden_states:
__snake_case = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowercase_ , hidden_states=lowercase_)
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = RegNetConfig
__UpperCAmelCase = '''regnet'''
__UpperCAmelCase = '''pixel_values'''
__UpperCAmelCase = True
def _a ( self , lowercase_) -> Union[str, Any]:
if isinstance(lowercase_ , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu')
elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def _a ( self , lowercase_ , lowercase_=False) -> Union[str, Any]:
if isinstance(lowercase_ , lowercase_):
__snake_case = value
UpperCAmelCase__ : List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase__ : Dict = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''The bare RegNet model outputting raw features without any specific head on top.''' , lowerCamelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_) -> List[Any]:
super().__init__(lowercase_)
__snake_case = config
__snake_case = RegNetEmbeddings(lowercase_)
__snake_case = RegNetEncoder(lowercase_)
__snake_case = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None) -> BaseModelOutputWithPoolingAndNoAttention:
__snake_case = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case = self.embedder(lowercase_)
__snake_case = self.encoder(
lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_)
__snake_case = encoder_outputs[0]
__snake_case = self.pooler(lowercase_)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'''
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , lowerCamelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_) -> Any:
super().__init__(lowercase_)
__snake_case = config.num_labels
__snake_case = RegNetModel(lowercase_)
# classification head
__snake_case = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowercase_)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _a ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> ImageClassifierOutputWithNoAttention:
__snake_case = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case = self.regnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_)
__snake_case = outputs.pooler_output if return_dict else outputs[1]
__snake_case = self.classifier(lowercase_)
__snake_case = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case = 'single_label_classification'
else:
__snake_case = 'multi_label_classification'
if self.config.problem_type == "regression":
__snake_case = MSELoss()
if self.num_labels == 1:
__snake_case = loss_fct(logits.squeeze() , labels.squeeze())
else:
__snake_case = loss_fct(lowercase_ , lowercase_)
elif self.config.problem_type == "single_label_classification":
__snake_case = CrossEntropyLoss()
__snake_case = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
__snake_case = BCEWithLogitsLoss()
__snake_case = loss_fct(lowercase_ , lowercase_)
if not return_dict:
__snake_case = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states)
| 676 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def A ( *snake_case__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(snake_case__ , 'r' ) as fh:
fcntl.flock(snake_case__ , fcntl.LOCK_EX )
try:
print(*snake_case__ )
finally:
fcntl.flock(snake_case__ , fcntl.LOCK_UN )
UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
UpperCAmelCase__ : Any = torch.device("cuda", local_rank)
UpperCAmelCase__ : Union[str, Any] = socket.gethostname()
UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
UpperCAmelCase__ : Optional[int] = dist.get_rank()
UpperCAmelCase__ : List[str] = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 676 | 1 |
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def A ( snake_case__ : str , snake_case__ : int=1 ) -> Union[str, Any]:
'''simple docstring'''
if n_shave_prefix_segments >= 0:
return ".".join(path.split('.' )[n_shave_prefix_segments:] )
else:
return ".".join(path.split('.' )[:n_shave_prefix_segments] )
def A ( snake_case__ : List[Any] , snake_case__ : List[str]=0 ) -> List[Any]:
'''simple docstring'''
__snake_case = []
for old_item in old_list:
__snake_case = old_item.replace('in_layers.0' , 'norm1' )
__snake_case = new_item.replace('in_layers.2' , 'conv1' )
__snake_case = new_item.replace('out_layers.0' , 'norm2' )
__snake_case = new_item.replace('out_layers.3' , 'conv2' )
__snake_case = new_item.replace('emb_layers.1' , 'time_emb_proj' )
__snake_case = new_item.replace('skip_connection' , 'conv_shortcut' )
__snake_case = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({'old': old_item, 'new': new_item} )
return mapping
def A ( snake_case__ : Any , snake_case__ : Dict=0 ) -> Dict:
'''simple docstring'''
__snake_case = []
for old_item in old_list:
__snake_case = old_item
__snake_case = new_item.replace('norm.weight' , 'group_norm.weight' )
__snake_case = new_item.replace('norm.bias' , 'group_norm.bias' )
__snake_case = new_item.replace('proj_out.weight' , 'proj_attn.weight' )
__snake_case = new_item.replace('proj_out.bias' , 'proj_attn.bias' )
__snake_case = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ )
mapping.append({'old': old_item, 'new': new_item} )
return mapping
def A ( snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None ) -> Optional[int]:
'''simple docstring'''
assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
__snake_case = old_checkpoint[path]
__snake_case = old_tensor.shape[0] // 3
__snake_case = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
__snake_case = old_tensor.shape[0] // config['num_head_channels'] // 3
__snake_case = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
__snake_case , __snake_case , __snake_case = old_tensor.split(channels // num_heads , dim=1 )
__snake_case = query.reshape(snake_case__ )
__snake_case = key.reshape(snake_case__ )
__snake_case = value.reshape(snake_case__ )
for path in paths:
__snake_case = path['new']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
__snake_case = new_path.replace('middle_block.0' , 'mid_block.resnets.0' )
__snake_case = new_path.replace('middle_block.1' , 'mid_block.attentions.0' )
__snake_case = new_path.replace('middle_block.2' , 'mid_block.resnets.1' )
if additional_replacements is not None:
for replacement in additional_replacements:
__snake_case = new_path.replace(replacement['old'] , replacement['new'] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
__snake_case = old_checkpoint[path['old']][:, :, 0]
else:
__snake_case = old_checkpoint[path['old']]
def A ( snake_case__ : List[str] , snake_case__ : Tuple ) -> str:
'''simple docstring'''
__snake_case = {}
__snake_case = checkpoint['time_embed.0.weight']
__snake_case = checkpoint['time_embed.0.bias']
__snake_case = checkpoint['time_embed.2.weight']
__snake_case = checkpoint['time_embed.2.bias']
__snake_case = checkpoint['input_blocks.0.0.weight']
__snake_case = checkpoint['input_blocks.0.0.bias']
__snake_case = checkpoint['out.0.weight']
__snake_case = checkpoint['out.0.bias']
__snake_case = checkpoint['out.2.weight']
__snake_case = checkpoint['out.2.bias']
# Retrieves the keys for the input blocks only
__snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} )
__snake_case = {
layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the middle blocks only
__snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} )
__snake_case = {
layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
# Retrieves the keys for the output blocks only
__snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} )
__snake_case = {
layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key]
for layer_id in range(snake_case__ )
}
for i in range(1 , snake_case__ ):
__snake_case = (i - 1) // (config['num_res_blocks'] + 1)
__snake_case = (i - 1) % (config['num_res_blocks'] + 1)
__snake_case = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key]
__snake_case = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in checkpoint:
__snake_case = checkpoint[
f"input_blocks.{i}.0.op.weight"
]
__snake_case = checkpoint[
f"input_blocks.{i}.0.op.bias"
]
continue
__snake_case = renew_resnet_paths(snake_case__ )
__snake_case = {'old': f"input_blocks.{i}.0", 'new': f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
__snake_case = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ )
if len(snake_case__ ):
__snake_case = renew_attention_paths(snake_case__ )
__snake_case = {
'old': f"input_blocks.{i}.1",
'new': f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
__snake_case = {
f"input_blocks.{i}.1.qkv.bias": {
'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
f"input_blocks.{i}.1.qkv.weight": {
'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , )
__snake_case = middle_blocks[0]
__snake_case = middle_blocks[1]
__snake_case = middle_blocks[2]
__snake_case = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
__snake_case = renew_resnet_paths(snake_case__ )
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ )
__snake_case = renew_attention_paths(snake_case__ )
__snake_case = {
'middle_block.1.qkv.bias': {
'key': 'mid_block.attentions.0.key.bias',
'query': 'mid_block.attentions.0.query.bias',
'value': 'mid_block.attentions.0.value.bias',
},
'middle_block.1.qkv.weight': {
'key': 'mid_block.attentions.0.key.weight',
'query': 'mid_block.attentions.0.query.weight',
'value': 'mid_block.attentions.0.value.weight',
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ )
for i in range(snake_case__ ):
__snake_case = i // (config['num_res_blocks'] + 1)
__snake_case = i % (config['num_res_blocks'] + 1)
__snake_case = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]]
__snake_case = {}
for layer in output_block_layers:
__snake_case , __snake_case = layer.split('.' )[0], shave_segments(snake_case__ , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(snake_case__ )
else:
__snake_case = [layer_name]
if len(snake_case__ ) > 1:
__snake_case = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
__snake_case = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
__snake_case = renew_resnet_paths(snake_case__ )
__snake_case = renew_resnet_paths(snake_case__ )
__snake_case = {'old': f"output_blocks.{i}.0", 'new': f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ )
if ["conv.weight", "conv.bias"] in output_block_list.values():
__snake_case = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] )
__snake_case = checkpoint[
f"output_blocks.{i}.{index}.conv.weight"
]
__snake_case = checkpoint[
f"output_blocks.{i}.{index}.conv.bias"
]
# Clear attentions as they have been attributed above.
if len(snake_case__ ) == 2:
__snake_case = []
if len(snake_case__ ):
__snake_case = renew_attention_paths(snake_case__ )
__snake_case = {
'old': f"output_blocks.{i}.1",
'new': f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
__snake_case = {
f"output_blocks.{i}.1.qkv.bias": {
'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias",
'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias",
'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias",
},
f"output_blocks.{i}.1.qkv.weight": {
'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight",
'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight",
'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight",
},
}
assign_to_checkpoint(
snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=snake_case__ , )
else:
__snake_case = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
__snake_case = '.'.join(['output_blocks', str(snake_case__ ), path['old']] )
__snake_case = '.'.join(['up_blocks', str(snake_case__ ), 'resnets', str(snake_case__ ), path['new']] )
__snake_case = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
UpperCAmelCase__ : int = parser.parse_args()
UpperCAmelCase__ : Optional[int] = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
UpperCAmelCase__ : Optional[Any] = json.loads(f.read())
UpperCAmelCase__ : str = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
UpperCAmelCase__ : Tuple = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
UpperCAmelCase__ : Tuple = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
UpperCAmelCase__ : Optional[Any] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))
UpperCAmelCase__ : List[str] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 676 |
from datetime import datetime
import requests
def A ( snake_case__ : str ) -> bytes:
'''simple docstring'''
__snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(snake_case__ ).content
if __name__ == "__main__":
UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip()
UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
def _a ( self) -> Union[str, Any]:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__snake_case = ids_tensor([self.batch_size] , self.num_choices)
__snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self) -> Tuple:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , )
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = OpenLlamaModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]:
__snake_case = True
__snake_case = OpenLlamaModel(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
__snake_case = True
__snake_case = True
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
# first forward pass
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
__snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size)
__snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
__snake_case = torch.cat([input_ids, next_tokens] , dim=-1)
__snake_case = torch.cat([input_mask, next_mask] , dim=-1)
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
# select random slice
__snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item()
__snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
def _a ( self) -> Optional[Any]:
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = OpenLlamaModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7)
def _a ( self) -> int:
self.config_tester.run_common_tests()
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'single_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> int:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'multi_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def _a ( self) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)])
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ids_tensor([1, 1_0] , config.vocab_size)
__snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = OpenLlamaModel(lowercase_)
original_model.to(lowercase_)
original_model.eval()
__snake_case = original_model(lowercase_).last_hidden_state
__snake_case = original_model(lowercase_).last_hidden_state
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = {'type': scaling_type, 'factor': 10.0}
__snake_case = OpenLlamaModel(lowercase_)
scaled_model.to(lowercase_)
scaled_model.eval()
__snake_case = scaled_model(lowercase_).last_hidden_state
__snake_case = scaled_model(lowercase_).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
else:
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
| 676 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__)
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = 8 , **lowercase_ , ) -> None:
super().__init__(**lowercase_)
__snake_case = do_rescale
__snake_case = rescale_factor
__snake_case = do_pad
__snake_case = pad_size
def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray:
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_ , lowercase_ = None) -> List[str]:
__snake_case , __snake_case = get_image_size(lowercase_)
__snake_case = (old_height // size + 1) * size - old_height
__snake_case = (old_width // size + 1) * size - old_width
return pad(lowercase_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase_)
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> int:
__snake_case = do_rescale if do_rescale is not None else self.do_rescale
__snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case = do_pad if do_pad is not None else self.do_pad
__snake_case = pad_size if pad_size is not None else self.pad_size
__snake_case = make_list_of_images(lowercase_)
if not valid_images(lowercase_):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
__snake_case = [to_numpy_array(lowercase_) for image in images]
if do_rescale:
__snake_case = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images]
if do_pad:
__snake_case = [self.pad(lowercase_ , size=lowercase_) for image in images]
__snake_case = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images]
__snake_case = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 0:
return False
__snake_case = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import argparse
import torch
# Step 1. clone https://github.com/microsoft/unilm
# Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd
# Step 3. cd unilm
# Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink
# import classes
from unilm.wavlm.WavLM import WavLM as WavLMOrig
from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig
from transformers import WavLMConfig, WavLMModel, logging
logging.set_verbosity_info()
UpperCAmelCase__ : Any = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear",
"self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed",
"self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
UpperCAmelCase__ : str = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A ( snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
for attribute in key.split('.' ):
__snake_case = getattr(snake_case__ , snake_case__ )
if weight_type is not None:
__snake_case = getattr(snake_case__ , snake_case__ ).shape
else:
__snake_case = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
__snake_case = value
elif weight_type == "weight_g":
__snake_case = value
elif weight_type == "weight_v":
__snake_case = value
elif weight_type == "bias":
__snake_case = value
else:
__snake_case = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def A ( snake_case__ : List[Any] , snake_case__ : Optional[Any] ) -> Any:
'''simple docstring'''
__snake_case = []
__snake_case = fairseq_model.state_dict()
__snake_case = hf_model.feature_extractor
for name, value in fairseq_dict.items():
__snake_case = False
if "conv_layers" in name:
load_conv_layer(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == 'group' , )
__snake_case = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__snake_case = True
if "*" in mapped_key:
__snake_case = name.split(snake_case__ )[0].split('.' )[-2]
__snake_case = mapped_key.replace('*' , snake_case__ )
if "weight_g" in name:
__snake_case = 'weight_g'
elif "weight_v" in name:
__snake_case = 'weight_v'
elif "bias" in name and "relative_attention_bias" not in name:
__snake_case = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case = 'weight'
else:
__snake_case = None
set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
continue
if not is_used:
unused_weights.append(snake_case__ )
logger.warning(f"Unused weights: {unused_weights}" )
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : List[str] ) -> Dict:
'''simple docstring'''
__snake_case = full_name.split('conv_layers.' )[-1]
__snake_case = name.split('.' )
__snake_case = int(items[0] )
__snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
__snake_case = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
__snake_case = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
__snake_case = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
__snake_case = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(snake_case__ )
@torch.no_grad()
def A ( snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int=None ) -> List[str]:
'''simple docstring'''
# load the pre-trained checkpoints
__snake_case = torch.load(snake_case__ )
__snake_case = WavLMConfigOrig(checkpoint['cfg'] )
__snake_case = WavLMOrig(snake_case__ )
model.load_state_dict(checkpoint['model'] )
model.eval()
if config_path is not None:
__snake_case = WavLMConfig.from_pretrained(snake_case__ )
else:
__snake_case = WavLMConfig()
__snake_case = WavLMModel(snake_case__ )
recursively_load_weights(snake_case__ , snake_case__ )
hf_wavlm.save_pretrained(snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : str = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCAmelCase__ : Optional[int] = parser.parse_args()
convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 676 |
import numpy as np
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import os
import time
import numpy as np
import onnxruntime as ort
UpperCAmelCase__ : int = "1"
UpperCAmelCase__ : Optional[Any] = "0"
UpperCAmelCase__ : Tuple = "1"
UpperCAmelCase__ : List[str] = ort.SessionOptions()
UpperCAmelCase__ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print("Create inference session...")
UpperCAmelCase__ : List[str] = ["TensorrtExecutionProvider", "CUDAExecutionProvider"]
UpperCAmelCase__ : Union[str, Any] = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider)
UpperCAmelCase__ : Union[str, Any] = ort.RunOptions()
UpperCAmelCase__ : str = 1_28
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : Optional[int] = np.ones((batch, sequence), dtype=np.intaa)
UpperCAmelCase__ : Dict = np.ones((batch, sequence), dtype=np.intaa)
UpperCAmelCase__ : str = np.ones((batch, sequence), dtype=np.intaa)
print("Warm up phase...")
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Start inference...")
UpperCAmelCase__ : List[str] = time.time()
UpperCAmelCase__ : Dict = 20_00
UpperCAmelCase__ : str = {}
for iter in range(max_iters):
UpperCAmelCase__ : int = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 1 |
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
UpperCAmelCase__ : Optional[int] = float("nan")
class __lowercase :
def __init__( self , lowercase_) -> Optional[Any]:
__snake_case = sys.stdout
__snake_case = open(lowercase_ , 'a')
def __getattr__( self , lowercase_) -> Tuple:
return getattr(self.stdout , lowercase_)
def _a ( self , lowercase_) -> str:
self.stdout.write(lowercase_)
# strip tqdm codes
self.file.write(re.sub(r'^.*\r' , '' , lowercase_ , 0 , re.M))
def A ( snake_case__ : Union[str, Any]=80 , snake_case__ : str=False ) -> Any:
'''simple docstring'''
__snake_case = []
# deal with critical env vars
__snake_case = ['CUDA_VISIBLE_DEVICES']
for key in env_keys:
__snake_case = os.environ.get(snake_case__ , snake_case__ )
if val is not None:
cmd.append(f"{key}={val}" )
# python executable (not always needed if the script is executable)
__snake_case = sys.executable if full_python_path else sys.executable.split('/' )[-1]
cmd.append(snake_case__ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
__snake_case = []
__snake_case = ''
while len(snake_case__ ) > 0:
current_line += f"{cmd.pop(0 )} "
if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(snake_case__ )
__snake_case = ''
return "\\\n".join(snake_case__ )
def A ( snake_case__ : Any , snake_case__ : Optional[int] ) -> Dict:
'''simple docstring'''
# unwrap multi-line input
__snake_case = re.sub(r'[\\\n]+' , ' ' , args.base_cmd )
# remove --output_dir if any and set our own
__snake_case = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd )
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
__snake_case = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str] ) -> Dict:
'''simple docstring'''
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , )
__snake_case = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ )
if verbose:
print('STDOUT' , result.stdout )
print('STDERR' , result.stderr )
# save the streams
__snake_case = variation.replace(' ' , '-' )
with open(Path(snake_case__ ) / f"log.{prefix}.stdout.txt" , 'w' ) as f:
f.write(result.stdout )
with open(Path(snake_case__ ) / f"log.{prefix}.stderr.txt" , 'w' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('failed' )
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json" , 'r' , encoding='utf-8' ) as f:
__snake_case = json.load(snake_case__ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def A ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict , ) -> int:
'''simple docstring'''
__snake_case = []
__snake_case = []
__snake_case = f"{id}: {variation:<{longest_variation_len}}"
__snake_case = f"{preamble}: "
__snake_case = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ):
__snake_case = process_run_single(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
__snake_case = single_run_metrics[target_metric_key]
if not math.isnan(snake_case__ ):
metrics.append(snake_case__ )
results.append(snake_case__ )
outcome += "✓"
else:
outcome += "✘"
__snake_case = f"\33[2K\r{outcome}"
if len(snake_case__ ) > 0:
__snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
__snake_case = round(mean_metrics[target_metric_key] , 2 )
__snake_case = f"{outcome} {mean_target}"
if len(snake_case__ ) > 1:
results_str += f" {tuple(round(snake_case__ , 2 ) for x in results )}"
print(snake_case__ )
__snake_case = variation
return mean_metrics
else:
print(snake_case__ )
return {variation_key: variation, target_metric_key: nan}
def A ( ) -> Optional[Any]:
'''simple docstring'''
__snake_case = torch.cuda.get_device_properties(torch.device('cuda' ) )
return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n"
def A ( snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = pd.DataFrame(snake_case__ )
__snake_case = 'variation'
__snake_case = 'diff_%'
__snake_case = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
__snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(snake_case__ ):
# as a fallback, use the minimal value as the sentinel
__snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(snake_case__ ):
__snake_case = df.apply(
lambda snake_case__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='columns' , )
# re-order columns
__snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys]
__snake_case = df.reindex(snake_case__ , axis='columns' ) # reorder cols
# capitalize
__snake_case = df.rename(str.capitalize , axis='columns' )
# make the cols as narrow as possible
__snake_case = df.rename(lambda snake_case__ : c.replace('_' , '<br>' ) , axis='columns' )
__snake_case = df.rename(lambda snake_case__ : c.replace('_' , '\n' ) , axis='columns' )
__snake_case = ['', 'Copy between the cut-here-lines and paste as is to github or a forum']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt='.2f' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt='.2f' )]
print('\n\n'.join(snake_case__ ) )
def A ( ) -> str:
'''simple docstring'''
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'--base-cmd' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Base cmd' , )
parser.add_argument(
'--variations' , default=snake_case__ , type=snake_case__ , nargs='+' , required=snake_case__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , )
parser.add_argument(
'--base-variation' , default=snake_case__ , type=snake_case__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , )
parser.add_argument(
'--target-metric-key' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , )
parser.add_argument(
'--report-metric-keys' , default='' , type=snake_case__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , )
parser.add_argument(
'--repeat-times' , default=1 , type=snake_case__ , help='How many times to re-run each variation - an average will be reported' , )
parser.add_argument(
'--output_dir' , default='output_benchmark' , type=snake_case__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , )
parser.add_argument(
'--verbose' , default=snake_case__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , )
__snake_case = parser.parse_args()
__snake_case = args.output_dir
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
__snake_case = get_base_command(snake_case__ , snake_case__ )
# split each dimension into its --foo variations
__snake_case = [list(map(str.strip , re.split(r'\|' , snake_case__ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
__snake_case = list(map(str.strip , map(' '.join , itertools.product(*snake_case__ ) ) ) )
__snake_case = max(len(snake_case__ ) for x in variations )
# split wanted keys
__snake_case = args.report_metric_keys.split()
# capture prints into a log file for convenience
__snake_case = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt"
print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" )
print(f"and this script's output is also piped into {report_fn}" )
__snake_case = Tee(snake_case__ )
print(f"\n*** Running {len(snake_case__ )} benchmarks:" )
print(f"Base command: {' '.join(snake_case__ )}" )
__snake_case = 'variation'
__snake_case = []
for id, variation in enumerate(tqdm(snake_case__ , desc='Total completion: ' , leave=snake_case__ ) ):
__snake_case = base_cmd + variation.split()
results.append(
process_run(
id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) )
process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ )
if __name__ == "__main__":
main()
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __lowercase :
def __init__( self , lowercase_ , lowercase_=3 , lowercase_=3_2 , lowercase_=3 , lowercase_=1_0 , lowercase_=[8, 1_6, 3_2, 6_4] , lowercase_=[1, 1, 2, 1] , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=3 , lowercase_=None , lowercase_=["stage2", "stage3", "stage4"] , lowercase_=[2, 3, 4] , lowercase_=1 , ) -> Tuple:
__snake_case = parent
__snake_case = batch_size
__snake_case = image_size
__snake_case = num_channels
__snake_case = embeddings_size
__snake_case = hidden_sizes
__snake_case = depths
__snake_case = is_training
__snake_case = use_labels
__snake_case = hidden_act
__snake_case = num_labels
__snake_case = scope
__snake_case = len(lowercase_)
__snake_case = out_features
__snake_case = out_indices
__snake_case = num_groups
def _a ( self) -> Union[str, Any]:
__snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.num_labels)
__snake_case = self.get_config()
return config, pixel_values, labels
def _a ( self) -> Optional[int]:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> int:
__snake_case = BitModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> str:
__snake_case = self.num_labels
__snake_case = BitForImageClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> int:
__snake_case = BitBackbone(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:])
# verify backbone works with out_features=None
__snake_case = None
__snake_case = BitBackbone(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def _a ( self) -> Optional[int]:
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__UpperCAmelCase = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> int:
__snake_case = BitModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_)
def _a ( self) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self) -> Optional[Any]:
return
@unittest.skip(reason='Bit does not output attentions')
def _a ( self) -> str:
pass
@unittest.skip(reason='Bit does not use inputs_embeds')
def _a ( self) -> List[Any]:
pass
@unittest.skip(reason='Bit does not support input and output embeddings')
def _a ( self) -> Dict:
pass
def _a ( self) -> Dict:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(lowercase_)
__snake_case = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case = [*signature.parameters.keys()]
__snake_case = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowercase_)
def _a ( self) -> List[str]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[int]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowercase_)
def _a ( self) -> Any:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(config=lowercase_)
for name, module in model.named_modules():
if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm)):
self.assertTrue(
torch.all(module.weight == 1) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
def _a ( self) -> str:
def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_):
__snake_case = model_class(lowercase_)
model.to(lowercase_)
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(lowercase_ , lowercase_))
__snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case = self.model_tester.num_stages
self.assertEqual(len(lowercase_) , expected_num_stages + 1)
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case = layer_type
__snake_case = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_)
@unittest.skip(reason='Bit does not use feedforward chunking')
def _a ( self) -> Union[str, Any]:
pass
def _a ( self) -> Optional[int]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_)
@slow
def _a ( self) -> List[str]:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = BitModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
def A ( ) -> List[str]:
'''simple docstring'''
__snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowercase ( unittest.TestCase ):
@cached_property
def _a ( self) -> str:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None
)
@slow
def _a ( self) -> List[Any]:
__snake_case = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase_)
__snake_case = self.default_image_processor
__snake_case = prepare_img()
__snake_case = image_processor(images=lowercase_ , return_tensors='pt').to(lowercase_)
# forward pass
with torch.no_grad():
__snake_case = model(**lowercase_)
# verify the logits
__snake_case = torch.Size((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowercase_)
__snake_case = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(lowercase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
@require_torch
class __lowercase ( lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (BitBackbone,) if is_torch_available() else ()
__UpperCAmelCase = BitConfig
__UpperCAmelCase = False
def _a ( self) -> List[Any]:
__snake_case = BitModelTester(self)
| 676 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : Dict = {
"microsoft/unispeech-sat-base-100h-libri-ft": (
"https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json"
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''unispeech-sat'''
def __init__( self , lowercase_=3_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=1e-5 , lowercase_="group" , lowercase_="gelu" , lowercase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase_=(5, 2, 2, 2, 2, 2, 2) , lowercase_=(1_0, 3, 3, 3, 3, 2, 2) , lowercase_=False , lowercase_=1_2_8 , lowercase_=1_6 , lowercase_=False , lowercase_=True , lowercase_=0.05 , lowercase_=1_0 , lowercase_=2 , lowercase_=0.0 , lowercase_=1_0 , lowercase_=0 , lowercase_=3_2_0 , lowercase_=2 , lowercase_=0.1 , lowercase_=1_0_0 , lowercase_=2_5_6 , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_="mean" , lowercase_=False , lowercase_=False , lowercase_=2_5_6 , lowercase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowercase_=(5, 3, 3, 1, 1) , lowercase_=(1, 2, 3, 1, 1) , lowercase_=5_1_2 , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=5_0_4 , **lowercase_ , ) -> List[str]:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_)
__snake_case = hidden_size
__snake_case = feat_extract_norm
__snake_case = feat_extract_activation
__snake_case = list(lowercase_)
__snake_case = list(lowercase_)
__snake_case = list(lowercase_)
__snake_case = conv_bias
__snake_case = num_conv_pos_embeddings
__snake_case = num_conv_pos_embedding_groups
__snake_case = len(self.conv_dim)
__snake_case = num_hidden_layers
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = num_attention_heads
__snake_case = hidden_dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = feat_proj_dropout
__snake_case = final_dropout
__snake_case = layerdrop
__snake_case = layer_norm_eps
__snake_case = initializer_range
__snake_case = vocab_size
__snake_case = num_clusters
__snake_case = do_stable_layer_norm
__snake_case = use_weighted_layer_sum
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case = apply_spec_augment
__snake_case = mask_time_prob
__snake_case = mask_time_length
__snake_case = mask_time_min_masks
__snake_case = mask_feature_prob
__snake_case = mask_feature_length
__snake_case = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__snake_case = num_codevectors_per_group
__snake_case = num_codevector_groups
__snake_case = contrastive_logits_temperature
__snake_case = feat_quantizer_dropout
__snake_case = num_negatives
__snake_case = codevector_dim
__snake_case = proj_codevector_dim
__snake_case = diversity_loss_weight
# ctc loss
__snake_case = ctc_loss_reduction
__snake_case = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__snake_case = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__snake_case = list(lowercase_)
__snake_case = list(lowercase_)
__snake_case = list(lowercase_)
__snake_case = xvector_output_dim
@property
def _a ( self) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1)
| 676 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A ( snake_case__ : List[Any] ) -> Any:
'''simple docstring'''
__snake_case = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__snake_case = 4
__snake_case = 48
__snake_case = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = [6, 6, 6, 6]
__snake_case = 60
__snake_case = [6, 6, 6, 6]
__snake_case = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = 4
__snake_case = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__snake_case = 1
__snake_case = 1
__snake_case = 126
__snake_case = 7
__snake_case = 255.0
__snake_case = ''
return config
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
__snake_case = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
__snake_case = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
__snake_case = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__snake_case = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__snake_case = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__snake_case = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__snake_case = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__snake_case = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__snake_case = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__snake_case = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__snake_case = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
__snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
__snake_case = 'layernorm.weight'
if name == "norm.bias":
__snake_case = 'layernorm.bias'
if "conv_first" in name:
__snake_case = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__snake_case = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
__snake_case = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
__snake_case = name.replace('upsample.2' , 'upsample.convolution_1' )
__snake_case = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
__snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
__snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
__snake_case = 'swin2sr.' + name
return name
def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
__snake_case = key.split('.' )
__snake_case = int(key_split[1] )
__snake_case = int(key_split[4] )
__snake_case = config.embed_dim
if "weight" in key:
__snake_case = val[:dim, :]
__snake_case = val[dim : dim * 2, :]
__snake_case = val[-dim:, :]
else:
__snake_case = val[:dim]
__snake_case = val[dim : dim * 2]
__snake_case = val[-dim:]
pass
else:
__snake_case = val
return orig_state_dict
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = get_config(snake_case__ )
__snake_case = SwinaSRForImageSuperResolution(snake_case__ )
model.eval()
__snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )
__snake_case = convert_state_dict(snake_case__ , snake_case__ )
__snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0:
raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict" )
# verify values
__snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
__snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' )
__snake_case = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__snake_case = 126 if 'Jpeg' in checkpoint_url else 256
__snake_case = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__snake_case = transforms(snake_case__ ).unsqueeze(0 )
if config.num_channels == 1:
__snake_case = pixel_values[:, 0, :, :].unsqueeze(1 )
__snake_case = model(snake_case__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 )
print('Looks ok!' )
__snake_case = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
__snake_case = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}" )
processor.push_to_hub(f"caidas/{model_name}" )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 676 | 1 |
def A ( snake_case__ : int , snake_case__ : int ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
__snake_case = str(bin(snake_case__ ) )[2:] # remove the leading "0b"
__snake_case = str(bin(snake_case__ ) )[2:] # remove the leading "0b"
__snake_case = max(len(snake_case__ ) , len(snake_case__ ) )
return "0b" + "".join(
str(int(char_a == '1' and char_b == '1' ) )
for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : Tuple = {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json",
# See all Marian models at https://huggingface.co/models?filter=marian
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''marian'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , lowercase_=5_8_1_0_1 , lowercase_=None , lowercase_=1_0_2_4 , lowercase_=1_2 , lowercase_=4_0_9_6 , lowercase_=1_6 , lowercase_=1_2 , lowercase_=4_0_9_6 , lowercase_=1_6 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=1_0_2_4 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=5_8_1_0_0 , lowercase_=False , lowercase_=5_8_1_0_0 , lowercase_=0 , lowercase_=0 , lowercase_=True , **lowercase_ , ) -> Optional[Any]:
__snake_case = vocab_size
__snake_case = decoder_vocab_size or vocab_size
__snake_case = max_position_embeddings
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = use_cache
__snake_case = encoder_layers
__snake_case = scale_embedding # scale factor will be sqrt(d_model) if True
__snake_case = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , )
class __lowercase ( lowerCamelCase__ ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def _a ( self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
__snake_case = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
])
if self.use_past:
__snake_case = {0: 'batch'}
__snake_case = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__snake_case = {0: 'batch', 1: 'decoder_sequence'}
__snake_case = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowercase_ , direction='inputs')
elif self.task == "causal-lm":
# TODO: figure this case out.
__snake_case = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
])
if self.use_past:
__snake_case , __snake_case = self.num_layers
for i in range(lowercase_):
__snake_case = {0: 'batch', 2: 'past_sequence + sequence'}
__snake_case = {0: 'batch', 2: 'past_sequence + sequence'}
else:
__snake_case = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
])
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def _a ( self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
__snake_case = super().outputs
else:
__snake_case = super(lowercase_ , self).outputs
if self.use_past:
__snake_case , __snake_case = self.num_layers
for i in range(lowercase_):
__snake_case = {0: 'batch', 2: 'past_sequence + sequence'}
__snake_case = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def _a ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]:
__snake_case = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
# Generate decoder inputs
__snake_case = seq_length if not self.use_past else 1
__snake_case = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
__snake_case = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
__snake_case = dict(**lowercase_ , **lowercase_)
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.')
else:
import torch
__snake_case , __snake_case = common_inputs['input_ids'].shape
__snake_case = common_inputs['decoder_input_ids'].shape[1]
__snake_case , __snake_case = self.num_attention_heads
__snake_case = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__snake_case = decoder_seq_length + 3
__snake_case = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__snake_case = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(lowercase_ , lowercase_)] , dim=1)
__snake_case = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__snake_case , __snake_case = self.num_layers
__snake_case = min(lowercase_ , lowercase_)
__snake_case = max(lowercase_ , lowercase_) - min_num_layers
__snake_case = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(lowercase_):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase_),
torch.zeros(lowercase_),
torch.zeros(lowercase_),
torch.zeros(lowercase_),
))
# TODO: test this.
__snake_case = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(lowercase_ , lowercase_):
common_inputs["past_key_values"].append((torch.zeros(lowercase_), torch.zeros(lowercase_)))
return common_inputs
def _a ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]:
__snake_case = self._generate_dummy_inputs_for_encoder_and_decoder(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.')
else:
import torch
__snake_case , __snake_case = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__snake_case = seqlen + 2
__snake_case , __snake_case = self.num_layers
__snake_case , __snake_case = self.num_attention_heads
__snake_case = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__snake_case = common_inputs['attention_mask'].dtype
__snake_case = torch.cat(
[common_inputs['attention_mask'], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_)] , dim=1)
__snake_case = [
(torch.zeros(lowercase_), torch.zeros(lowercase_)) for _ in range(lowercase_)
]
return common_inputs
def _a ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__snake_case = compute_effective_axis_dimension(
lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__snake_case = tokenizer.num_special_tokens_to_add(lowercase_)
__snake_case = compute_effective_axis_dimension(
lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_)
# Generate dummy inputs according to compute batch and sequence
__snake_case = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size
__snake_case = dict(tokenizer(lowercase_ , return_tensors=lowercase_))
return common_inputs
def _a ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
__snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_)
else:
__snake_case = self._generate_dummy_inputs_for_causal_lm(
lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_)
return common_inputs
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any:
if self.task in ["default", "seq2seq-lm"]:
__snake_case = super()._flatten_past_key_values_(lowercase_ , lowercase_ , lowercase_ , lowercase_)
else:
__snake_case = super(lowercase_ , self)._flatten_past_key_values_(
lowercase_ , lowercase_ , lowercase_ , lowercase_)
@property
def _a ( self) -> float:
return 1e-4
| 676 |
from __future__ import annotations
class __lowercase :
def __init__( self , lowercase_) -> None:
__snake_case = data
__snake_case = None
__snake_case = None
def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def A ( snake_case__ : Node | None ) -> int:
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def A ( snake_case__ : Node ) -> bool:
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def A ( ) -> None: # Main function for testing.
'''simple docstring'''
__snake_case = Node(1 )
__snake_case = Node(2 )
__snake_case = Node(3 )
__snake_case = Node(4 )
__snake_case = Node(5 )
__snake_case = Node(6 )
__snake_case = Node(7 )
__snake_case = Node(8 )
__snake_case = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 676 | 1 |
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
UpperCAmelCase__ : List[str] = 5_00_00
UpperCAmelCase__ : List[Any] = 50_00
UpperCAmelCase__ , UpperCAmelCase__ : int = os.path.split(__file__)
UpperCAmelCase__ : List[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def A ( snake_case__ : datasets.Dataset , snake_case__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
for i in range(snake_case__ ):
__snake_case = dataset[i]
@get_duration
def A ( snake_case__ : datasets.Dataset , snake_case__ : Any , snake_case__ : str ) -> Optional[int]:
'''simple docstring'''
for i in range(0 , len(snake_case__ ) , snake_case__ ):
__snake_case = dataset[i : i + batch_size]
@get_duration
def A ( snake_case__ : datasets.Dataset , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
with dataset.formatted_as(type=snake_case__ ):
for i in range(snake_case__ ):
__snake_case = dataset[i]
@get_duration
def A ( snake_case__ : datasets.Dataset , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Tuple ) -> int:
'''simple docstring'''
with dataset.formatted_as(type=snake_case__ ):
for i in range(0 , snake_case__ , snake_case__ ):
__snake_case = dataset[i : i + batch_size]
def A ( ) -> str:
'''simple docstring'''
__snake_case = {'num examples': SPEED_TEST_N_EXAMPLES}
__snake_case = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted, {'type': 'pandas', 'length': SMALL_TEST}),
(read_formatted, {'type': 'torch', 'length': SMALL_TEST}),
(read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}),
]
__snake_case = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('generating dataset' )
__snake_case = datasets.Features(
{'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} )
__snake_case = generate_example_dataset(
os.path.join(snake_case__ , 'dataset.arrow' ) , snake_case__ , num_examples=snake_case__ , seq_shapes={'list': (100,)} , )
print('first set of iterations' )
for func, kwargs in functions:
print(func.__name__ , str(snake_case__ ) )
__snake_case = func(snake_case__ , **snake_case__ )
print('shuffling dataset' )
__snake_case = dataset.shuffle()
print('Second set of iterations (after shuffling' )
for func, kwargs in functions_shuffled:
print('shuffled ' , func.__name__ , str(snake_case__ ) )
__snake_case = func(
snake_case__ , **snake_case__ )
with open(snake_case__ , 'wb' ) as f:
f.write(json.dumps(snake_case__ ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 676 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''table-transformer'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowercase_ , lowercase_):
__snake_case = backbone_config.get('model_type')
__snake_case = CONFIG_MAPPING[backbone_model_type]
__snake_case = config_class.from_dict(lowercase_)
# set timm attributes to None
__snake_case , __snake_case , __snake_case = None, None, None
__snake_case = use_timm_backbone
__snake_case = backbone_config
__snake_case = num_channels
__snake_case = num_queries
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = init_xavier_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = encoder_layers
__snake_case = auxiliary_loss
__snake_case = position_embedding_type
__snake_case = backbone
__snake_case = use_pretrained_backbone
__snake_case = dilation
# Hungarian matcher
__snake_case = class_cost
__snake_case = bbox_cost
__snake_case = giou_cost
# Loss coefficients
__snake_case = mask_loss_coefficient
__snake_case = dice_loss_coefficient
__snake_case = bbox_loss_coefficient
__snake_case = giou_loss_coefficient
__snake_case = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_)
@property
def _a ( self) -> int:
return self.encoder_attention_heads
@property
def _a ( self) -> int:
return self.d_model
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def _a ( self) -> float:
return 1e-5
@property
def _a ( self) -> int:
return 1_2
| 676 | 1 |
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
UpperCAmelCase__ : int = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
super().__init__(*lowercase_ , **lowercase_)
self.check_model_type(lowercase_)
def _a ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> str:
__snake_case , __snake_case = {}, {}
if padding is not None:
__snake_case = padding
if truncation is not None:
__snake_case = truncation
if top_k is not None:
__snake_case = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , lowercase_ , lowercase_ = None , **lowercase_) -> List[Any]:
if isinstance(lowercase_ , (Image.Image, str)) and isinstance(lowercase_ , lowercase_):
__snake_case = {'image': image, 'question': question}
else:
__snake_case = image
__snake_case = super().__call__(lowercase_ , **lowercase_)
return results
def _a ( self , lowercase_ , lowercase_=False , lowercase_=False) -> Tuple:
__snake_case = load_image(inputs['image'])
__snake_case = self.tokenizer(
inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_)
__snake_case = self.image_processor(images=lowercase_ , return_tensors=self.framework)
model_inputs.update(lowercase_)
return model_inputs
def _a ( self , lowercase_) -> Union[str, Any]:
__snake_case = self.model(**lowercase_)
return model_outputs
def _a ( self , lowercase_ , lowercase_=5) -> Optional[Any]:
if top_k > self.model.config.num_labels:
__snake_case = self.model.config.num_labels
if self.framework == "pt":
__snake_case = model_outputs.logits.sigmoid()[0]
__snake_case , __snake_case = probs.topk(lowercase_)
else:
raise ValueError(F"Unsupported framework: {self.framework}")
__snake_case = scores.tolist()
__snake_case = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_)]
| 676 |
from maths.prime_check import is_prime
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if is_prime(snake_case__ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import argparse
import os
import re
import packaging.version
UpperCAmelCase__ : int = "examples/"
UpperCAmelCase__ : int = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCAmelCase__ : List[str] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCAmelCase__ : Tuple = "README.md"
def A ( snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int ) -> Optional[Any]:
'''simple docstring'''
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
__snake_case = f.read()
__snake_case , __snake_case = REPLACE_PATTERNS[pattern]
__snake_case = replace.replace('VERSION' , snake_case__ )
__snake_case = re_pattern.sub(snake_case__ , snake_case__ )
with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(snake_case__ )
def A ( snake_case__ : int ) -> Any:
'''simple docstring'''
for folder, directories, fnames in os.walk(snake_case__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='examples' )
def A ( snake_case__ : Dict , snake_case__ : Optional[Any]=False ) -> List[str]:
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(snake_case__ , snake_case__ , snake_case__ )
if not patch:
update_version_in_examples(snake_case__ )
def A ( ) -> List[Any]:
'''simple docstring'''
__snake_case = '🤗 Transformers currently provides the following architectures'
__snake_case = '1. Want to contribute a new model?'
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
__snake_case = f.readlines()
# Find the start of the list.
__snake_case = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__snake_case = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
__snake_case = lines[index].replace(
'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , )
index += 1
with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(snake_case__ )
def A ( ) -> Optional[Any]:
'''simple docstring'''
with open(REPLACE_FILES['init'] , 'r' ) as f:
__snake_case = f.read()
__snake_case = REPLACE_PATTERNS['init'][0].search(snake_case__ ).groups()[0]
return packaging.version.parse(snake_case__ )
def A ( snake_case__ : str=False ) -> Tuple:
'''simple docstring'''
__snake_case = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
__snake_case = default_version.base_version
elif patch:
__snake_case = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}"
else:
__snake_case = f"{default_version.major}.{default_version.minor + 1}.0"
# Now let's ask nicely if that's the right one.
__snake_case = input(f"Which version are you releasing? [{default_version}]" )
if len(snake_case__ ) == 0:
__snake_case = default_version
print(f"Updating version to {version}." )
global_version_update(snake_case__ , patch=snake_case__ )
def A ( ) -> Any:
'''simple docstring'''
__snake_case = get_version()
__snake_case = f"{current_version.major}.{current_version.minor + 1}.0.dev0"
__snake_case = current_version.base_version
# Check with the user we got that right.
__snake_case = input(f"Which version are we developing now? [{dev_version}]" )
if len(snake_case__ ) == 0:
__snake_case = dev_version
print(f"Updating version to {version}." )
global_version_update(snake_case__ )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCAmelCase__ : Optional[int] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 676 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
__snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
| 676 | 1 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase__ : Optional[int] = logging.getLogger()
UpperCAmelCase__ : Union[str, Any] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowercase ( lowerCamelCase__ ):
def _a ( self , lowercase_) -> Tuple:
os.makedirs(lowercase_ , exist_ok=lowercase_)
__snake_case = {'source': 'What is love ?', 'target': 'life'}
__snake_case = {'train': 1_2, 'val': 2, 'test': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
__snake_case = '\n'.join([contents[field]] * n_lines[split])
with open(os.path.join(lowercase_ , F"{split}.{field}") , 'w') as f:
f.write(lowercase_)
def _a ( self , lowercase_ , lowercase_ = "pytorch") -> Dict:
__snake_case = self.get_auto_remove_tmp_dir()
__snake_case = os.path.join(lowercase_ , 'output')
__snake_case = os.path.join(lowercase_ , 'data')
self._create_dummy_data(data_dir=lowercase_)
__snake_case = F"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split()
if gpus > 0:
testargs.append(F"--gpus={gpus}")
if is_apex_available():
testargs.append('--fp16')
else:
testargs.append('--gpus=0')
testargs.append('--distributed_backend=ddp_cpu')
testargs.append('--num_processes=2')
__snake_case = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs
execute_subprocess_async(lowercase_ , env=self.get_env())
__snake_case = os.path.join(lowercase_ , 'metrics.json')
with open(lowercase_) as f:
__snake_case = json.load(lowercase_)
return result
@require_torch_gpu
def _a ( self) -> Optional[Any]:
__snake_case = self._run_finetune(gpus=1)
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
@require_torch_multi_gpu
def _a ( self) -> Tuple:
__snake_case = self._run_finetune(gpus=2)
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
@require_torch_gpu
@require_ray
def _a ( self) -> Union[str, Any]:
__snake_case = self._run_finetune(gpus=1 , distributed_retriever='ray')
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
@require_torch_multi_gpu
@require_ray
def _a ( self) -> Dict:
__snake_case = self._run_finetune(gpus=1 , distributed_retriever='ray')
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2)
| 676 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase__ : Optional[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def A ( snake_case__ : List[Any] ) -> str:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
__snake_case = k.replace(snake_case__ , snake_case__ )
return k
def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration:
'''simple docstring'''
__snake_case = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
__snake_case = PegasusConfig(**snake_case__ )
__snake_case = PegasusForConditionalGeneration(snake_case__ )
__snake_case = torch_model.model.state_dict()
__snake_case = {}
for k, v in tf_weights.items():
__snake_case = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
__snake_case = v.T
__snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
__snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
__snake_case = mapping['shared.weight']
__snake_case = mapping['shared.weight']
__snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
__snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
__snake_case = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
__snake_case = tf.train.list_variables(snake_case__ )
__snake_case = {}
__snake_case = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
__snake_case = any(pat in name for pat in ignore_name )
if skip_key:
continue
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
__snake_case = array
return tf_weights
def A ( snake_case__ : str , snake_case__ : str ) -> Tuple:
'''simple docstring'''
# save tokenizer first
__snake_case = Path(snake_case__ ).parent.name
__snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
__snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
__snake_case = get_tf_weights_as_numpy(snake_case__ )
__snake_case = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
__snake_case = task_specific_params
__snake_case = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
__snake_case = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
UpperCAmelCase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase__ : int = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase__ : str = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 676 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase__ : List[Any] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCAmelCase__ : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = {}
with open(snake_case__ , 'r' ) as file:
for line_number, line in enumerate(snake_case__ ):
__snake_case = line.strip()
if line:
__snake_case = line.split()
__snake_case = line_number
__snake_case = words[0]
__snake_case = value
return result
def A ( snake_case__ : List[str] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple ) -> Optional[int]:
'''simple docstring'''
for attribute in key.split('.' ):
__snake_case = getattr(snake_case__ , snake_case__ )
__snake_case = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__snake_case = PARAM_MAPPING[full_name.split('.' )[-1]]
__snake_case = 'param'
if weight_type is not None and weight_type != "param":
__snake_case = getattr(snake_case__ , snake_case__ ).shape
elif weight_type is not None and weight_type == "param":
__snake_case = hf_pointer
for attribute in hf_param_name.split('.' ):
__snake_case = getattr(snake_case__ , snake_case__ )
__snake_case = shape_pointer.shape
# let's reduce dimension
__snake_case = value[0]
else:
__snake_case = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__snake_case = value
elif weight_type == "weight_g":
__snake_case = value
elif weight_type == "weight_v":
__snake_case = value
elif weight_type == "bias":
__snake_case = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
__snake_case = getattr(snake_case__ , snake_case__ )
__snake_case = value
else:
__snake_case = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def A ( snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Tuple ) -> Optional[int]:
'''simple docstring'''
__snake_case = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__snake_case = PARAM_MAPPING[full_name.split('.' )[-1]]
__snake_case = 'param'
if weight_type is not None and weight_type != "param":
__snake_case = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case = '.'.join([key, hf_param_name] )
else:
__snake_case = key
__snake_case = value if 'lm_head' in full_key else value[0]
UpperCAmelCase__ : Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def A ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str]=None , snake_case__ : str=None ) -> str:
'''simple docstring'''
__snake_case = False
for key, mapped_key in MAPPING.items():
__snake_case = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__snake_case = True
if "*" in mapped_key:
__snake_case = name.split(snake_case__ )[0].split('.' )[-2]
__snake_case = mapped_key.replace('*' , snake_case__ )
if "weight_g" in name:
__snake_case = 'weight_g'
elif "weight_v" in name:
__snake_case = 'weight_v'
elif "bias" in name:
__snake_case = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case = 'weight'
else:
__snake_case = None
if hf_dict is not None:
rename_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
else:
set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
return is_used
return is_used
def A ( snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[int] ) -> List[str]:
'''simple docstring'''
__snake_case = []
__snake_case = fairseq_model.state_dict()
__snake_case = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case = False
if "conv_layers" in name:
load_conv_layer(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == 'group' , )
__snake_case = True
else:
__snake_case = load_wavaveca_layer(snake_case__ , snake_case__ , snake_case__ )
if not is_used:
unused_weights.append(snake_case__ )
logger.warning(f"Unused weights: {unused_weights}" )
def A ( snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Dict ) -> Any:
'''simple docstring'''
__snake_case = full_name.split('conv_layers.' )[-1]
__snake_case = name.split('.' )
__snake_case = int(items[0] )
__snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__snake_case = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__snake_case = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__snake_case = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__snake_case = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(snake_case__ )
@torch.no_grad()
def A ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int=None , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=True , snake_case__ : Optional[int]=False ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
__snake_case = WavaVecaConfig.from_pretrained(snake_case__ )
else:
__snake_case = WavaVecaConfig()
if is_seq_class:
__snake_case = read_txt_into_dict(snake_case__ )
__snake_case = idalabel
__snake_case = WavaVecaForSequenceClassification(snake_case__ )
__snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , )
feature_extractor.save_pretrained(snake_case__ )
elif is_finetuned:
if dict_path:
__snake_case = Dictionary.load(snake_case__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case = target_dict.pad_index
__snake_case = target_dict.bos_index
__snake_case = target_dict.eos_index
__snake_case = len(target_dict.symbols )
__snake_case = os.path.join(snake_case__ , 'vocab.json' )
if not os.path.isdir(snake_case__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(snake_case__ ) )
return
os.makedirs(snake_case__ , exist_ok=snake_case__ )
__snake_case = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case = 0
__snake_case = 1
with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(snake_case__ , snake_case__ )
__snake_case = WavaVecaCTCTokenizer(
snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=snake_case__ , )
__snake_case = True if config.feat_extract_norm == 'layer' else False
__snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , )
__snake_case = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ )
processor.save_pretrained(snake_case__ )
__snake_case = WavaVecaForCTC(snake_case__ )
else:
__snake_case = WavaVecaForPreTraining(snake_case__ )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
__snake_case = argparse.Namespace(task='audio_pretraining' )
__snake_case = fairseq.tasks.setup_task(snake_case__ )
__snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case__ )
__snake_case = model[0].eval()
recursively_load_weights(snake_case__ , snake_case__ , not is_finetuned )
hf_wavavec.save_pretrained(snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCAmelCase__ : Tuple = parser.parse_args()
UpperCAmelCase__ : Dict = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 676 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
super().__init__()
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .')
self.register_modules(
speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , )
def _a ( self , lowercase_ = "auto") -> Union[str, Any]:
if slice_size == "auto":
__snake_case = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase_)
def _a ( self) -> Any:
self.enable_attention_slicing(lowercase_)
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]:
__snake_case = self.speech_processor.feature_extractor(
lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device)
__snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0)
__snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[
0
]
if isinstance(lowercase_ , lowercase_):
__snake_case = 1
elif isinstance(lowercase_ , lowercase_):
__snake_case = len(lowercase_)
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(lowercase_)}.")
# get prompt text embeddings
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
__snake_case = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F" {self.tokenizer.model_max_length} tokens: {removed_text}")
__snake_case = text_input_ids[:, : self.tokenizer.model_max_length]
__snake_case = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__snake_case , __snake_case , __snake_case = text_embeddings.shape
__snake_case = text_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case = 42
if negative_prompt is None:
__snake_case = [''] * batch_size
elif type(lowercase_) is not type(lowercase_):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !="
F" {type(lowercase_)}.")
elif isinstance(lowercase_ , lowercase_):
__snake_case = [negative_prompt]
elif batch_size != len(lowercase_):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
' the batch size of `prompt`.')
else:
__snake_case = negative_prompt
__snake_case = text_input_ids.shape[-1]
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , )
__snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__snake_case = uncond_embeddings.shape[1]
__snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__snake_case = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to(
self.device)
else:
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_)
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
__snake_case = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(lowercase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__snake_case = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
__snake_case = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys())
__snake_case = {}
if accepts_eta:
__snake_case = eta
for i, t in enumerate(self.progress_bar(lowercase_)):
# expand the latents if we are doing classifier free guidance
__snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_)
# predict the noise residual
__snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample
# perform guidance
if do_classifier_free_guidance:
__snake_case , __snake_case = noise_pred.chunk(2)
__snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase_ , lowercase_ , lowercase_)
__snake_case = 1 / 0.1_8215 * latents
__snake_case = self.vae.decode(lowercase_).sample
__snake_case = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__snake_case = self.numpy_to_pil(lowercase_)
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
| 676 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase__ : Dict = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''van'''
def __init__( self , lowercase_=2_2_4 , lowercase_=3 , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowercase_=[3, 3, 1_2, 3] , lowercase_=[8, 8, 4, 4] , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-6 , lowercase_=1e-2 , lowercase_=0.0 , lowercase_=0.0 , **lowercase_ , ) -> Union[str, Any]:
super().__init__(**lowercase_)
__snake_case = image_size
__snake_case = num_channels
__snake_case = patch_sizes
__snake_case = strides
__snake_case = hidden_sizes
__snake_case = depths
__snake_case = mlp_ratios
__snake_case = hidden_act
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = layer_scale_init_value
__snake_case = drop_path_rate
__snake_case = dropout_rate
| 676 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple:
super().__init__(*lowercase_ , **lowercase_)
__snake_case = eval_examples
__snake_case = post_process_function
def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
__snake_case = gen_kwargs.copy()
__snake_case = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length
)
__snake_case = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams
)
__snake_case = gen_kwargs
__snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case = self.get_eval_dataloader(lowercase_)
__snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_)
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
else:
__snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
__snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_)
return metrics
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]:
__snake_case = gen_kwargs.copy()
__snake_case = self.get_test_dataloader(lowercase_)
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict')
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
| 676 | 1 |
def A ( snake_case__ : str , snake_case__ : str ) -> bool:
'''simple docstring'''
__snake_case = len(snake_case__ )
__snake_case = len(snake_case__ )
__snake_case = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
__snake_case = True
for i in range(snake_case__ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
__snake_case = True
if a[i].islower():
__snake_case = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from __future__ import annotations
UpperCAmelCase__ : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]:
'''simple docstring'''
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
__snake_case = 1
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
__snake_case = init[0]
__snake_case = init[1]
__snake_case = 0
__snake_case = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case = [[f, g, x, y]]
__snake_case = False # flag that is set when search is complete
__snake_case = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case = cell.pop()
__snake_case = next_cell[2]
__snake_case = next_cell[3]
__snake_case = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
__snake_case = x + DIRECTIONS[i][0]
__snake_case = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case = g + cost
__snake_case = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case = 1
__snake_case = i
__snake_case = []
__snake_case = goal[0]
__snake_case = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case = x - DIRECTIONS[action[x][y]][0]
__snake_case = y - DIRECTIONS[action[x][y]][1]
__snake_case = xa
__snake_case = ya
invpath.append([x, y] )
__snake_case = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ : int = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ : Optional[int] = 99
UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 676 | 1 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Tuple = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''segformer'''
def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=[2, 2, 2, 2] , lowercase_=[8, 4, 2, 1] , lowercase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[1, 2, 5, 8] , lowercase_=[4, 4, 4, 4] , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=2_5_6 , lowercase_=2_5_5 , **lowercase_ , ) -> int:
super().__init__(**lowercase_)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'
' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowercase_ , )
__snake_case = num_channels
__snake_case = num_encoder_blocks
__snake_case = depths
__snake_case = sr_ratios
__snake_case = hidden_sizes
__snake_case = patch_sizes
__snake_case = strides
__snake_case = mlp_ratios
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = classifier_dropout_prob
__snake_case = initializer_range
__snake_case = drop_path_rate
__snake_case = layer_norm_eps
__snake_case = decoder_hidden_size
__snake_case = kwargs.get('reshape_last_stage' , lowercase_)
__snake_case = semantic_loss_ignore_index
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
])
@property
def _a ( self) -> float:
return 1e-4
@property
def _a ( self) -> int:
return 1_2
| 676 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase__ : Any = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class __lowercase ( unittest.TestCase ):
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict:
__snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))]
if identifier is not None:
__snake_case = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_):
for n_ in n_identifier:
__snake_case = [file for file in files if n_ not in file]
else:
__snake_case = [file for file in files if n_identifier not in file]
__snake_case = ignore_files or []
ignore_files.append('__init__.py')
__snake_case = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , lowercase_)
if only_modules:
__snake_case = file.split('.')[0]
try:
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case = doctest.DocTestSuite(lowercase_)
__snake_case = unittest.TextTestRunner().run(lowercase_)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(F"{module_identifier} is not a module.")
else:
__snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def _a ( self) -> str:
__snake_case = Path('src/transformers')
__snake_case = 'modeling'
__snake_case = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = Path('src/transformers')
__snake_case = 'tokenization'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> List[str]:
__snake_case = Path('src/transformers')
__snake_case = 'configuration'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('src/transformers')
__snake_case = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(lowercase_ , n_identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('docs/source')
__snake_case = ['favicon.ico']
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
| 676 | 1 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __lowercase ( unittest.TestCase ):
@property
def _a ( self) -> Optional[int]:
torch.manual_seed(0)
__snake_case = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def _a ( self) -> Optional[int]:
__snake_case = self.dummy_uncond_unet
__snake_case = ScoreSdeVeScheduler()
__snake_case = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_)
sde_ve.to(lowercase_)
sde_ve.set_progress_bar_config(disable=lowercase_)
__snake_case = torch.manual_seed(0)
__snake_case = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_).images
__snake_case = torch.manual_seed(0)
__snake_case = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ , return_dict=lowercase_)[
0
]
__snake_case = image[0, -3:, -3:, -1]
__snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
__snake_case = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch
class __lowercase ( unittest.TestCase ):
def _a ( self) -> Tuple:
__snake_case = 'google/ncsnpp-church-256'
__snake_case = UNetaDModel.from_pretrained(lowercase_)
__snake_case = ScoreSdeVeScheduler.from_pretrained(lowercase_)
__snake_case = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_)
sde_ve.to(lowercase_)
sde_ve.set_progress_bar_config(disable=lowercase_)
__snake_case = torch.manual_seed(0)
__snake_case = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowercase_).images
__snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
__snake_case = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
| 676 |
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations(snake_case__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
snake_case__ : int , snake_case__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__snake_case = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case__ )
for item in array )
__snake_case = answer
return answer
__snake_case = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = [0] * (target + 1)
__snake_case = 1
for i in range(1 , target + 1 ):
for j in range(snake_case__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = 3
UpperCAmelCase__ : Optional[int] = 5
UpperCAmelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 676 | 1 |
import math
import sys
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = ''
try:
with open(snake_case__ , 'rb' ) as binary_file:
__snake_case = binary_file.read()
for dat in data:
__snake_case = f"{dat:08b}"
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = {'0': '0', '1': '1'}
__snake_case , __snake_case = '', ''
__snake_case = len(snake_case__ )
for i in range(len(snake_case__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__snake_case = lexicon[curr_string]
result += last_match_id
__snake_case = last_match_id + '0'
if math.loga(snake_case__ ).is_integer():
__snake_case = {}
for curr_key in list(snake_case__ ):
__snake_case = lexicon.pop(snake_case__ )
__snake_case = new_lex
__snake_case = last_match_id + '1'
index += 1
__snake_case = ''
return result
def A ( snake_case__ : str , snake_case__ : str ) -> None:
'''simple docstring'''
__snake_case = 8
try:
with open(snake_case__ , 'wb' ) as opened_file:
__snake_case = [
to_write[i : i + byte_length]
for i in range(0 , len(snake_case__ ) , snake_case__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
__snake_case = data_bits[counter:]
__snake_case = data_bits[counter + 1 :]
return data_bits
def A ( snake_case__ : str , snake_case__ : str ) -> None:
'''simple docstring'''
__snake_case = read_file_binary(snake_case__ )
__snake_case = remove_prefix(snake_case__ )
__snake_case = decompress_data(snake_case__ )
write_file_binary(snake_case__ , snake_case__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 676 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> List[str]:
__snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]})
return dset
def _a ( self) -> Optional[int]:
import faiss
__snake_case = self._create_dummy_dataset()
__snake_case = dset.map(
lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_)
__snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT)
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
dset.drop_index('vecs')
def _a ( self) -> str:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> int:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name)
dset.load_faiss_index('vecs2' , tmp_file.name)
os.unlink(tmp_file.name)
__snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> List[Any]:
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs')
dset.drop_index('vecs')
self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa)))
def _a ( self) -> Any:
from elasticsearch import Elasticsearch
__snake_case = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 3_0)
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}}
__snake_case = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=lowercase_)
__snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29')
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[int]:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsNotNone(index.faiss_index)
self.assertEqual(index.faiss_index.ntotal , 5)
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa))
self.assertEqual(index.faiss_index.ntotal , 1_0)
# single query
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1))
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
# batched queries
__snake_case = np.eye(5 , dtype=np.floataa)[::-1]
__snake_case , __snake_case = index.search_batch(lowercase_)
self.assertRaises(lowercase_ , index.search_batch , queries[0])
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([4, 3, 2, 1, 0] , lowercase_)
def _a ( self) -> str:
import faiss
__snake_case = FaissIndex(string_factory='Flat')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
__snake_case = FaissIndex(string_factory='LSH')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexLSH)
with self.assertRaises(lowercase_):
__snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5))
def _a ( self) -> Optional[int]:
import faiss
__snake_case = faiss.IndexFlat(5)
__snake_case = FaissIndex(custom_index=lowercase_)
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
def _a ( self) -> Tuple:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
index.add_vectors(np.eye(5 , dtype=np.floataa))
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
index.save(tmp_file.name)
__snake_case = FaissIndex.load(tmp_file.name)
os.unlink(tmp_file.name)
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
@require_faiss
def A ( snake_case__ : List[str] ) -> List[Any]:
'''simple docstring'''
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__snake_case = 'index.faiss'
__snake_case = f"mock://{index_name}"
index.save(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = np.zeros(5 , dtype=np.floataa )
__snake_case = 1
__snake_case , __snake_case = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[Any]:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = Elasticsearch()
__snake_case = {'acknowledged': True}
__snake_case = ElasticSearchIndex(es_client=lowercase_)
mocked_bulk.return_value([(True, None)] * 3)
index.add_documents(['foo', 'bar', 'foobar'])
# single query
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# single query with timeout
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# batched queries
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
# batched queries with timeout
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
| 676 | 1 |
def A ( snake_case__ : float ) -> float:
'''simple docstring'''
return 10 - x * x
def A ( snake_case__ : float , snake_case__ : float ) -> float:
'''simple docstring'''
# Bolzano theory in order to find if there is a root between a and b
if equation(snake_case__ ) * equation(snake_case__ ) >= 0:
raise ValueError('Wrong space!' )
__snake_case = a
while (b - a) >= 0.01:
# Find middle point
__snake_case = (a + b) / 2
# Check if middle point is root
if equation(snake_case__ ) == 0.0:
break
# Decide the side to repeat the steps
if equation(snake_case__ ) * equation(snake_case__ ) < 0:
__snake_case = c
else:
__snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 676 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = args.log_outputs
__snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
__snake_case = load_metric('wer' )
__snake_case = load_metric('cer' )
# compute metrics
__snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] )
__snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
__snake_case = f"WER: {wer_result}\nCER: {cer_result}"
print(snake_case__ )
with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f:
f.write(snake_case__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case = f"log_{dataset_id}_predictions.txt"
__snake_case = f"log_{dataset_id}_targets.txt"
with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t:
# mapping function to write output
def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
p.write(f"{i}" + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f"{i}" + '\n' )
t.write(batch['target'] + '\n' )
result.map(snake_case__ , with_indices=snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case = re.sub(snake_case__ , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
__snake_case = ' '.join(text.split(snake_case__ ) )
return text
def A ( snake_case__ : int ) -> Optional[int]:
'''simple docstring'''
# load dataset
__snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case = feature_extractor.sampling_rate
# resample audio
__snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) )
# load eval pipeline
if args.device is None:
__snake_case = 0 if torch.cuda.is_available() else -1
__snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case__ : Optional[Any] ):
__snake_case = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case = prediction['text']
__snake_case = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
__snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case__ , snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
UpperCAmelCase__ : str = parser.parse_args()
main(args)
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Tuple = {
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
"processing_layoutlmv2": ["LayoutLMv2Processor"],
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = ["LayoutLMv2TokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["LayoutLMv2FeatureExtractor"]
UpperCAmelCase__ : Union[str, Any] = ["LayoutLMv2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[Any] = [
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMv2ForQuestionAnswering",
"LayoutLMv2ForSequenceClassification",
"LayoutLMv2ForTokenClassification",
"LayoutLMv2Layer",
"LayoutLMv2Model",
"LayoutLMv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def A ( *snake_case__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(snake_case__ , 'r' ) as fh:
fcntl.flock(snake_case__ , fcntl.LOCK_EX )
try:
print(*snake_case__ )
finally:
fcntl.flock(snake_case__ , fcntl.LOCK_UN )
UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
UpperCAmelCase__ : Any = torch.device("cuda", local_rank)
UpperCAmelCase__ : Union[str, Any] = socket.gethostname()
UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
UpperCAmelCase__ : Optional[int] = dist.get_rank()
UpperCAmelCase__ : List[str] = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 676 | 1 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __lowercase ( unittest.TestCase ):
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
__snake_case = Vector()
def _a ( self) -> None:
__snake_case = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowercase_) , '(0,0,0,0,0,1)')
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3, 4])
self.assertEqual(len(lowercase_) , 4)
def _a ( self) -> None:
__snake_case = Vector([1, 2])
__snake_case = Vector([1, 2, 3, 4, 5])
__snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
__snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3])
__snake_case = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3])
__snake_case = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3])
__snake_case = Vector([2, -1, 4]) # for test of dot product
__snake_case = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)')
self.assertEqual((a * b) , 0)
def _a ( self) -> None:
self.assertEqual(str(zero_vector(1_0)).count('0') , 1_0)
def _a ( self) -> None:
self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)')
def _a ( self) -> None:
__snake_case = Vector([1, 2, 3])
__snake_case = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowercase_ , lowercase_)) , '(3,4,7)')
def _a ( self) -> None:
__snake_case = Vector([1, 0, 0, 0, 0, 0])
__snake_case = x.copy()
self.assertEqual(str(lowercase_) , str(lowercase_))
def _a ( self) -> None:
__snake_case = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowercase_) , '(0,1,0)')
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
__snake_case = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowercase_ , lowercase_))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
__snake_case = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowercase_ , lowercase_))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
__snake_case = Vector([1, 2, 3])
self.assertEqual('(14,32,50)' , str(a * x))
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
__snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b))
def _a ( self) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
__snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b))
def _a ( self) -> None:
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 676 |
from datetime import datetime
import requests
def A ( snake_case__ : str ) -> bytes:
'''simple docstring'''
__snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(snake_case__ ).content
if __name__ == "__main__":
UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip()
UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 676 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase__ : Any = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''rwkv'''
__UpperCAmelCase = {'''max_position_embeddings''': '''context_length'''}
def __init__( self , lowercase_=5_0_2_7_7 , lowercase_=1_0_2_4 , lowercase_=4_0_9_6 , lowercase_=3_2 , lowercase_=None , lowercase_=None , lowercase_=1e-5 , lowercase_=0 , lowercase_=0 , lowercase_=6 , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Optional[Any]:
__snake_case = vocab_size
__snake_case = context_length
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = attention_hidden_size if attention_hidden_size is not None else hidden_size
__snake_case = intermediate_size if intermediate_size is not None else 4 * hidden_size
__snake_case = layer_norm_epsilon
__snake_case = rescale_every
__snake_case = use_cache
__snake_case = bos_token_id
__snake_case = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
| 676 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
def _a ( self) -> Union[str, Any]:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__snake_case = ids_tensor([self.batch_size] , self.num_choices)
__snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self) -> Tuple:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , )
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = OpenLlamaModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]:
__snake_case = True
__snake_case = OpenLlamaModel(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
__snake_case = True
__snake_case = True
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
# first forward pass
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
__snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size)
__snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
__snake_case = torch.cat([input_ids, next_tokens] , dim=-1)
__snake_case = torch.cat([input_mask, next_mask] , dim=-1)
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
# select random slice
__snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item()
__snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
def _a ( self) -> Optional[Any]:
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = OpenLlamaModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7)
def _a ( self) -> int:
self.config_tester.run_common_tests()
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'single_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> int:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'multi_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def _a ( self) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)])
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ids_tensor([1, 1_0] , config.vocab_size)
__snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = OpenLlamaModel(lowercase_)
original_model.to(lowercase_)
original_model.eval()
__snake_case = original_model(lowercase_).last_hidden_state
__snake_case = original_model(lowercase_).last_hidden_state
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = {'type': scaling_type, 'factor': 10.0}
__snake_case = OpenLlamaModel(lowercase_)
scaled_model.to(lowercase_)
scaled_model.eval()
__snake_case = scaled_model(lowercase_).last_hidden_state
__snake_case = scaled_model(lowercase_).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
else:
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
| 676 | 1 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
UpperCAmelCase__ : Dict = logging.get_logger(__name__)
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , **lowercase_) -> None:
warnings.warn(
'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ChineseCLIPImageProcessor instead.' , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 0:
return False
__snake_case = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import string
def A ( snake_case__ : str ) -> None:
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__snake_case = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__snake_case = string.ascii_uppercase.find(snake_case__ )
__snake_case = num - key
if num < 0:
__snake_case = num + len(string.ascii_uppercase )
__snake_case = translated + string.ascii_uppercase[num]
else:
__snake_case = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def A ( ) -> None:
'''simple docstring'''
__snake_case = input('Encrypted message: ' )
__snake_case = message.upper()
decrypt(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 676 |
import numpy as np
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : Tuple = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[Any] = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 1 |
# Lint as: python3
import itertools
import os
import re
UpperCAmelCase__ : List[Any] = re.compile(r"([A-Z]+)([A-Z][a-z])")
UpperCAmelCase__ : Tuple = re.compile(r"([a-z\d])([A-Z])")
UpperCAmelCase__ : Optional[Any] = re.compile(r"(?<!_)_(?!_)")
UpperCAmelCase__ : int = re.compile(r"(_{2,})")
UpperCAmelCase__ : List[str] = r"^\w+(\.\w+)*$"
UpperCAmelCase__ : List[Any] = r"<>:/\|?*"
def A ( snake_case__ : List[str] ) -> str:
'''simple docstring'''
__snake_case = _uppercase_uppercase_re.sub(r'\1_\2' , snake_case__ )
__snake_case = _lowercase_uppercase_re.sub(r'\1_\2' , snake_case__ )
return name.lower()
def A ( snake_case__ : List[str] ) -> int:
'''simple docstring'''
__snake_case = _single_underscore_re.split(snake_case__ )
__snake_case = [_multiple_underscores_re.split(snake_case__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case__ ) if n != '' )
def A ( snake_case__ : str ) -> Optional[Any]:
'''simple docstring'''
if os.path.basename(snake_case__ ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(snake_case__ )
def A ( snake_case__ : Optional[Any] , snake_case__ : Any ) -> str:
'''simple docstring'''
if os.path.basename(snake_case__ ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , snake_case__ ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(snake_case__ )}-{split}"
def A ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : str=None ) -> Optional[int]:
'''simple docstring'''
__snake_case = filename_prefix_for_split(snake_case__ , snake_case__ )
if filetype_suffix:
prefix += f".{filetype_suffix}"
__snake_case = os.path.join(snake_case__ , snake_case__ )
return f"{filepath}*"
def A ( snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[Any]=None , snake_case__ : str=None ) -> Optional[Any]:
'''simple docstring'''
__snake_case = filename_prefix_for_split(snake_case__ , snake_case__ )
__snake_case = os.path.join(snake_case__ , snake_case__ )
if shard_lengths:
__snake_case = len(snake_case__ )
__snake_case = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(snake_case__ )]
if filetype_suffix:
__snake_case = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
__snake_case = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCAmelCase__ : Dict = logging.get_logger(__name__)
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = ['''pixel_values''']
def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None:
super().__init__(**lowercase_)
__snake_case = size if size is not None else {'shortest_edge': 3_8_4}
__snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_)
__snake_case = do_resize
__snake_case = size
# Default value set here for backwards compatibility where the value in config is None
__snake_case = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6
__snake_case = resample
__snake_case = do_rescale
__snake_case = rescale_factor
__snake_case = do_normalize
__snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
__snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_)
if "shortest_edge" not in size:
raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
__snake_case = size['shortest_edge']
if shortest_edge < 3_8_4:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__snake_case = int(shortest_edge / crop_pct)
__snake_case = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_)
__snake_case = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_)
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_)
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Union[str, Any]:
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray:
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_)
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image:
__snake_case = do_resize if do_resize is not None else self.do_resize
__snake_case = crop_pct if crop_pct is not None else self.crop_pct
__snake_case = resample if resample is not None else self.resample
__snake_case = do_rescale if do_rescale is not None else self.do_rescale
__snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case = do_normalize if do_normalize is not None else self.do_normalize
__snake_case = image_mean if image_mean is not None else self.image_mean
__snake_case = image_std if image_std is not None else self.image_std
__snake_case = size if size is not None else self.size
__snake_case = get_size_dict(lowercase_ , default_to_square=lowercase_)
__snake_case = make_list_of_images(lowercase_)
if not valid_images(lowercase_):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# All transformations expect numpy arrays.
__snake_case = [to_numpy_array(lowercase_) for image in images]
if do_resize:
__snake_case = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_) for image in images]
if do_rescale:
__snake_case = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images]
if do_normalize:
__snake_case = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images]
__snake_case = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images]
__snake_case = {'pixel_values': images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
| 676 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 | 1 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
UpperCAmelCase__ : List[Any] = (
"https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"
)
UpperCAmelCase__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name
def A ( ) -> List[str]:
'''simple docstring'''
__snake_case = 'https://pypi.org/pypi/diffusers/json'
__snake_case = json.loads(request.urlopen(snake_case__ ).read() )['releases'].keys()
return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) )
def A ( ) -> Optional[int]:
'''simple docstring'''
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(snake_case__ )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
__snake_case = Path(snake_case__ ) / '__init__.py'
if not init_path.exists():
init_path.touch()
def A ( snake_case__ : Union[str, os.PathLike] ) -> Optional[int]:
'''simple docstring'''
init_hf_modules()
__snake_case = Path(snake_case__ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
__snake_case = dynamic_module_path / '__init__.py'
if not init_path.exists():
init_path.touch()
def A ( snake_case__ : Any ) -> str:
'''simple docstring'''
with open(snake_case__ , 'r' , encoding='utf-8' ) as f:
__snake_case = f.read()
# Imports of the form `import .xxx`
__snake_case = re.findall('^\s*import\s+\.(\S+)\s*$' , snake_case__ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , snake_case__ , flags=re.MULTILINE )
# Unique-ify
return list(set(snake_case__ ) )
def A ( snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = False
__snake_case = [module_file]
__snake_case = []
# Let's recurse through all relative imports
while not no_change:
__snake_case = []
for f in files_to_check:
new_imports.extend(get_relative_imports(snake_case__ ) )
__snake_case = Path(snake_case__ ).parent
__snake_case = [str(module_path / m ) for m in new_imports]
__snake_case = [f for f in new_import_files if f not in all_relative_imports]
__snake_case = [f"{f}.py" for f in new_import_files]
__snake_case = len(snake_case__ ) == 0
all_relative_imports.extend(snake_case__ )
return all_relative_imports
def A ( snake_case__ : Any ) -> Union[str, Any]:
'''simple docstring'''
with open(snake_case__ , 'r' , encoding='utf-8' ) as f:
__snake_case = f.read()
# Imports of the form `import xxx`
__snake_case = re.findall('^\s*import\s+(\S+)\s*$' , snake_case__ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall('^\s*from\s+(\S+)\s+import' , snake_case__ , flags=re.MULTILINE )
# Only keep the top-level module
__snake_case = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )]
# Unique-ify and test we got them all
__snake_case = list(set(snake_case__ ) )
__snake_case = []
for imp in imports:
try:
importlib.import_module(snake_case__ )
except ImportError:
missing_packages.append(snake_case__ )
if len(snake_case__ ) > 0:
raise ImportError(
'This modeling file requires the following packages that were not found in your environment: '
f"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" )
return get_relative_imports(snake_case__ )
def A ( snake_case__ : List[str] , snake_case__ : str ) -> List[str]:
'''simple docstring'''
__snake_case = module_path.replace(os.path.sep , '.' )
__snake_case = importlib.import_module(snake_case__ )
if class_name is None:
return find_pipeline_class(snake_case__ )
return getattr(snake_case__ , snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
from ..pipelines import DiffusionPipeline
__snake_case = dict(inspect.getmembers(snake_case__ , inspect.isclass ) )
__snake_case = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , snake_case__ )
and cls.__module__.split('.' )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
f" {loaded_module}." )
__snake_case = cls
return pipeline_class
def A ( snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ) -> str:
'''simple docstring'''
__snake_case = str(snake_case__ )
__snake_case = os.path.join(snake_case__ , snake_case__ )
if os.path.isfile(snake_case__ ):
__snake_case = module_file_or_url
__snake_case = 'local'
elif pretrained_model_name_or_path.count('/' ) == 0:
__snake_case = get_diffusers_versions()
# cut ".dev0"
__snake_case = 'v' + '.'.join(__version__.split('.' )[:3] )
# retrieve github version that matches
if revision is None:
__snake_case = latest_version if latest_version[1:] in available_versions else 'main'
logger.info(f"Defaulting to latest_version: {revision}." )
elif revision in available_versions:
__snake_case = f"v{revision}"
elif revision == "main":
__snake_case = revision
else:
raise ValueError(
f"`custom_revision`: {revision} does not exist. Please make sure to choose one of"
f" {', '.join(available_versions + ['main'] )}." )
# community pipeline on GitHub
__snake_case = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ )
try:
__snake_case = cached_download(
snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , )
__snake_case = 'git'
__snake_case = pretrained_model_name_or_path + '.py'
except EnvironmentError:
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
else:
try:
# Load from URL or cache if already cached
__snake_case = hf_hub_download(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , )
__snake_case = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) )
except EnvironmentError:
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." )
raise
# Check we have all the requirements in our environment
__snake_case = check_imports(snake_case__ )
# Now we move the module inside our cached dynamic modules.
__snake_case = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(snake_case__ )
__snake_case = Path(snake_case__ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(snake_case__ , submodule_path / module_file )
for module_needed in modules_needed:
__snake_case = f"{module_needed}.py"
shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(snake_case__ , snake_case__ ):
__snake_case = use_auth_token
elif use_auth_token is True:
__snake_case = HfFolder.get_token()
else:
__snake_case = None
__snake_case = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
__snake_case = submodule_path / commit_hash
__snake_case = full_submodule + os.path.sep + commit_hash
create_dynamic_module(snake_case__ )
if not (submodule_path / module_file).exists():
shutil.copy(snake_case__ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
snake_case__ , f"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
return os.path.join(snake_case__ , snake_case__ )
def A ( snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : List[Any] , ) -> Dict:
'''simple docstring'''
__snake_case = get_cached_module_file(
snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , )
return get_class_in_module(snake_case__ , final_module.replace('.py' , '' ) )
| 676 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A ( snake_case__ : List[Any] ) -> Any:
'''simple docstring'''
__snake_case = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__snake_case = 4
__snake_case = 48
__snake_case = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = [6, 6, 6, 6]
__snake_case = 60
__snake_case = [6, 6, 6, 6]
__snake_case = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = 4
__snake_case = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__snake_case = 1
__snake_case = 1
__snake_case = 126
__snake_case = 7
__snake_case = 255.0
__snake_case = ''
return config
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
__snake_case = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
__snake_case = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
__snake_case = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__snake_case = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__snake_case = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__snake_case = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__snake_case = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__snake_case = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__snake_case = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__snake_case = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__snake_case = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
__snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
__snake_case = 'layernorm.weight'
if name == "norm.bias":
__snake_case = 'layernorm.bias'
if "conv_first" in name:
__snake_case = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__snake_case = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
__snake_case = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
__snake_case = name.replace('upsample.2' , 'upsample.convolution_1' )
__snake_case = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
__snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
__snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
__snake_case = 'swin2sr.' + name
return name
def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
__snake_case = key.split('.' )
__snake_case = int(key_split[1] )
__snake_case = int(key_split[4] )
__snake_case = config.embed_dim
if "weight" in key:
__snake_case = val[:dim, :]
__snake_case = val[dim : dim * 2, :]
__snake_case = val[-dim:, :]
else:
__snake_case = val[:dim]
__snake_case = val[dim : dim * 2]
__snake_case = val[-dim:]
pass
else:
__snake_case = val
return orig_state_dict
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = get_config(snake_case__ )
__snake_case = SwinaSRForImageSuperResolution(snake_case__ )
model.eval()
__snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )
__snake_case = convert_state_dict(snake_case__ , snake_case__ )
__snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0:
raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict" )
# verify values
__snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
__snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' )
__snake_case = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__snake_case = 126 if 'Jpeg' in checkpoint_url else 256
__snake_case = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__snake_case = transforms(snake_case__ ).unsqueeze(0 )
if config.num_channels == 1:
__snake_case = pixel_values[:, 0, :, :].unsqueeze(1 )
__snake_case = model(snake_case__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 )
print('Looks ok!' )
__snake_case = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
__snake_case = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}" )
processor.push_to_hub(f"caidas/{model_name}" )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 676 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple:
super().__init__(*lowercase_ , **lowercase_)
__snake_case = eval_examples
__snake_case = post_process_function
def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
__snake_case = gen_kwargs.copy()
__snake_case = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length
)
__snake_case = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams
)
__snake_case = gen_kwargs
__snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case = self.get_eval_dataloader(lowercase_)
__snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_)
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
else:
__snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
__snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_)
return metrics
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]:
__snake_case = gen_kwargs.copy()
__snake_case = self.get_test_dataloader(lowercase_)
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict')
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , lowercase_ = 1_2_8 , lowercase_ = 2_5_6 , lowercase_ = 2000.0 , lowercase_ = 7_6_8 , lowercase_ = 1_2 , lowercase_ = 1_2 , lowercase_ = 6_4 , lowercase_ = 2_0_4_8 , lowercase_ = 0.1 , ) -> Union[str, Any]:
super().__init__()
__snake_case = nn.Sequential(
nn.Linear(lowercase_ , d_model * 4 , bias=lowercase_) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase_) , nn.SiLU() , )
__snake_case = nn.Embedding(lowercase_ , lowercase_)
__snake_case = False
__snake_case = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_)
__snake_case = nn.Dropout(p=lowercase_)
__snake_case = nn.ModuleList()
for lyr_num in range(lowercase_):
# FiLM conditional T5 decoder
__snake_case = DecoderLayer(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_)
self.decoders.append(lowercase_)
__snake_case = TaLayerNorm(lowercase_)
__snake_case = nn.Dropout(p=lowercase_)
__snake_case = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_)
def _a ( self , lowercase_ , lowercase_) -> Tuple:
__snake_case = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2))
return mask.unsqueeze(-3)
def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]:
__snake_case , __snake_case , __snake_case = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__snake_case = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype)
__snake_case = self.conditioning_emb(lowercase_).unsqueeze(1)
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__snake_case = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__snake_case = torch.broadcast_to(
torch.arange(lowercase_ , device=decoder_input_tokens.device) , (batch, seq_length) , )
__snake_case = self.position_encoding(lowercase_)
__snake_case = self.continuous_inputs_projection(lowercase_)
inputs += position_encodings
__snake_case = self.dropout(lowercase_)
# decoder: No padding present.
__snake_case = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype)
# Translate encoding masks to encoder-decoder masks.
__snake_case = [(x, self.encoder_decoder_mask(lowercase_ , lowercase_)) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1)
__snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1)
for lyr in self.decoders:
__snake_case = lyr(
lowercase_ , conditioning_emb=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )[0]
__snake_case = self.decoder_norm(lowercase_)
__snake_case = self.post_dropout(lowercase_)
__snake_case = self.spec_out(lowercase_)
return spec_out
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=1e-6) -> Optional[Any]:
super().__init__()
__snake_case = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_))
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=lowercase_ , d_kv=lowercase_ , num_heads=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_ , ))
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_ , layer_norm_epsilon=lowercase_))
def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> List[str]:
__snake_case = self.layer[0](
lowercase_ , conditioning_emb=lowercase_ , attention_mask=lowercase_ , )
if encoder_hidden_states is not None:
__snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1e10).to(
encoder_hidden_states.dtype)
__snake_case = self.layer[1](
lowercase_ , key_value_states=lowercase_ , attention_mask=lowercase_ , )
# Apply Film Conditional Feed Forward layer
__snake_case = self.layer[-1](lowercase_ , lowercase_)
return (hidden_states,)
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
super().__init__()
__snake_case = TaLayerNorm(lowercase_)
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_)
__snake_case = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_)
__snake_case = nn.Dropout(lowercase_)
def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , ) -> Optional[Any]:
# pre_self_attention_layer_norm
__snake_case = self.layer_norm(lowercase_)
if conditioning_emb is not None:
__snake_case = self.FiLMLayer(lowercase_ , lowercase_)
# Self-attention block
__snake_case = self.attention(lowercase_)
__snake_case = hidden_states + self.dropout(lowercase_)
return hidden_states
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]:
super().__init__()
__snake_case = Attention(query_dim=lowercase_ , heads=lowercase_ , dim_head=lowercase_ , out_bias=lowercase_ , scale_qk=lowercase_)
__snake_case = TaLayerNorm(lowercase_ , eps=lowercase_)
__snake_case = nn.Dropout(lowercase_)
def _a ( self , lowercase_ , lowercase_=None , lowercase_=None , ) -> List[Any]:
__snake_case = self.layer_norm(lowercase_)
__snake_case = self.attention(
lowercase_ , encoder_hidden_states=lowercase_ , attention_mask=attention_mask.squeeze(1) , )
__snake_case = hidden_states + self.dropout(lowercase_)
return layer_output
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[int]:
super().__init__()
__snake_case = TaDenseGatedActDense(d_model=lowercase_ , d_ff=lowercase_ , dropout_rate=lowercase_)
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase_)
__snake_case = TaLayerNorm(lowercase_ , eps=lowercase_)
__snake_case = nn.Dropout(lowercase_)
def _a ( self , lowercase_ , lowercase_=None) -> Any:
__snake_case = self.layer_norm(lowercase_)
if conditioning_emb is not None:
__snake_case = self.film(lowercase_ , lowercase_)
__snake_case = self.DenseReluDense(lowercase_)
__snake_case = hidden_states + self.dropout(lowercase_)
return hidden_states
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]:
super().__init__()
__snake_case = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_)
__snake_case = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_)
__snake_case = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_)
__snake_case = nn.Dropout(lowercase_)
__snake_case = NewGELUActivation()
def _a ( self , lowercase_) -> int:
__snake_case = self.act(self.wi_a(lowercase_))
__snake_case = self.wi_a(lowercase_)
__snake_case = hidden_gelu * hidden_linear
__snake_case = self.dropout(lowercase_)
__snake_case = self.wo(lowercase_)
return hidden_states
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_=1e-6) -> Optional[Any]:
super().__init__()
__snake_case = nn.Parameter(torch.ones(lowercase_))
__snake_case = eps
def _a ( self , lowercase_) -> Optional[Any]:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
__snake_case = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=lowercase_)
__snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__snake_case = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class __lowercase ( nn.Module ):
def _a ( self , lowercase_) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.04_4715 * torch.pow(lowercase_ , 3.0))))
class __lowercase ( nn.Module ):
def __init__( self , lowercase_ , lowercase_) -> int:
super().__init__()
__snake_case = nn.Linear(lowercase_ , out_features * 2 , bias=lowercase_)
def _a ( self , lowercase_ , lowercase_) -> Optional[int]:
__snake_case = self.scale_bias(lowercase_)
__snake_case , __snake_case = torch.chunk(lowercase_ , 2 , -1)
__snake_case = x * (1 + scale) + shift
return x
| 676 |
from __future__ import annotations
class __lowercase :
def __init__( self , lowercase_) -> None:
__snake_case = data
__snake_case = None
__snake_case = None
def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def A ( snake_case__ : Node | None ) -> int:
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def A ( snake_case__ : Node ) -> bool:
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def A ( ) -> None: # Main function for testing.
'''simple docstring'''
__snake_case = Node(1 )
__snake_case = Node(2 )
__snake_case = Node(3 )
__snake_case = Node(4 )
__snake_case = Node(5 )
__snake_case = Node(6 )
__snake_case = Node(7 )
__snake_case = Node(8 )
__snake_case = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 676 | 1 |
def A ( snake_case__ : list ) -> int:
'''simple docstring'''
if not grid or not grid[0]:
raise TypeError('The grid does not contain the appropriate information' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
__snake_case = grid[0]
for row_n in range(1 , len(snake_case__ ) ):
__snake_case = grid[row_n]
__snake_case = fill_row(snake_case__ , snake_case__ )
__snake_case = grid[row_n]
return grid[-1][-1]
def A ( snake_case__ : list , snake_case__ : list ) -> list:
'''simple docstring'''
current_row[0] += row_above[0]
for cell_n in range(1 , len(snake_case__ ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''table-transformer'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowercase_ , lowercase_):
__snake_case = backbone_config.get('model_type')
__snake_case = CONFIG_MAPPING[backbone_model_type]
__snake_case = config_class.from_dict(lowercase_)
# set timm attributes to None
__snake_case , __snake_case , __snake_case = None, None, None
__snake_case = use_timm_backbone
__snake_case = backbone_config
__snake_case = num_channels
__snake_case = num_queries
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = init_xavier_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = encoder_layers
__snake_case = auxiliary_loss
__snake_case = position_embedding_type
__snake_case = backbone
__snake_case = use_pretrained_backbone
__snake_case = dilation
# Hungarian matcher
__snake_case = class_cost
__snake_case = bbox_cost
__snake_case = giou_cost
# Loss coefficients
__snake_case = mask_loss_coefficient
__snake_case = dice_loss_coefficient
__snake_case = bbox_loss_coefficient
__snake_case = giou_loss_coefficient
__snake_case = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_)
@property
def _a ( self) -> int:
return self.encoder_attention_heads
@property
def _a ( self) -> int:
return self.d_model
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def _a ( self) -> float:
return 1e-5
@property
def _a ( self) -> int:
return 1_2
| 676 | 1 |
from ..utils import DummyObject, requires_backends
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> int:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Any:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
def A ( *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : int , **snake_case__ : Dict ) -> List[str]:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : Optional[int] , **snake_case__ : Tuple ) -> Dict:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : Tuple , **snake_case__ : Optional[int] ) -> List[str]:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : str , **snake_case__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : int , **snake_case__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
def A ( *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
requires_backends(snake_case__ , ['torch'] )
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> int:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Any:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Any:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Dict:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Any:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> int:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> str:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Any:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Tuple:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> int:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> str:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Dict:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(cls , ['torch'])
class __lowercase ( metaclass=lowerCamelCase__ ):
__UpperCAmelCase = ['''torch''']
def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
requires_backends(self , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> List[str]:
requires_backends(cls , ['torch'])
@classmethod
def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]:
requires_backends(cls , ['torch'])
| 676 |
from maths.prime_check import is_prime
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if is_prime(snake_case__ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
from __future__ import annotations
UpperCAmelCase__ : str = list[list[int]]
# assigning initial values to the grid
UpperCAmelCase__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
UpperCAmelCase__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def A ( snake_case__ : Matrix , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> bool:
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def A ( snake_case__ : Matrix ) -> tuple[int, int] | None:
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def A ( snake_case__ : Matrix ) -> Matrix | None:
'''simple docstring'''
if location := find_empty_location(snake_case__ ):
__snake_case , __snake_case = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
__snake_case = digit
if sudoku(snake_case__ ) is not None:
return grid
__snake_case = 0
return None
def A ( snake_case__ : Matrix ) -> None:
'''simple docstring'''
for row in grid:
for cell in row:
print(snake_case__ , end=' ' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print("\nExample grid:\n" + "=" * 20)
print_solution(example_grid)
print("\nExample grid solution:")
UpperCAmelCase__ : Union[str, Any] = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print("Cannot find a solution.")
| 676 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
__snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ )
assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : int = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : str = [
"VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTMSNModel",
"ViTMSNForImageClassification",
"ViTMSNPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase__ : Optional[Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def A ( snake_case__ : List[Any] ) -> str:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
__snake_case = k.replace(snake_case__ , snake_case__ )
return k
def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration:
'''simple docstring'''
__snake_case = DEFAULTS.copy()
cfg_kwargs.update(snake_case__ )
__snake_case = PegasusConfig(**snake_case__ )
__snake_case = PegasusForConditionalGeneration(snake_case__ )
__snake_case = torch_model.model.state_dict()
__snake_case = {}
for k, v in tf_weights.items():
__snake_case = rename_state_dict_key(snake_case__ )
if new_k not in sd:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
__snake_case = v.T
__snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
__snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
__snake_case = mapping['shared.weight']
__snake_case = mapping['shared.weight']
__snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**snake_case__ )
__snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ )
__snake_case = [
k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight']
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
__snake_case = tf.train.list_variables(snake_case__ )
__snake_case = {}
__snake_case = ['Adafactor', 'global_step']
for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ):
__snake_case = any(pat in name for pat in ignore_name )
if skip_key:
continue
__snake_case = tf.train.load_variable(snake_case__ , snake_case__ )
__snake_case = array
return tf_weights
def A ( snake_case__ : str , snake_case__ : str ) -> Tuple:
'''simple docstring'''
# save tokenizer first
__snake_case = Path(snake_case__ ).parent.name
__snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings']
__snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(snake_case__ )
# convert model
__snake_case = get_tf_weights_as_numpy(snake_case__ )
__snake_case = task_specific_params[f"summarization_{dataset}"]
if dataset == "large":
__snake_case = task_specific_params
__snake_case = convert_pegasus(snake_case__ , snake_case__ )
torch_model.save_pretrained(snake_case__ )
__snake_case = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' )
if __name__ == "__main__":
UpperCAmelCase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase__ : int = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase__ : str = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 676 | 1 |
from sklearn.metrics import fa_score
import datasets
UpperCAmelCase__ : Optional[int] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
UpperCAmelCase__ : int = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
UpperCAmelCase__ : Optional[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase ( datasets.Metric ):
def _a ( self) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('int32')),
'references': datasets.Sequence(datasets.Value('int32')),
}
if self.config_name == 'multilabel'
else {
'predictions': datasets.Value('int32'),
'references': datasets.Value('int32'),
}) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , )
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None) -> Optional[int]:
__snake_case = fa_score(
lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_)
return {"f1": float(lowercase_) if score.size == 1 else score}
| 676 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
super().__init__()
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .')
self.register_modules(
speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , )
def _a ( self , lowercase_ = "auto") -> Union[str, Any]:
if slice_size == "auto":
__snake_case = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase_)
def _a ( self) -> Any:
self.enable_attention_slicing(lowercase_)
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]:
__snake_case = self.speech_processor.feature_extractor(
lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device)
__snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0)
__snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[
0
]
if isinstance(lowercase_ , lowercase_):
__snake_case = 1
elif isinstance(lowercase_ , lowercase_):
__snake_case = len(lowercase_)
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0)
):
raise ValueError(
F"`callback_steps` has to be a positive integer but is {callback_steps} of type"
F" {type(lowercase_)}.")
# get prompt text embeddings
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
__snake_case = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F" {self.tokenizer.model_max_length} tokens: {removed_text}")
__snake_case = text_input_ids[:, : self.tokenizer.model_max_length]
__snake_case = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__snake_case , __snake_case , __snake_case = text_embeddings.shape
__snake_case = text_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case = 42
if negative_prompt is None:
__snake_case = [''] * batch_size
elif type(lowercase_) is not type(lowercase_):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !="
F" {type(lowercase_)}.")
elif isinstance(lowercase_ , lowercase_):
__snake_case = [negative_prompt]
elif batch_size != len(lowercase_):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
' the batch size of `prompt`.')
else:
__snake_case = negative_prompt
__snake_case = text_input_ids.shape[-1]
__snake_case = self.tokenizer(
lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , )
__snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__snake_case = uncond_embeddings.shape[1]
__snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1)
__snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__snake_case = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to(
self.device)
else:
__snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_)
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
__snake_case = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(lowercase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__snake_case = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
__snake_case = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys())
__snake_case = {}
if accepts_eta:
__snake_case = eta
for i, t in enumerate(self.progress_bar(lowercase_)):
# expand the latents if we are doing classifier free guidance
__snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_)
# predict the noise residual
__snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample
# perform guidance
if do_classifier_free_guidance:
__snake_case , __snake_case = noise_pred.chunk(2)
__snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowercase_ , lowercase_ , lowercase_)
__snake_case = 1 / 0.1_8215 * latents
__snake_case = self.vae.decode(lowercase_).sample
__snake_case = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__snake_case = self.numpy_to_pil(lowercase_)
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
| 676 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = {"vocab_file": "spiece.model"}
UpperCAmelCase__ : Any = {
"vocab_file": {
"bert_for_seq_generation": (
"https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model"
),
}
}
UpperCAmelCase__ : Optional[Any] = {"bert_for_seq_generation": 5_12}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = VOCAB_FILES_NAMES
__UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase = []
__UpperCAmelCase = ['''input_ids''', '''attention_mask''']
def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<::::>" , lowercase_ = None , **lowercase_ , ) -> None:
__snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
__snake_case = vocab_file
__snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(lowercase_)
@property
def _a ( self) -> Dict:
return self.sp_model.get_piece_size()
def _a ( self) -> int:
__snake_case = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self) -> List[Any]:
__snake_case = self.__dict__.copy()
__snake_case = None
return state
def __setstate__( self , lowercase_) -> Tuple:
__snake_case = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs'):
__snake_case = {}
__snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _a ( self , lowercase_) -> List[str]:
return self.sp_model.encode(lowercase_ , out_type=lowercase_)
def _a ( self , lowercase_) -> Any:
return self.sp_model.piece_to_id(lowercase_)
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case = self.sp_model.IdToPiece(lowercase_)
return token
def _a ( self , lowercase_) -> str:
__snake_case = []
__snake_case = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowercase_) + token
__snake_case = []
else:
current_sub_tokens.append(lowercase_)
out_string += self.sp_model.decode(lowercase_)
return out_string.strip()
def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]:
if not os.path.isdir(lowercase_):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
__snake_case = os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowercase_)
elif not os.path.isfile(self.vocab_file):
with open(lowercase_ , 'wb') as fi:
__snake_case = self.sp_model.serialized_model_proto()
fi.write(lowercase_)
return (out_vocab_file,)
| 676 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowercase ( lowerCamelCase__ ):
def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple:
super().__init__(*lowercase_ , **lowercase_)
__snake_case = eval_examples
__snake_case = post_process_function
def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]:
__snake_case = gen_kwargs.copy()
__snake_case = (
gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length
)
__snake_case = (
gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams
)
__snake_case = gen_kwargs
__snake_case = self.eval_dataset if eval_dataset is None else eval_dataset
__snake_case = self.get_eval_dataloader(lowercase_)
__snake_case = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_)
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
else:
__snake_case = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowercase_)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
__snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_)
return metrics
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]:
__snake_case = gen_kwargs.copy()
__snake_case = self.get_test_dataloader(lowercase_)
# Temporarily disable metric computation, we will do it in the loop here.
__snake_case = self.compute_metrics
__snake_case = None
__snake_case = time.time()
__snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__snake_case = eval_loop(
lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , )
finally:
__snake_case = compute_metrics
__snake_case = self.args.eval_batch_size * self.args.world_size
if F"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
__snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict')
__snake_case = self.compute_metrics(lowercase_)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(F"{metric_key_prefix}_"):
__snake_case = metrics.pop(lowercase_)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
| 676 | 1 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
UpperCAmelCase__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int:
super().__init__()
if hasattr(scheduler.config , 'steps_offset') and scheduler.config.steps_offset != 1:
__snake_case = (
F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
' file'
)
deprecate('steps_offset!=1' , '1.0.0' , lowercase_ , standard_warn=lowercase_)
__snake_case = dict(scheduler.config)
__snake_case = 1
__snake_case = FrozenDict(lowercase_)
if hasattr(scheduler.config , 'skip_prk_steps') and scheduler.config.skip_prk_steps is False:
__snake_case = (
F"The configuration file of this scheduler: {scheduler} has not set the configuration"
' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'
' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'
' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'
' Hub, it would be very nice if you could open a Pull request for the'
' `scheduler/scheduler_config.json` file'
)
deprecate('skip_prk_steps not set' , '1.0.0' , lowercase_ , standard_warn=lowercase_)
__snake_case = dict(scheduler.config)
__snake_case = True
__snake_case = FrozenDict(lowercase_)
if safety_checker is None:
logger.warning(
F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .')
self.register_modules(
segmentation_model=lowercase_ , segmentation_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , )
def _a ( self , lowercase_ = "auto") -> Dict:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__snake_case = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowercase_)
def _a ( self) -> Union[str, Any]:
self.enable_attention_slicing(lowercase_)
def _a ( self) -> Union[str, Any]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`')
__snake_case = torch.device('cuda')
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _a ( self) -> Union[str, Any]:
if self.device != torch.device('meta') or not hasattr(self.unet , '_hf_hook'):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , '_hf_hook')
and hasattr(module._hf_hook , 'execution_device')
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]:
__snake_case = self.segmentation_processor(
text=[text] , images=[image] , padding='max_length' , return_tensors='pt').to(self.device)
__snake_case = self.segmentation_model(**lowercase_)
__snake_case = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
__snake_case = self.numpy_to_pil(lowercase_)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
__snake_case = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , )
| 676 |
from __future__ import annotations
UpperCAmelCase__ : Dict = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]:
'''simple docstring'''
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
__snake_case = 1
__snake_case = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
__snake_case = init[0]
__snake_case = init[1]
__snake_case = 0
__snake_case = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case = [[f, g, x, y]]
__snake_case = False # flag that is set when search is complete
__snake_case = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('Algorithm is unable to find solution' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case = cell.pop()
__snake_case = next_cell[2]
__snake_case = next_cell[3]
__snake_case = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
__snake_case = x + DIRECTIONS[i][0]
__snake_case = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case = g + cost
__snake_case = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case = 1
__snake_case = i
__snake_case = []
__snake_case = goal[0]
__snake_case = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case = x - DIRECTIONS[action[x][y]][0]
__snake_case = y - DIRECTIONS[action[x][y]][1]
__snake_case = xa
__snake_case = ya
invpath.append([x, y] )
__snake_case = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ : str = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ : int = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ : Optional[Any] = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ : Optional[int] = 99
UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 676 | 1 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = IFImgaImgSuperResolutionPipeline
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
__UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _a ( self) -> str:
return self._get_superresolution_dummy_components()
def _a ( self , lowercase_ , lowercase_=0) -> List[str]:
if str(lowercase_).startswith('mps'):
__snake_case = torch.manual_seed(lowercase_)
else:
__snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_)
__snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_)
__snake_case = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowercase_)).to(lowercase_)
__snake_case = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def _a ( self) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
def _a ( self) -> List[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA')
def _a ( self) -> List[str]:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1)
def _a ( self) -> List[Any]:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def _a ( self) -> List[Any]:
self._test_save_load_local()
def _a ( self) -> int:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 676 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase__ : Any = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class __lowercase ( unittest.TestCase ):
def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict:
__snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))]
if identifier is not None:
__snake_case = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase_ , lowercase_):
for n_ in n_identifier:
__snake_case = [file for file in files if n_ not in file]
else:
__snake_case = [file for file in files if n_identifier not in file]
__snake_case = ignore_files or []
ignore_files.append('__init__.py')
__snake_case = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('Testing' , lowercase_)
if only_modules:
__snake_case = file.split('.')[0]
try:
__snake_case = getattr(lowercase_ , lowercase_)
__snake_case = doctest.DocTestSuite(lowercase_)
__snake_case = unittest.TextTestRunner().run(lowercase_)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(F"{module_identifier} is not a module.")
else:
__snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def _a ( self) -> str:
__snake_case = Path('src/transformers')
__snake_case = 'modeling'
__snake_case = [
'modeling_ctrl.py',
'modeling_tf_ctrl.py',
]
self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = Path('src/transformers')
__snake_case = 'tokenization'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> List[str]:
__snake_case = Path('src/transformers')
__snake_case = 'configuration'
self.analyze_directory(lowercase_ , identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('src/transformers')
__snake_case = ['configuration', 'modeling', 'tokenization']
self.analyze_directory(lowercase_ , n_identifier=lowercase_)
def _a ( self) -> Dict:
__snake_case = Path('docs/source')
__snake_case = ['favicon.ico']
self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
| 676 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 676 |
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations(snake_case__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
def count_of_possible_combinations_with_dp_array(
snake_case__ : int , snake_case__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__snake_case = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case__ )
for item in array )
__snake_case = answer
return answer
__snake_case = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ )
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int:
'''simple docstring'''
__snake_case = [0] * (target + 1)
__snake_case = 1
for i in range(1 , target + 1 ):
for j in range(snake_case__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ : str = 3
UpperCAmelCase__ : Optional[int] = 5
UpperCAmelCase__ : Tuple = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 676 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = 42
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (6_4,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 2_5_6 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = 0.1_8215 , lowercase_ = "group" , ) -> Union[str, Any]:
super().__init__()
# pass init params to Encoder
__snake_case = Encoder(
in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , )
__snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
__snake_case = nn.Convad(lowercase_ , lowercase_ , 1)
__snake_case = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_)
__snake_case = nn.Convad(lowercase_ , lowercase_ , 1)
# pass init params to Decoder
__snake_case = Decoder(
in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , )
@apply_forward_hook
def _a ( self , lowercase_ , lowercase_ = True) -> VQEncoderOutput:
__snake_case = self.encoder(lowercase_)
__snake_case = self.quant_conv(lowercase_)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_)
@apply_forward_hook
def _a ( self , lowercase_ , lowercase_ = False , lowercase_ = True) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
__snake_case , __snake_case , __snake_case = self.quantize(lowercase_)
else:
__snake_case = h
__snake_case = self.post_quant_conv(lowercase_)
__snake_case = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None)
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_)
def _a ( self , lowercase_ , lowercase_ = True) -> Union[DecoderOutput, torch.FloatTensor]:
__snake_case = sample
__snake_case = self.encode(lowercase_).latents
__snake_case = self.decode(lowercase_).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_)
| 676 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> List[str]:
__snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]})
return dset
def _a ( self) -> Optional[int]:
import faiss
__snake_case = self._create_dummy_dataset()
__snake_case = dset.map(
lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_)
__snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT)
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
dset.drop_index('vecs')
def _a ( self) -> str:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> int:
import faiss
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
dset.save_faiss_index('vecs' , tmp_file.name)
dset.load_faiss_index('vecs2' , tmp_file.name)
os.unlink(tmp_file.name)
__snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa))
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
def _a ( self) -> List[Any]:
__snake_case = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs')
dset.drop_index('vecs')
self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa)))
def _a ( self) -> Any:
from elasticsearch import Elasticsearch
__snake_case = self._create_dummy_dataset()
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = {'acknowledged': True}
mocked_bulk.return_value([(True, None)] * 3_0)
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}}
__snake_case = Elasticsearch()
dset.add_elasticsearch_index('filename' , es_client=lowercase_)
__snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29')
self.assertEqual(examples['filename'][0] , 'my_name-train_29')
@require_faiss
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[int]:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsNotNone(index.faiss_index)
self.assertEqual(index.faiss_index.ntotal , 5)
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa))
self.assertEqual(index.faiss_index.ntotal , 1_0)
# single query
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1))
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
# batched queries
__snake_case = np.eye(5 , dtype=np.floataa)[::-1]
__snake_case , __snake_case = index.search_batch(lowercase_)
self.assertRaises(lowercase_ , index.search_batch , queries[0])
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([4, 3, 2, 1, 0] , lowercase_)
def _a ( self) -> str:
import faiss
__snake_case = FaissIndex(string_factory='Flat')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
__snake_case = FaissIndex(string_factory='LSH')
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexLSH)
with self.assertRaises(lowercase_):
__snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5))
def _a ( self) -> Optional[int]:
import faiss
__snake_case = faiss.IndexFlat(5)
__snake_case = FaissIndex(custom_index=lowercase_)
index.add_vectors(np.eye(5 , dtype=np.floataa))
self.assertIsInstance(index.faiss_index , faiss.IndexFlat)
def _a ( self) -> Tuple:
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT)
index.add_vectors(np.eye(5 , dtype=np.floataa))
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file:
index.save(tmp_file.name)
__snake_case = FaissIndex.load(tmp_file.name)
os.unlink(tmp_file.name)
__snake_case = np.zeros(5 , dtype=np.floataa)
__snake_case = 1
__snake_case , __snake_case = index.search(lowercase_)
self.assertGreater(scores[0] , 0)
self.assertEqual(indices[0] , 1)
@require_faiss
def A ( snake_case__ : List[str] ) -> List[Any]:
'''simple docstring'''
import faiss
__snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
__snake_case = 'index.faiss'
__snake_case = f"mock://{index_name}"
index.save(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options )
__snake_case = np.zeros(5 , dtype=np.floataa )
__snake_case = 1
__snake_case , __snake_case = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class __lowercase ( lowerCamelCase__ ):
def _a ( self) -> Optional[Any]:
from elasticsearch import Elasticsearch
with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch(
'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk:
__snake_case = Elasticsearch()
__snake_case = {'acknowledged': True}
__snake_case = ElasticSearchIndex(es_client=lowercase_)
mocked_bulk.return_value([(True, None)] * 3)
index.add_documents(['foo', 'bar', 'foobar'])
# single query
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# single query with timeout
__snake_case = 'foo'
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}}
__snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0)
self.assertEqual(scores[0] , 1)
self.assertEqual(indices[0] , 0)
# batched queries
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
# batched queries with timeout
__snake_case = ['foo', 'bar', 'foobar']
__snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}}
__snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0)
__snake_case = [scores[0] for scores in total_scores]
__snake_case = [indices[0] for indices in total_indices]
self.assertGreater(np.min(lowercase_) , 0)
self.assertListEqual([1, 1, 1] , lowercase_)
| 676 | 1 |
import re
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , snake_case__ ) ) != len(snake_case__ ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = args.log_outputs
__snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
__snake_case = load_metric('wer' )
__snake_case = load_metric('cer' )
# compute metrics
__snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] )
__snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
__snake_case = f"WER: {wer_result}\nCER: {cer_result}"
print(snake_case__ )
with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f:
f.write(snake_case__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case = f"log_{dataset_id}_predictions.txt"
__snake_case = f"log_{dataset_id}_targets.txt"
with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t:
# mapping function to write output
def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
p.write(f"{i}" + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f"{i}" + '\n' )
t.write(batch['target'] + '\n' )
result.map(snake_case__ , with_indices=snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case = re.sub(snake_case__ , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
__snake_case = ' '.join(text.split(snake_case__ ) )
return text
def A ( snake_case__ : int ) -> Optional[int]:
'''simple docstring'''
# load dataset
__snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case = feature_extractor.sampling_rate
# resample audio
__snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) )
# load eval pipeline
if args.device is None:
__snake_case = 0 if torch.cuda.is_available() else -1
__snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case__ : Optional[Any] ):
__snake_case = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case = prediction['text']
__snake_case = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
__snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case__ , snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
UpperCAmelCase__ : str = parser.parse_args()
main(args)
| 676 | 1 |
def A ( snake_case__ : list ) -> list:
'''simple docstring'''
if len(snake_case__ ) <= 1:
return [tuple(snake_case__ )]
__snake_case = []
def generate(snake_case__ : int , snake_case__ : list ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , snake_case__ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__snake_case , __snake_case = arr[k - 1], arr[i]
else: # k is odd
__snake_case , __snake_case = arr[k - 1], arr[0]
generate(k - 1 , snake_case__ )
generate(len(snake_case__ ) , snake_case__ )
return res
if __name__ == "__main__":
UpperCAmelCase__ : Optional[Any] = input("Enter numbers separated by a comma:\n").strip()
UpperCAmelCase__ : List[str] = [int(item) for item in user_input.split(",")]
print(heaps(arr))
| 676 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def A ( *snake_case__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
with open(snake_case__ , 'r' ) as fh:
fcntl.flock(snake_case__ , fcntl.LOCK_EX )
try:
print(*snake_case__ )
finally:
fcntl.flock(snake_case__ , fcntl.LOCK_UN )
UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
UpperCAmelCase__ : Any = torch.device("cuda", local_rank)
UpperCAmelCase__ : Union[str, Any] = socket.gethostname()
UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
UpperCAmelCase__ : Optional[int] = dist.get_rank()
UpperCAmelCase__ : List[str] = dist.get_world_size()
printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(F"""{gpu} is broken""")
raise
| 676 | 1 |
def A ( snake_case__ : list[list[float]] ) -> list[list[float]]:
'''simple docstring'''
__snake_case = []
for data in source_data:
for i, el in enumerate(snake_case__ ):
if len(snake_case__ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(snake_case__ ) )
return data_lists
def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> list[list[float]]:
'''simple docstring'''
__snake_case = []
for dlist, weight in zip(snake_case__ , snake_case__ ):
__snake_case = min(snake_case__ )
__snake_case = max(snake_case__ )
__snake_case = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
__snake_case = f"Invalid weight of {weight:f} provided"
raise ValueError(snake_case__ )
score_lists.append(snake_case__ )
return score_lists
def A ( snake_case__ : list[list[float]] ) -> list[float]:
'''simple docstring'''
__snake_case = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(snake_case__ ):
__snake_case = final_scores[j] + ele
return final_scores
def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> list[list[float]]:
'''simple docstring'''
__snake_case = get_data(snake_case__ )
__snake_case = calculate_each_score(snake_case__ , snake_case__ )
__snake_case = generate_final_scores(snake_case__ )
# append scores to source data
for i, ele in enumerate(snake_case__ ):
source_data[i].append(snake_case__ )
return source_data
| 676 |
from datetime import datetime
import requests
def A ( snake_case__ : str ) -> bytes:
'''simple docstring'''
__snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(snake_case__ ).content
if __name__ == "__main__":
UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip()
UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 676 | 1 |
import json
import sys
def A ( snake_case__ : List[Any] , snake_case__ : str ) -> Union[str, Any]:
'''simple docstring'''
with open(snake_case__ , encoding='utf-8' ) as f:
__snake_case = json.load(snake_case__ )
__snake_case = ['<details>', '<summary>Show updated benchmarks!</summary>', ' ']
for benchmark_name in sorted(snake_case__ ):
__snake_case = results[benchmark_name]
__snake_case = benchmark_name.split('/' )[-1]
output_md.append(f"### Benchmark: {benchmark_file_name}" )
__snake_case = '| metric |'
__snake_case = '|--------|'
__snake_case = '| new / old (diff) |'
for metric_name in sorted(snake_case__ ):
__snake_case = benchmark_res[metric_name]
__snake_case = metric_vals['new']
__snake_case = metric_vals.get('old' , snake_case__ )
__snake_case = metric_vals.get('diff' , snake_case__ )
__snake_case = f" {new_val:f}" if isinstance(snake_case__ , (int, float) ) else 'None'
if old_val is not None:
val_str += f" / {old_val:f}" if isinstance(snake_case__ , (int, float) ) else "None"
if dif_val is not None:
val_str += f" ({dif_val:f})" if isinstance(snake_case__ , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('</details>' )
with open(snake_case__ , 'w' , encoding='utf-8' ) as f:
f.writelines('\n'.join(snake_case__ ) )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[Any] = sys.argv[1]
UpperCAmelCase__ : Any = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 676 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class __lowercase :
def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_input_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_labels
__snake_case = num_choices
__snake_case = scope
def _a ( self) -> Union[str, Any]:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__snake_case = None
if self.use_input_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length])
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
__snake_case = None
__snake_case = None
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__snake_case = ids_tensor([self.batch_size] , self.num_choices)
__snake_case = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self) -> Tuple:
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , )
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]:
__snake_case = OpenLlamaModel(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_)
__snake_case = model(lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]:
__snake_case = True
__snake_case = OpenLlamaModel(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , )
__snake_case = model(lowercase_ , attention_mask=lowercase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str:
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]:
__snake_case = True
__snake_case = True
__snake_case = OpenLlamaForCausalLM(config=lowercase_)
model.to(lowercase_)
model.eval()
# first forward pass
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , )
__snake_case = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size)
__snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
__snake_case = torch.cat([input_ids, next_tokens] , dim=-1)
__snake_case = torch.cat([input_mask, next_mask] , dim=-1)
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
__snake_case = model(
lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0]
# select random slice
__snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item()
__snake_case = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3))
def _a ( self) -> Optional[Any]:
__snake_case = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) = config_and_inputs
__snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__UpperCAmelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
__UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
def _a ( self) -> Tuple:
__snake_case = OpenLlamaModelTester(self)
__snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7)
def _a ( self) -> int:
self.config_tester.run_common_tests()
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> Optional[Any]:
__snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case = type
self.model_tester.create_and_check_model(*lowercase_)
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> str:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'single_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _a ( self) -> int:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = 3
__snake_case = 'multi_label_classification'
__snake_case = input_dict['input_ids']
__snake_case = input_ids.ne(1).to(lowercase_)
__snake_case = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
__snake_case = OpenLlamaForSequenceClassification(lowercase_)
model.to(lowercase_)
model.eval()
__snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test')
def _a ( self) -> List[Any]:
pass
@parameterized.expand([('linear',), ('dynamic',)])
def _a ( self , lowercase_) -> Optional[Any]:
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case = ids_tensor([1, 1_0] , config.vocab_size)
__snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = OpenLlamaModel(lowercase_)
original_model.to(lowercase_)
original_model.eval()
__snake_case = original_model(lowercase_).last_hidden_state
__snake_case = original_model(lowercase_).last_hidden_state
set_seed(4_2) # Fixed seed at init time so the two models get the same random weights
__snake_case = {'type': scaling_type, 'factor': 10.0}
__snake_case = OpenLlamaModel(lowercase_)
scaled_model.to(lowercase_)
scaled_model.eval()
__snake_case = scaled_model(lowercase_).last_hidden_state
__snake_case = scaled_model(lowercase_).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
else:
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
| 676 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Dict = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if number < 0:
return False
__snake_case = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = ['''image_processor''']
__UpperCAmelCase = '''SamImageProcessor'''
def __init__( self , lowercase_) -> int:
super().__init__(lowercase_)
__snake_case = self.image_processor
__snake_case = -1_0
__snake_case = self.image_processor.size['longest_edge']
def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = None , **lowercase_ , ) -> BatchEncoding:
__snake_case = self.image_processor(
lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
# pop arguments that are not used in the foward but used nevertheless
__snake_case = encoding_image_processor['original_sizes']
if hasattr(lowercase_ , 'numpy'): # Checks if Torch or TF tensor
__snake_case = original_sizes.numpy()
__snake_case , __snake_case , __snake_case = self._check_and_preprocess_points(
input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , )
__snake_case = self._normalize_and_convert(
lowercase_ , lowercase_ , input_points=lowercase_ , input_labels=lowercase_ , input_boxes=lowercase_ , return_tensors=lowercase_ , )
return encoding_image_processor
def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="pt" , ) -> Union[str, Any]:
if input_points is not None:
if len(lowercase_) != len(lowercase_):
__snake_case = [
self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0]) for point in input_points
]
else:
__snake_case = [
self._normalize_coordinates(self.target_size , lowercase_ , lowercase_)
for point, original_size in zip(lowercase_ , lowercase_)
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points):
if input_labels is not None:
__snake_case , __snake_case = self._pad_points_and_labels(lowercase_ , lowercase_)
__snake_case = np.array(lowercase_)
if input_labels is not None:
__snake_case = np.array(lowercase_)
if input_boxes is not None:
if len(lowercase_) != len(lowercase_):
__snake_case = [
self._normalize_coordinates(self.target_size , lowercase_ , original_sizes[0] , is_bounding_box=lowercase_)
for box in input_boxes
]
else:
__snake_case = [
self._normalize_coordinates(self.target_size , lowercase_ , lowercase_ , is_bounding_box=lowercase_)
for box, original_size in zip(lowercase_ , lowercase_)
]
__snake_case = np.array(lowercase_)
if input_boxes is not None:
if return_tensors == "pt":
__snake_case = torch.from_numpy(lowercase_)
# boxes batch size of 1 by default
__snake_case = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes
elif return_tensors == "tf":
__snake_case = tf.convert_to_tensor(lowercase_)
# boxes batch size of 1 by default
__snake_case = tf.expand_dims(lowercase_ , 1) if len(input_boxes.shape) != 3 else input_boxes
encoding_image_processor.update({'input_boxes': input_boxes})
if input_points is not None:
if return_tensors == "pt":
__snake_case = torch.from_numpy(lowercase_)
# point batch size of 1 by default
__snake_case = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points
elif return_tensors == "tf":
__snake_case = tf.convert_to_tensor(lowercase_)
# point batch size of 1 by default
__snake_case = tf.expand_dims(lowercase_ , 1) if len(input_points.shape) != 4 else input_points
encoding_image_processor.update({'input_points': input_points})
if input_labels is not None:
if return_tensors == "pt":
__snake_case = torch.from_numpy(lowercase_)
# point batch size of 1 by default
__snake_case = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels
elif return_tensors == "tf":
__snake_case = tf.convert_to_tensor(lowercase_)
# point batch size of 1 by default
__snake_case = tf.expand_dims(lowercase_ , 1) if len(input_labels.shape) != 3 else input_labels
encoding_image_processor.update({'input_labels': input_labels})
return encoding_image_processor
def _a ( self , lowercase_ , lowercase_) -> Any:
__snake_case = max([point.shape[0] for point in input_points])
__snake_case = []
for i, point in enumerate(lowercase_):
if point.shape[0] != expected_nb_points:
__snake_case = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0)
__snake_case = np.append(input_labels[i] , [self.point_pad_value])
processed_input_points.append(lowercase_)
__snake_case = processed_input_points
return input_points, input_labels
def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False) -> np.ndarray:
__snake_case , __snake_case = original_size
__snake_case , __snake_case = self.image_processor._get_preprocess_shape(lowercase_ , longest_edge=lowercase_)
__snake_case = deepcopy(lowercase_).astype(lowercase_)
if is_bounding_box:
__snake_case = coords.reshape(-1 , 2 , 2)
__snake_case = coords[..., 0] * (new_w / old_w)
__snake_case = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__snake_case = coords.reshape(-1 , 4)
return coords
def _a ( self , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Union[str, Any]:
if input_points is not None:
if hasattr(lowercase_ , 'numpy'): # Checks for TF or Torch tensor
__snake_case = input_points.numpy().tolist()
if not isinstance(lowercase_ , lowercase_) or not isinstance(input_points[0] , lowercase_):
raise ValueError('Input points must be a list of list of floating points.')
__snake_case = [np.array(lowercase_) for input_point in input_points]
else:
__snake_case = None
if input_labels is not None:
if hasattr(lowercase_ , 'numpy'):
__snake_case = input_labels.numpy().tolist()
if not isinstance(lowercase_ , lowercase_) or not isinstance(input_labels[0] , lowercase_):
raise ValueError('Input labels must be a list of list integers.')
__snake_case = [np.array(lowercase_) for label in input_labels]
else:
__snake_case = None
if input_boxes is not None:
if hasattr(lowercase_ , 'numpy'):
__snake_case = input_boxes.numpy().tolist()
if (
not isinstance(lowercase_ , lowercase_)
or not isinstance(input_boxes[0] , lowercase_)
or not isinstance(input_boxes[0][0] , lowercase_)
):
raise ValueError('Input boxes must be a list of list of list of floating points.')
__snake_case = [np.array(lowercase_).astype(np.floataa) for box in input_boxes]
else:
__snake_case = None
return input_points, input_labels, input_boxes
@property
def _a ( self) -> Optional[int]:
__snake_case = self.image_processor.model_input_names
return list(dict.fromkeys(lowercase_))
def _a ( self , *lowercase_ , **lowercase_) -> Union[str, Any]:
return self.image_processor.post_process_masks(*lowercase_ , **lowercase_)
| 676 |
import numpy as np
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def A ( snake_case__ : np.ndarray ) -> np.ndarray:
'''simple docstring'''
return vector * sigmoid(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 | 1 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]:
'''simple docstring'''
__snake_case = args.log_outputs
__snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
__snake_case = load_metric('wer' )
__snake_case = load_metric('cer' )
# compute metrics
__snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] )
__snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
__snake_case = f"WER: {wer_result}\nCER: {cer_result}"
print(snake_case__ )
with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f:
f.write(snake_case__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case = f"log_{dataset_id}_predictions.txt"
__snake_case = f"log_{dataset_id}_targets.txt"
with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t:
# mapping function to write output
def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ):
p.write(f"{i}" + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f"{i}" + '\n' )
t.write(batch['target'] + '\n' )
result.map(snake_case__ , with_indices=snake_case__ )
def A ( snake_case__ : str ) -> str:
'''simple docstring'''
__snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case = re.sub(snake_case__ , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
__snake_case = ' '.join(text.split(snake_case__ ) )
return text
def A ( snake_case__ : int ) -> Optional[int]:
'''simple docstring'''
# load dataset
__snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case = feature_extractor.sampling_rate
# resample audio
__snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) )
# load eval pipeline
if args.device is None:
__snake_case = 0 if torch.cuda.is_available() else -1
__snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case__ : Optional[Any] ):
__snake_case = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case = prediction['text']
__snake_case = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
__snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case__ , snake_case__ )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
UpperCAmelCase__ : str = parser.parse_args()
main(args)
| 676 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , *,
lowercase_ = 4 , lowercase_ = 7_6_8 , lowercase_ , lowercase_ , ) -> Tuple:
super().__init__()
__snake_case = nn.Parameter(torch.zeros(lowercase_))
# parameters for additional clip time embeddings
__snake_case = nn.Linear(lowercase_ , lowercase_)
__snake_case = nn.Linear(lowercase_ , lowercase_)
# parameters for encoder hidden states
__snake_case = clip_extra_context_tokens
__snake_case = nn.Linear(
lowercase_ , self.clip_extra_context_tokens * cross_attention_dim)
__snake_case = nn.Linear(lowercase_ , lowercase_)
__snake_case = nn.LayerNorm(lowercase_)
def _a ( self , *, lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[int]:
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__snake_case = image_embeddings.shape[0]
__snake_case = self.learned_classifier_free_guidance_embeddings.unsqueeze(0)
__snake_case = classifier_free_guidance_embeddings.expand(
lowercase_ , -1)
__snake_case = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0)
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__snake_case = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__snake_case = self.embedding_proj(lowercase_)
__snake_case = self.clip_image_embeddings_project_to_time_embeddings(lowercase_)
__snake_case = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__snake_case = self.clip_extra_context_tokens_proj(lowercase_)
__snake_case = clip_extra_context_tokens.reshape(lowercase_ , -1 , self.clip_extra_context_tokens)
__snake_case = clip_extra_context_tokens.permute(0 , 2 , 1)
__snake_case = self.encoder_hidden_states_proj(lowercase_)
__snake_case = self.text_encoder_hidden_states_norm(lowercase_)
__snake_case = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1)
return text_encoder_hidden_states, additive_clip_time_embeddings
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"]
UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Any = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Dict = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
def A ( snake_case__ : list[int] , snake_case__ : int ) -> bool:
'''simple docstring'''
__snake_case = len(snake_case__ )
__snake_case = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 676 | 1 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
| 676 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A ( snake_case__ : List[Any] ) -> Any:
'''simple docstring'''
__snake_case = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
__snake_case = 4
__snake_case = 48
__snake_case = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = [6, 6, 6, 6]
__snake_case = 60
__snake_case = [6, 6, 6, 6]
__snake_case = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = 4
__snake_case = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
__snake_case = 1
__snake_case = 1
__snake_case = 126
__snake_case = 7
__snake_case = 255.0
__snake_case = ''
return config
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
__snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
__snake_case = name.replace('layers' , 'encoder.stages' )
if "residual_group.blocks" in name:
__snake_case = name.replace('residual_group.blocks' , 'layers' )
if "attn.proj" in name:
__snake_case = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
__snake_case = name.replace('attn' , 'attention.self' )
if "norm1" in name:
__snake_case = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__snake_case = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
__snake_case = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__snake_case = name.replace('mlp.fc2' , 'output.dense' )
if "q_bias" in name:
__snake_case = name.replace('q_bias' , 'query.bias' )
if "k_bias" in name:
__snake_case = name.replace('k_bias' , 'key.bias' )
if "v_bias" in name:
__snake_case = name.replace('v_bias' , 'value.bias' )
if "cpb_mlp" in name:
__snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
__snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' )
if name == "norm.weight":
__snake_case = 'layernorm.weight'
if name == "norm.bias":
__snake_case = 'layernorm.bias'
if "conv_first" in name:
__snake_case = name.replace('conv_first' , 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
__snake_case = name.replace('conv_last' , 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
__snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' )
if "upsample.0" in name:
__snake_case = name.replace('upsample.0' , 'upsample.convolution_0' )
if "upsample.2" in name:
__snake_case = name.replace('upsample.2' , 'upsample.convolution_1' )
__snake_case = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
__snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' )
__snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' )
else:
pass
else:
__snake_case = 'swin2sr.' + name
return name
def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__snake_case = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
__snake_case = key.split('.' )
__snake_case = int(key_split[1] )
__snake_case = int(key_split[4] )
__snake_case = config.embed_dim
if "weight" in key:
__snake_case = val[:dim, :]
__snake_case = val[dim : dim * 2, :]
__snake_case = val[-dim:, :]
else:
__snake_case = val[:dim]
__snake_case = val[dim : dim * 2]
__snake_case = val[-dim:]
pass
else:
__snake_case = val
return orig_state_dict
def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple:
'''simple docstring'''
__snake_case = get_config(snake_case__ )
__snake_case = SwinaSRForImageSuperResolution(snake_case__ )
model.eval()
__snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )
__snake_case = convert_state_dict(snake_case__ , snake_case__ )
__snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0:
raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict" )
# verify values
__snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
__snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' )
__snake_case = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
__snake_case = 126 if 'Jpeg' in checkpoint_url else 256
__snake_case = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__snake_case = transforms(snake_case__ ).unsqueeze(0 )
if config.num_channels == 1:
__snake_case = pixel_values[:, 0, :, :].unsqueeze(1 )
__snake_case = model(snake_case__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
__snake_case = torch.Size([1, 3, 512, 512] )
__snake_case = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
__snake_case = torch.Size([1, 3, 1024, 1024] )
__snake_case = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 )
print('Looks ok!' )
__snake_case = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
__snake_case = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}" )
processor.push_to_hub(f"caidas/{model_name}" )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
UpperCAmelCase__ : Optional[Any] = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 676 | 1 |
from maths.prime_check import is_prime
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
__snake_case = f"Input value of [number={number}] must be an integer"
raise TypeError(snake_case__ )
if is_prime(snake_case__ ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 676 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase__ : int = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Optional[Any] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : int = ["BeitFeatureExtractor"]
UpperCAmelCase__ : Union[str, Any] = ["BeitImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = [
"BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BeitForImageClassification",
"BeitForMaskedImageModeling",
"BeitForSemanticSegmentation",
"BeitModel",
"BeitPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = [
"FlaxBeitForImageClassification",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitModel",
"FlaxBeitPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
from __future__ import annotations
class __lowercase :
def __init__( self , lowercase_) -> None:
__snake_case = data
__snake_case = None
__snake_case = None
def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def A ( snake_case__ : Node | None ) -> int:
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def A ( snake_case__ : Node ) -> bool:
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def A ( ) -> None: # Main function for testing.
'''simple docstring'''
__snake_case = Node(1 )
__snake_case = Node(2 )
__snake_case = Node(3 )
__snake_case = Node(4 )
__snake_case = Node(5 )
__snake_case = Node(6 )
__snake_case = Node(7 )
__snake_case = Node(8 )
__snake_case = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('Tree is: ' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 676 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase__ : List[Any] = {
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
"processing_speech_to_text": ["Speech2TextProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[Any] = ["Speech2TextTokenizer"]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : List[str] = ["Speech2TextFeatureExtractor"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[Any] = [
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Optional[int] = [
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Speech2TextForConditionalGeneration",
"Speech2TextModel",
"Speech2TextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 676 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = '''table-transformer'''
__UpperCAmelCase = ['''past_key_values''']
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.')
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.')
__snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4'])
elif isinstance(lowercase_ , lowercase_):
__snake_case = backbone_config.get('model_type')
__snake_case = CONFIG_MAPPING[backbone_model_type]
__snake_case = config_class.from_dict(lowercase_)
# set timm attributes to None
__snake_case , __snake_case , __snake_case = None, None, None
__snake_case = use_timm_backbone
__snake_case = backbone_config
__snake_case = num_channels
__snake_case = num_queries
__snake_case = d_model
__snake_case = encoder_ffn_dim
__snake_case = encoder_layers
__snake_case = encoder_attention_heads
__snake_case = decoder_ffn_dim
__snake_case = decoder_layers
__snake_case = decoder_attention_heads
__snake_case = dropout
__snake_case = attention_dropout
__snake_case = activation_dropout
__snake_case = activation_function
__snake_case = init_std
__snake_case = init_xavier_std
__snake_case = encoder_layerdrop
__snake_case = decoder_layerdrop
__snake_case = encoder_layers
__snake_case = auxiliary_loss
__snake_case = position_embedding_type
__snake_case = backbone
__snake_case = use_pretrained_backbone
__snake_case = dilation
# Hungarian matcher
__snake_case = class_cost
__snake_case = bbox_cost
__snake_case = giou_cost
# Loss coefficients
__snake_case = mask_loss_coefficient
__snake_case = dice_loss_coefficient
__snake_case = bbox_loss_coefficient
__snake_case = giou_loss_coefficient
__snake_case = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_)
@property
def _a ( self) -> int:
return self.encoder_attention_heads
@property
def _a ( self) -> int:
return self.d_model
class __lowercase ( lowerCamelCase__ ):
__UpperCAmelCase = version.parse('''1.11''' )
@property
def _a ( self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
('pixel_mask', {0: 'batch'}),
])
@property
def _a ( self) -> float:
return 1e-5
@property
def _a ( self) -> int:
return 1_2
| 676 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.