code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings from .generation import TFGenerationMixin class __lowercase ( lowerCamelCase__ ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , lowerCamelCase__ , )
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ : Dict = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ : List[Any] = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } UpperCAmelCase__ : List[Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase = DistilBertTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Optional[Any]: super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , lowercase_) != do_lower_case or normalizer_state.get('strip_accents' , lowercase_) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase_) != tokenize_chinese_chars ): __snake_case = getattr(lowercase_ , normalizer_state.pop('type')) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**lowercase_) __snake_case = do_lower_case def _a ( self , lowercase_ , lowercase_=None) -> Dict: __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: __snake_case = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_)
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = (DPMSolverSDEScheduler,) __UpperCAmelCase = 10 def _a ( self , **lowercase_) -> List[str]: __snake_case = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowercase_) return config def _a ( self) -> Any: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_) def _a ( self) -> Dict: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _a ( self) -> List[str]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_) def _a ( self) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case = sample.to(lowercase_) for i, t in enumerate(scheduler.timesteps): __snake_case = scheduler.scale_model_input(lowercase_ , lowercase_) __snake_case = model(lowercase_ , lowercase_) __snake_case = scheduler.step(lowercase_ , lowercase_ , lowercase_) __snake_case = output.prev_sample __snake_case = torch.sum(torch.abs(lowercase_)) __snake_case = torch.mean(torch.abs(lowercase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def _a ( self) -> Union[str, Any]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(prediction_type='v_prediction') __snake_case = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case = sample.to(lowercase_) for i, t in enumerate(scheduler.timesteps): __snake_case = scheduler.scale_model_input(lowercase_ , lowercase_) __snake_case = model(lowercase_ , lowercase_) __snake_case = scheduler.step(lowercase_ , lowercase_ , lowercase_) __snake_case = output.prev_sample __snake_case = torch.sum(torch.abs(lowercase_)) __snake_case = torch.mean(torch.abs(lowercase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621) < 1e-3 def _a ( self) -> Optional[int]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.to(lowercase_) * scheduler.init_noise_sigma for t in scheduler.timesteps: __snake_case = scheduler.scale_model_input(lowercase_ , lowercase_) __snake_case = model(lowercase_ , lowercase_) __snake_case = scheduler.step(lowercase_ , lowercase_ , lowercase_) __snake_case = output.prev_sample __snake_case = torch.sum(torch.abs(lowercase_)) __snake_case = torch.mean(torch.abs(lowercase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326) < 1e-3 def _a ( self) -> List[Any]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.to(lowercase_) * scheduler.init_noise_sigma __snake_case = sample.to(lowercase_) for t in scheduler.timesteps: __snake_case = scheduler.scale_model_input(lowercase_ , lowercase_) __snake_case = model(lowercase_ , lowercase_) __snake_case = scheduler.step(lowercase_ , lowercase_ , lowercase_) __snake_case = output.prev_sample __snake_case = torch.sum(torch.abs(lowercase_)) __snake_case = torch.mean(torch.abs(lowercase_)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811) < 1e-2
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=5_1_2 , lowercase_="cls" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) __snake_case = project_dim __snake_case = pooler_fn __snake_case = learn_encoder __snake_case = use_attention_mask class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [R'''pooler''', R'''logit_scale'''] __UpperCAmelCase = [R'''position_ids''', R'''predictions.decoder.bias'''] __UpperCAmelCase = '''roberta''' __UpperCAmelCase = RobertaSeriesConfig def __init__( self , lowercase_) -> Optional[int]: super().__init__(lowercase_) __snake_case = XLMRobertaModel(lowercase_) __snake_case = nn.Linear(config.hidden_size , config.project_dim) __snake_case = getattr(lowercase_ , 'has_pre_transformation' , lowercase_) if self.has_pre_transformation: __snake_case = nn.Linear(config.hidden_size , config.project_dim) __snake_case = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def _a ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> Tuple: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.base_model( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_attentions=lowercase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowercase_ , ) if self.has_pre_transformation: __snake_case = outputs['hidden_states'][-2] __snake_case = self.pre_LN(lowercase_) __snake_case = self.transformation_pre(lowercase_) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __snake_case = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase__ : Dict = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" UpperCAmelCase__ : Optional[int] = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" UpperCAmelCase__ : List[str] = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def A ( snake_case__ : List[str] , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return float((preds == labels).mean() ) def A ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = simple_accuracy(snake_case__ , snake_case__ ) __snake_case = float(fa_score(y_true=snake_case__ , y_pred=snake_case__ ) ) return { "accuracy": acc, "f1": fa, } def A ( snake_case__ : List[Any] , snake_case__ : Any ) -> str: '''simple docstring''' __snake_case = np.array(snake_case__ ) __snake_case = np.array(snake_case__ ) __snake_case = en_sentvecs.shape[0] # mean centering __snake_case = en_sentvecs - np.mean(snake_case__ , axis=0 ) __snake_case = in_sentvecs - np.mean(snake_case__ , axis=0 ) __snake_case = cdist(snake_case__ , snake_case__ , 'cosine' ) __snake_case = np.array(range(snake_case__ ) ) __snake_case = sim.argsort(axis=1 )[:, :10] __snake_case = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def _a ( self) -> Union[str, Any]: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def _a ( self , lowercase_ , lowercase_) -> List[str]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowercase_ , lowercase_)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowercase_ , lowercase_) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowercase_ , lowercase_)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase__ : str = logging.get_logger(__name__) def A ( ) -> List[str]: '''simple docstring''' # Get the sagemaker specific mp parameters from smp_options variable. __snake_case = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __snake_case = json.loads(snake_case__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __snake_case = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __snake_case = json.loads(snake_case__ ) if not mpi_options.get('sagemaker_mpi_enabled' , snake_case__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self) -> List[Any]: super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , lowercase_ , ) @cached_property def _a ( self) -> "torch.device": logger.info('PyTorch: setting up devices') if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch') if self.no_cuda: __snake_case = torch.device('cpu') __snake_case = 0 elif is_sagemaker_model_parallel_available(): __snake_case = smp.local_rank() __snake_case = torch.device('cuda' , lowercase_) __snake_case = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta) __snake_case = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK')) __snake_case = torch.device('cuda' , self.local_rank) __snake_case = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __snake_case = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __snake_case = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta) __snake_case = torch.device('cuda' , self.local_rank) __snake_case = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_) return device @property def _a ( self) -> Optional[int]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self) -> Optional[Any]: return not is_sagemaker_model_parallel_available() @property def _a ( self) -> Any: return False
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
import re def A ( snake_case__ : str ) -> bool: '''simple docstring''' __snake_case = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(snake_case__ , snake_case__ ) ) if __name__ == "__main__": UpperCAmelCase__ : int = "0094702343221" print(is_sri_lankan_phone_number(phone))
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowercase ( datasets.BuilderConfig ): __UpperCAmelCase = None class __lowercase ( datasets.ArrowBasedBuilder ): __UpperCAmelCase = PandasConfig def _a ( self) -> Optional[int]: return datasets.DatasetInfo(features=self.config.features) def _a ( self , lowercase_) -> int: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") __snake_case = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowercase_ , (str, list, tuple)): __snake_case = data_files if isinstance(lowercase_ , lowercase_): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(lowercase_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __snake_case = [] for split_name, files in data_files.items(): if isinstance(lowercase_ , lowercase_): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(lowercase_) for file in files] splits.append(datasets.SplitGenerator(name=lowercase_ , gen_kwargs={'files': files})) return splits def _a ( self , lowercase_) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case = table_cast(lowercase_ , self.config.features.arrow_schema) return pa_table def _a ( self , lowercase_) -> Optional[Any]: for i, file in enumerate(itertools.chain.from_iterable(lowercase_)): with open(lowercase_ , 'rb') as f: __snake_case = pa.Table.from_pandas(pd.read_pickle(lowercase_)) yield i, self._cast_table(lowercase_)
676
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
1
from statistics import mean import numpy as np def A ( snake_case__ : list , snake_case__ : list , snake_case__ : list , snake_case__ : int ) -> list: '''simple docstring''' __snake_case = 0 # Number of processes finished __snake_case = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case = [0] * no_of_process # List to include calculation results __snake_case = [0] * no_of_process # Sort by arrival time. __snake_case = [burst_time[i] for i in np.argsort(snake_case__ )] __snake_case = [process_name[i] for i in np.argsort(snake_case__ )] arrival_time.sort() while no_of_process > finished_process_count: __snake_case = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case = arrival_time[i] __snake_case = 0 # Index showing the location of the process being performed __snake_case = 0 # Saves the current response ratio. __snake_case = 0 for i in range(0 , snake_case__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case = temp __snake_case = i # Calculate the turn around time __snake_case = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A ( snake_case__ : list , snake_case__ : list , snake_case__ : list , snake_case__ : int ) -> list: '''simple docstring''' __snake_case = [0] * no_of_process for i in range(0 , snake_case__ ): __snake_case = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCAmelCase__ : str = 5 UpperCAmelCase__ : Union[str, Any] = ["A", "B", "C", "D", "E"] UpperCAmelCase__ : Optional[Any] = [1, 2, 3, 4, 5] UpperCAmelCase__ : Any = [1, 2, 3, 4, 5] UpperCAmelCase__ : Optional[int] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCAmelCase__ : Optional[int] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
676
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
1
def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) __snake_case = ( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
676
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''mvp''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase_=5_0_2_6_7 , lowercase_=1_0_2_4 , lowercase_=1_2 , lowercase_=4_0_9_6 , lowercase_=1_6 , lowercase_=1_2 , lowercase_=4_0_9_6 , lowercase_=1_6 , lowercase_=0.0 , lowercase_=0.0 , lowercase_="gelu" , lowercase_=1_0_2_4 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=False , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=True , lowercase_=2 , lowercase_=2 , lowercase_=False , lowercase_=1_0_0 , lowercase_=8_0_0 , **lowercase_ , ) -> Optional[Any]: __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = classifier_dropout __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = use_prompt __snake_case = prompt_length __snake_case = prompt_mid_dim super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowercase_): __snake_case = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " 'The config can simply be saved and uploaded again to be fixed.')
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''speech'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['speech']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''speech'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['speech'])
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def A ( snake_case__ : Tuple , snake_case__ : Tuple ) -> Dict: '''simple docstring''' # ===== initialization ===== __snake_case = Mock() __snake_case = conn, Mock() __snake_case = iter([1, None] ) __snake_case = lambda snake_case__ : next(snake_case__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=snake_case__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
676
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
1
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
1
import sys from collections import defaultdict class __lowercase : def __init__( self) -> List[Any]: __snake_case = [] def _a ( self , lowercase_) -> Tuple: return self.node_position[vertex] def _a ( self , lowercase_ , lowercase_) -> int: __snake_case = pos def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __snake_case = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __snake_case = 2 * start + 1 else: __snake_case = 2 * start + 2 if heap[smallest_child] < heap[start]: __snake_case , __snake_case = heap[smallest_child], positions[smallest_child] __snake_case , __snake_case = ( heap[start], positions[start], ) __snake_case , __snake_case = temp, tempa __snake_case = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , lowercase_) self.top_to_bottom(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: __snake_case = position[index] while index != 0: __snake_case = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: __snake_case = heap[parent] __snake_case = position[parent] self.set_position(position[parent] , lowercase_) else: __snake_case = val __snake_case = temp self.set_position(lowercase_ , lowercase_) break __snake_case = parent else: __snake_case = val __snake_case = temp self.set_position(lowercase_ , 0) def _a ( self , lowercase_ , lowercase_) -> Optional[int]: __snake_case = len(lowercase_) // 2 - 1 for i in range(lowercase_ , -1 , -1): self.top_to_bottom(lowercase_ , lowercase_ , len(lowercase_) , lowercase_) def _a ( self , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = positions[0] __snake_case = sys.maxsize self.top_to_bottom(lowercase_ , 0 , len(lowercase_) , lowercase_) return temp def A ( snake_case__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = Heap() __snake_case = [0] * len(snake_case__ ) __snake_case = [-1] * len(snake_case__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __snake_case = [] # Heap of Distance of vertices from their neighboring vertex __snake_case = [] for vertex in range(len(snake_case__ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case__ ) heap.node_position.append(snake_case__ ) __snake_case = [] __snake_case = 1 __snake_case = sys.maxsize for neighbor, distance in adjacency_list[0]: __snake_case = 0 __snake_case = distance heap.heapify(snake_case__ , snake_case__ ) for _ in range(1 , len(snake_case__ ) ): __snake_case = heap.delete_minimum(snake_case__ , snake_case__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __snake_case = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case__ )] ): __snake_case = distance heap.bottom_to_top( snake_case__ , heap.get_position(snake_case__ ) , snake_case__ , snake_case__ ) __snake_case = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : List[str] = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ : Tuple = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : int = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : str = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''openai-gpt''' __UpperCAmelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase_=4_0_4_7_8 , lowercase_=5_1_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1e-5 , lowercase_=0.02 , lowercase_="cls_index" , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=0.1 , **lowercase_ , ) -> Optional[int]: __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = afn __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = summary_type __snake_case = summary_use_proj __snake_case = summary_activation __snake_case = summary_first_dropout __snake_case = summary_proj_to_labels super().__init__(**lowercase_)
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Union[str, Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowercase ( unittest.TestCase ): def _a ( self) -> Optional[int]: __snake_case = inspect.getfile(accelerate.test_utils) __snake_case = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_script.py']) __snake_case = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_distributed_data_loop.py']) __snake_case = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_ops.py']) @require_multi_gpu def _a ( self) -> Optional[Any]: print(F"Found {torch.cuda.device_count()} devices.") __snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase_ , env=os.environ.copy()) @require_multi_gpu def _a ( self) -> str: print(F"Found {torch.cuda.device_count()} devices.") __snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}") with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase_ , env=os.environ.copy()) @require_multi_gpu def _a ( self) -> Optional[int]: __snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowercase_ , env=os.environ.copy()) @require_multi_gpu def _a ( self) -> int: print(F"Found {torch.cuda.device_count()} devices, using 2 devices only") __snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1'): execute_subprocess_async(lowercase_ , env=os.environ.copy()) if __name__ == "__main__": UpperCAmelCase__ : str = Accelerator() UpperCAmelCase__ : str = (accelerator.state.process_index + 2, 10) UpperCAmelCase__ : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) UpperCAmelCase__ : Optional[Any] = "" UpperCAmelCase__ : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase__ : Optional[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase__ : str = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCAmelCase__ : Dict = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , **lowercase_) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __UpperCAmelCase = '''CIDAS/clipseg-rd64-refined''' __UpperCAmelCase = '''image_segmenter''' __UpperCAmelCase = CLIPSegForImageSegmentation __UpperCAmelCase = ['''image''', '''text'''] __UpperCAmelCase = ['''image'''] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['vision']) super().__init__(*lowercase_ , **lowercase_) def _a ( self , lowercase_ , lowercase_) -> str: return self.pre_processor(text=[label] , images=[image] , padding=lowercase_ , return_tensors='pt') def _a ( self , lowercase_) -> int: with torch.no_grad(): __snake_case = self.model(**lowercase_).logits return logits def _a ( self , lowercase_) -> List[str]: __snake_case = outputs.cpu().detach().numpy() __snake_case = 0 __snake_case = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
from string import ascii_uppercase UpperCAmelCase__ : str = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase__ : Optional[int] = dict(enumerate(ascii_uppercase)) def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = 0 while True: if x == i: __snake_case = 0 if len(snake_case__ ) == len(snake_case__ ): break key += key[i] i += 1 return key def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '' __snake_case = 0 for letter in message: if letter == " ": cipher_text += " " else: __snake_case = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '' __snake_case = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __snake_case = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' __snake_case = 'THE GERMAN ATTACK' __snake_case = 'SECRET' __snake_case = generate_key(snake_case__ , snake_case__ ) __snake_case = cipher_text(snake_case__ , snake_case__ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(snake_case__ , snake_case__ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
676
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
1
from __future__ import annotations UpperCAmelCase__ : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __lowercase : def __init__( self , lowercase_ , lowercase_) -> None: __snake_case = graph # mapping node to its parent in resulting breadth first tree __snake_case = {} __snake_case = source_vertex def _a ( self) -> None: __snake_case = {self.source_vertex} __snake_case = None __snake_case = [self.source_vertex] # first in first out queue while queue: __snake_case = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowercase_) __snake_case = vertex queue.append(lowercase_) def _a ( self , lowercase_) -> str: if target_vertex == self.source_vertex: return self.source_vertex __snake_case = self.parent.get(lowercase_) if target_vertex_parent is None: __snake_case = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(lowercase_) return self.shortest_path(lowercase_) + F"->{target_vertex}" if __name__ == "__main__": UpperCAmelCase__ : Dict = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
676
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
1
from math import pow, sqrt def A ( *snake_case__ : float ) -> bool: '''simple docstring''' __snake_case = len(snake_case__ ) > 0 and all(value > 0.0 for value in values ) return result def A ( snake_case__ : float , snake_case__ : float ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
676
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
1
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
1
def A ( snake_case__ : int ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def A ( snake_case__ : int ) -> bool: '''simple docstring''' __snake_case = 0 __snake_case = number while duplicate > 0: __snake_case , __snake_case = divmod(snake_case__ , 10 ) fact_sum += factorial(snake_case__ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") UpperCAmelCase__ : str = int(input("Enter number: ").strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
676
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
1
from typing import List import numpy as np def A ( snake_case__ : dict ) -> int: '''simple docstring''' __snake_case = {key: len(snake_case__ ) for key, value in gen_kwargs.items() if isinstance(snake_case__ , snake_case__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) __snake_case = max(lists_lengths.values() , default=0 ) return max(1 , snake_case__ ) def A ( snake_case__ : int , snake_case__ : int ) -> List[range]: '''simple docstring''' __snake_case = [] for group_idx in range(snake_case__ ): __snake_case = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __snake_case = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __snake_case = range(snake_case__ , start + num_shards_to_add ) shards_indices_per_group.append(snake_case__ ) return shards_indices_per_group def A ( snake_case__ : dict , snake_case__ : int ) -> List[dict]: '''simple docstring''' __snake_case = _number_of_shards_in_gen_kwargs(snake_case__ ) if num_shards == 1: return [dict(snake_case__ )] else: __snake_case = _distribute_shards(num_shards=snake_case__ , max_num_jobs=snake_case__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case__ , snake_case__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case__ ) ) ] def A ( snake_case__ : List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A ( snake_case__ : np.random.Generator , snake_case__ : dict ) -> dict: '''simple docstring''' __snake_case = {len(snake_case__ ) for value in gen_kwargs.values() if isinstance(snake_case__ , snake_case__ )} __snake_case = {} for size in list_sizes: __snake_case = list(range(snake_case__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __snake_case = dict(snake_case__ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case__ , snake_case__ ): __snake_case = [value[i] for i in indices_per_size[len(snake_case__ )]] return shuffled_kwargs
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = "Hello world! cécé herlolip" def A ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ) -> Optional[Any]: '''simple docstring''' __snake_case = FairseqRobertaModel.from_pretrained(snake_case__ ) roberta.eval() # disable dropout __snake_case = roberta.model.encoder.sentence_encoder __snake_case = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __snake_case = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , snake_case__ ) __snake_case = XLMRobertaXLForSequenceClassification(snake_case__ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __snake_case = roberta_sent_encoder.embed_tokens.weight __snake_case = roberta_sent_encoder.embed_positions.weight __snake_case = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __snake_case = roberta_sent_encoder.layer_norm.weight __snake_case = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __snake_case = model.roberta.encoder.layer[i] __snake_case = roberta_sent_encoder.layers[i] __snake_case = layer.attention __snake_case = roberta_layer.self_attn_layer_norm.weight __snake_case = roberta_layer.self_attn_layer_norm.bias # self attention __snake_case = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __snake_case = roberta_layer.self_attn.q_proj.weight __snake_case = roberta_layer.self_attn.q_proj.bias __snake_case = roberta_layer.self_attn.k_proj.weight __snake_case = roberta_layer.self_attn.k_proj.bias __snake_case = roberta_layer.self_attn.v_proj.weight __snake_case = roberta_layer.self_attn.v_proj.bias # self-attention output __snake_case = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __snake_case = roberta_layer.self_attn.out_proj.weight __snake_case = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __snake_case = roberta_layer.final_layer_norm.weight __snake_case = roberta_layer.final_layer_norm.bias # intermediate __snake_case = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case = roberta_layer.fca.weight __snake_case = roberta_layer.fca.bias # output __snake_case = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case = roberta_layer.fca.weight __snake_case = roberta_layer.fca.bias # end of layer if classification_head: __snake_case = roberta.model.classification_heads['mnli'].dense.weight __snake_case = roberta.model.classification_heads['mnli'].dense.bias __snake_case = roberta.model.classification_heads['mnli'].out_proj.weight __snake_case = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __snake_case = roberta.model.encoder.lm_head.dense.weight __snake_case = roberta.model.encoder.lm_head.dense.bias __snake_case = roberta.model.encoder.lm_head.layer_norm.weight __snake_case = roberta.model.encoder.lm_head.layer_norm.bias __snake_case = roberta.model.encoder.lm_head.weight __snake_case = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __snake_case = roberta.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 __snake_case = model(snake_case__ )[0] if classification_head: __snake_case = roberta.model.classification_heads['mnli'](roberta.extract_features(snake_case__ ) ) else: __snake_case = roberta.model(snake_case__ )[0] print(our_output.shape , their_output.shape ) __snake_case = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __snake_case = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase__ : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
676
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): UpperCAmelCase__ : List[str] = True from torch.cuda.amp import autocast UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) def A ( snake_case__ : Dict=None , snake_case__ : Optional[Any]=None ) -> Optional[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class __lowercase : __UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __UpperCAmelCase = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __UpperCAmelCase = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class __lowercase : __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __UpperCAmelCase = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class __lowercase : __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , lowercase_) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __snake_case = [{'input_values': feature['input_values']} for feature in features] __snake_case = [{'input_ids': feature['labels']} for feature in features] __snake_case = self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __snake_case = self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __snake_case = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_0_0) __snake_case = labels return batch class __lowercase ( lowerCamelCase__ ): def _a ( self , lowercase_ , lowercase_) -> torch.Tensor: model.train() __snake_case = self._prepare_inputs(lowercase_) if self.use_amp: with autocast(): __snake_case = self.compute_loss(lowercase_ , lowercase_) else: __snake_case = self.compute_loss(lowercase_ , lowercase_) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __snake_case = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __snake_case = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: __snake_case = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_) else: loss.backward() return loss.detach() def A ( ) -> str: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __snake_case = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) __snake_case = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer __snake_case = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(snake_case__ : str ): __snake_case = re.sub(snake_case__ , '' , batch['sentence'] ).lower() + ' ' return batch __snake_case = train_dataset.map(snake_case__ , remove_columns=['sentence'] ) __snake_case = eval_dataset.map(snake_case__ , remove_columns=['sentence'] ) def extract_all_chars(snake_case__ : Optional[Any] ): __snake_case = ' '.join(batch['text'] ) __snake_case = list(set(snake_case__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __snake_case = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=train_dataset.column_names , ) __snake_case = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=eval_dataset.column_names , ) __snake_case = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __snake_case = {v: k for k, v in enumerate(snake_case__ )} __snake_case = vocab_dict[' '] del vocab_dict[" "] __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(snake_case__ , snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ ) __snake_case = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) __snake_case = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __snake_case = min(len(snake_case__ ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(snake_case__ ) ) if data_args.max_val_samples is not None: __snake_case = eval_dataset.select(range(data_args.max_val_samples ) ) __snake_case = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case__ : List[str] ): __snake_case , __snake_case = torchaudio.load(batch['path'] ) __snake_case = resampler(snake_case__ ).squeeze().numpy() __snake_case = 1_6000 __snake_case = batch['text'] return batch __snake_case = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __snake_case = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case__ : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __snake_case = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(snake_case__ ) return batch __snake_case = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) __snake_case = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __snake_case = datasets.load_metric('wer' ) def compute_metrics(snake_case__ : int ): __snake_case = pred.predictions __snake_case = np.argmax(snake_case__ , axis=-1 ) __snake_case = processor.tokenizer.pad_token_id __snake_case = processor.batch_decode(snake_case__ ) # we do not want to group tokens when computing the metrics __snake_case = processor.batch_decode(pred.label_ids , group_tokens=snake_case__ ) __snake_case = wer_metric.compute(predictions=snake_case__ , references=snake_case__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __snake_case = DataCollatorCTCWithPadding(processor=snake_case__ , padding=snake_case__ ) # Initialize our Trainer __snake_case = CTCTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , compute_metrics=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __snake_case = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __snake_case = model_args.model_name_or_path else: __snake_case = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __snake_case = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) __snake_case = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('train' , snake_case__ ) trainer.save_metrics('train' , snake_case__ ) trainer.save_state() # Evaluation __snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case__ ) __snake_case = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) return results if __name__ == "__main__": main()
676
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : Union[str, Any] = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __lowercase ( nn.Module ): def __init__( self) -> str: super().__init__() __snake_case = nn.Linear(3 , 4) __snake_case = nn.BatchNormad(4) __snake_case = nn.Linear(4 , 5) def _a ( self , lowercase_) -> str: return self.lineara(self.batchnorm(self.lineara(lowercase_))) class __lowercase ( lowerCamelCase__ ): def _a ( self , lowercase_ , *lowercase_ , **lowercase_) -> List[Any]: return (args[0] + 1,) + args[1:], kwargs class __lowercase ( lowerCamelCase__ ): def _a ( self , lowercase_ , lowercase_) -> int: return output + 1 class __lowercase ( unittest.TestCase ): def _a ( self) -> Dict: __snake_case = ModelForTest() __snake_case = ModelHook() add_hook_to_module(lowercase_ , lowercase_) self.assertEqual(test_model._hf_hook , lowercase_) self.assertTrue(hasattr(lowercase_ , '_old_forward')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x']) remove_hook_from_module(lowercase_) self.assertFalse(hasattr(lowercase_ , '_hf_hook')) self.assertFalse(hasattr(lowercase_ , '_old_forward')) def _a ( self) -> Optional[int]: __snake_case = ModelForTest() __snake_case = ModelHook() add_hook_to_module(lowercase_ , lowercase_) add_hook_to_module(lowercase_ , lowercase_ , append=lowercase_) self.assertEqual(isinstance(test_model._hf_hook , lowercase_) , lowercase_) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(lowercase_ , '_old_forward')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x']) remove_hook_from_module(lowercase_) self.assertFalse(hasattr(lowercase_ , '_hf_hook')) self.assertFalse(hasattr(lowercase_ , '_old_forward')) def _a ( self) -> int: __snake_case = ModelForTest() __snake_case = torch.randn(2 , 3) __snake_case = test_model(x + 1) __snake_case = test_model(x + 2) __snake_case = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case = PreForwardHook() add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __snake_case = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) assert torch.allclose(lowercase_ , lowercase_ , atol=1e-5) def _a ( self) -> List[str]: __snake_case = ModelForTest() __snake_case = torch.randn(2 , 3) __snake_case = test_model(lowercase_) __snake_case = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) self.assertTrue(torch.allclose(lowercase_ , output + 1 , atol=1e-5)) # You need to use the sequential hook to chain two or more hooks __snake_case = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) assert torch.allclose(lowercase_ , output + 2 , atol=1e-5) def _a ( self) -> List[Any]: __snake_case = ModelForTest() __snake_case = torch.randn(2 , 3) __snake_case = test_model(lowercase_) __snake_case = PostForwardHook() add_hook_to_module(lowercase_ , lowercase_) __snake_case = test_model(lowercase_) self.assertTrue(torch.allclose(lowercase_ , output + 1)) self.assertTrue(outputa.requires_grad) __snake_case = True __snake_case = test_model(lowercase_) self.assertFalse(outputa.requires_grad) @require_multi_gpu def _a ( self) -> List[str]: __snake_case = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase_ , AlignDevicesHook(io_same_device=lowercase_)) __snake_case = torch.randn(2 , 3).to(0) __snake_case = model(lowercase_) self.assertEqual(output.device , torch.device(0)) def _a ( self) -> List[str]: __snake_case = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices __snake_case = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device __snake_case = torch.device(hook_kwargs['execution_device']) self.assertEqual(model.batchnorm.running_mean.device , lowercase_) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload __snake_case = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase_)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase_)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) def _a ( self) -> Dict: __snake_case = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices __snake_case = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device __snake_case = torch.device(lowercase_) self.assertEqual(model.batchnorm.running_mean.device , lowercase_) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload attach_align_device_hook(lowercase_ , execution_device=lowercase_ , offload=lowercase_ , offload_buffers=lowercase_) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) def _a ( self) -> str: __snake_case = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices __snake_case = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device __snake_case = torch.device(lowercase_) self.assertEqual(model.batchnorm.running_mean.device , lowercase_) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload attach_align_device_hook( lowercase_ , execution_device=lowercase_ , offload=lowercase_ , weights_map=model.state_dict() , offload_buffers=lowercase_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) __snake_case = torch.randn(2 , 3) __snake_case = model(lowercase_) self.assertEqual(output.device , lowercase_) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase_) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase__ : List[str] = get_logger(__name__) class __lowercase : def __init__( self , lowercase_ = None) -> List[Any]: __snake_case = ( os.path.join(lowercase_ , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __snake_case = Extractor def _a ( self , lowercase_) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __snake_case = os.path.abspath(lowercase_) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase_)) def _a ( self , lowercase_ , lowercase_) -> bool: return force_extract or ( not os.path.isfile(lowercase_) and not (os.path.isdir(lowercase_) and os.listdir(lowercase_)) ) def _a ( self , lowercase_ , lowercase_ = False) -> str: __snake_case = self.extractor.infer_extractor_format(lowercase_) if not extractor_format: return input_path __snake_case = self._get_output_path(lowercase_) if self._do_extract(lowercase_ , lowercase_): self.extractor.extract(lowercase_ , lowercase_ , lowercase_) return output_path class __lowercase ( lowerCamelCase__ ): @classmethod @abstractmethod def _a ( cls , lowercase_ , **lowercase_) -> bool: ... @staticmethod @abstractmethod def _a ( lowercase_ , lowercase_) -> None: ... class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = [] @staticmethod def _a ( lowercase_ , lowercase_) -> Optional[Any]: with open(lowercase_ , 'rb') as f: return f.read(lowercase_) @classmethod def _a ( cls , lowercase_ , lowercase_ = b"") -> bool: if not magic_number: __snake_case = max(len(lowercase_) for cls_magic_number in cls.magic_numbers) try: __snake_case = cls.read_magic_number(lowercase_ , lowercase_) except OSError: return False return any(magic_number.startswith(lowercase_) for cls_magic_number in cls.magic_numbers) class __lowercase ( lowerCamelCase__ ): @classmethod def _a ( cls , lowercase_ , **lowercase_) -> bool: return tarfile.is_tarfile(lowercase_) @staticmethod def _a ( lowercase_ , lowercase_) -> Any: def resolved(lowercase_) -> str: return os.path.realpath(os.path.abspath(lowercase_)) def badpath(lowercase_ , lowercase_) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase_ , lowercase_)).startswith(lowercase_) def badlink(lowercase_ , lowercase_) -> bool: # Links are interpreted relative to the directory containing the link __snake_case = resolved(os.path.join(lowercase_ , os.path.dirname(info.name))) return badpath(info.linkname , base=lowercase_) __snake_case = resolved(lowercase_) for finfo in members: if badpath(finfo.name , lowercase_): logger.error(F"Extraction of {finfo.name} is blocked (illegal path)") elif finfo.issym() and badlink(lowercase_ , lowercase_): logger.error(F"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}") elif finfo.islnk() and badlink(lowercase_ , lowercase_): logger.error(F"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}") else: yield finfo @staticmethod def _a ( lowercase_ , lowercase_) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = tarfile.open(lowercase_) tar_file.extractall(lowercase_ , members=TarExtractor.safemembers(lowercase_ , lowercase_)) tar_file.close() class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\x1F\x8B'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: with gzip.open(lowercase_ , 'rb') as gzip_file: with open(lowercase_ , 'wb') as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [ b'''PK\x03\x04''', b'''PK\x05\x06''', # empty archive b'''PK\x07\x08''', # spanned archive ] @classmethod def _a ( cls , lowercase_ , lowercase_ = b"") -> bool: if super().is_extractable(lowercase_ , magic_number=lowercase_): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase_ , 'rb') as fp: __snake_case = _EndRecData(lowercase_) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __snake_case = fp.read(lowercase_) # CD is where we expect it to be if len(lowercase_) == sizeCentralDir: __snake_case = struct.unpack(lowercase_ , lowercase_) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( lowercase_ , lowercase_) -> None: os.makedirs(lowercase_ , exist_ok=lowercase_) with zipfile.ZipFile(lowercase_ , 'r') as zip_file: zip_file.extractall(lowercase_) zip_file.close() class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: with lzma.open(lowercase_) as compressed_file: with open(lowercase_ , 'wb') as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''Rar!\x1a\x07\x00''', b'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def _a ( lowercase_ , lowercase_) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile') import rarfile os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = rarfile.RarFile(lowercase_) rf.extractall(lowercase_) rf.close() class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\x28\xb5\x2F\xFD'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard') import zstandard as zstd __snake_case = zstd.ZstdDecompressor() with open(lowercase_ , 'rb') as ifh, open(lowercase_ , 'wb') as ofh: dctx.copy_stream(lowercase_ , lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\x42\x5A\x68'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: with bza.open(lowercase_ , 'rb') as compressed_file: with open(lowercase_ , 'wb') as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr') import pyazr os.makedirs(lowercase_ , exist_ok=lowercase_) with pyazr.SevenZipFile(lowercase_ , 'r') as archive: archive.extractall(lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [b'''\x04\x22\x4D\x18'''] @staticmethod def _a ( lowercase_ , lowercase_) -> None: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4') import lza.frame with lza.frame.open(lowercase_ , 'rb') as compressed_file: with open(lowercase_ , 'wb') as extracted_file: shutil.copyfileobj(lowercase_ , lowercase_) class __lowercase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __UpperCAmelCase = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls) -> int: return max( len(lowercase_) for extractor in cls.extractors.values() if issubclass(lowercase_ , lowercase_) for extractor_magic_number in extractor.magic_numbers) @staticmethod def _a ( lowercase_ , lowercase_) -> Tuple: try: return MagicNumberBaseExtractor.read_magic_number(lowercase_ , magic_number_length=lowercase_) except OSError: return b"" @classmethod def _a ( cls , lowercase_ , lowercase_ = False) -> bool: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowercase_ , ) __snake_case = cls.infer_extractor_format(lowercase_) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls , lowercase_) -> str: # <Added version="2.4.0"/> __snake_case = cls._get_magic_number_max_length() __snake_case = cls._read_magic_number(lowercase_ , lowercase_) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase_ , magic_number=lowercase_): return extractor_format @classmethod def _a ( cls , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase_) , exist_ok=lowercase_) # Prevent parallel extractions __snake_case = str(Path(lowercase_).with_suffix('.lock')) with FileLock(lowercase_): shutil.rmtree(lowercase_ , ignore_errors=lowercase_) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase_ , lowercase_): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowercase_ , ) __snake_case = extractor if extractor != 'deprecated' else extractor_format else: __snake_case = cls.extractors[extractor_format] return extractor.extract(lowercase_ , lowercase_) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowercase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase_): return extractor.extract(lowercase_ , lowercase_)
676
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
1
def A ( snake_case__ : int = 1000 ) -> int: '''simple docstring''' __snake_case , __snake_case = 1, 1 __snake_case = [] for i in range(1 , n + 1 ): __snake_case = prev_numerator + 2 * prev_denominator __snake_case = prev_numerator + prev_denominator if len(str(snake_case__ ) ) > len(str(snake_case__ ) ): result.append(snake_case__ ) __snake_case = numerator __snake_case = denominator return len(snake_case__ ) if __name__ == "__main__": print(F"""{solution() = }""")
676
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=3_0 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_=None , ) -> List[Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def _a ( self) -> Optional[int]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = self.get_config() return config, pixel_values, labels def _a ( self) -> Optional[int]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = ViTMSNModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = self.type_sequence_label_size __snake_case = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , labels=lowercase_) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case = 1 __snake_case = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _a ( self) -> List[str]: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> int: __snake_case = ViTMSNModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7) def _a ( self) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def _a ( self) -> int: pass def _a ( self) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _a ( self) -> Tuple: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) __snake_case = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _a ( self) -> Any: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTMSNModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A ( ) -> Dict: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> Optional[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def _a ( self) -> Dict: torch.manual_seed(2) __snake_case = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(lowercase_) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='pt').to(lowercase_) # forward pass with torch.no_grad(): __snake_case = model(**lowercase_) # verify the logits __snake_case = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __snake_case = torch.tensor([-0.0803, -0.4454, -0.2375]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import numpy as np def A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float = 1e-12 , snake_case__ : int = 100 , ) -> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) __snake_case = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __snake_case = False __snake_case = 0 __snake_case = 0 __snake_case = 1e12 while not convergence: # Multiple matrix by the vector. __snake_case = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. __snake_case = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __snake_case = vector.conj().T if is_complex else vector.T __snake_case = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. __snake_case = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __snake_case = True __snake_case = lambda_ if is_complex: __snake_case = np.real(lambda_ ) return lambda_, vector def A ( ) -> None: '''simple docstring''' __snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __snake_case = np.array([41, 4, 20] ) __snake_case = real_input_matrix.astype(np.complexaaa ) __snake_case = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __snake_case = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __snake_case = real_input_matrix __snake_case = real_vector elif problem_type == "complex": __snake_case = complex_input_matrix __snake_case = complex_vector # Our implementation. __snake_case , __snake_case = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __snake_case , __snake_case = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. __snake_case = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __snake_case = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
676
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer UpperCAmelCase__ : Any = ["gpt2"] UpperCAmelCase__ : List[str] = "gpt2" if is_tf_available(): class __lowercase ( tf.Module ): def __init__( self , lowercase_) -> int: super().__init__() __snake_case = tokenizer __snake_case = AutoConfig.from_pretrained(lowercase_) __snake_case = TFGPTaLMHeadModel.from_config(lowercase_) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text'),)) def _a ( self , lowercase_) -> Dict: __snake_case = self.tokenizer(lowercase_) __snake_case = tokenized['input_ids'].to_tensor() __snake_case = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __snake_case = self.model(input_ids=lowercase_ , attention_mask=lowercase_)['logits'] return outputs @require_tf @require_keras_nlp class __lowercase ( unittest.TestCase ): def _a ( self) -> List[Any]: super().setUp() __snake_case = [GPTaTokenizer.from_pretrained(lowercase_) for checkpoint in (TOKENIZER_CHECKPOINTS)] __snake_case = [TFGPTaTokenizer.from_pretrained(lowercase_) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) __snake_case = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __snake_case = list(zip(self.test_sentences , self.test_sentences[::-1])) def _a ( self) -> List[str]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: __snake_case = tokenizer([test_inputs] , return_tensors='tf') __snake_case = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __snake_case = python_outputs[key].numpy() __snake_case = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa) == tf_outputs_values)) @slow def _a ( self) -> int: for tf_tokenizer in self.tf_tokenizers: __snake_case = tf.function(lowercase_) for test_inputs in self.test_sentences: __snake_case = tf.constant(lowercase_) __snake_case = compiled_tokenizer(lowercase_) __snake_case = tf_tokenizer(lowercase_) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def _a ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: __snake_case = ModelToSave(tokenizer=lowercase_) __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = model.serving(lowercase_) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __snake_case = Path(lowercase_) / 'saved.model' tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': model.serving}) __snake_case = tf.saved_model.load(lowercase_) __snake_case = loaded_model.signatures['serving_default'](lowercase_)['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def _a ( self) -> Dict: for tf_tokenizer in self.tf_tokenizers: __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = tf_tokenizer(lowercase_) # Build model with some sample inputs __snake_case = tf_tokenizer.get_config() __snake_case = TFGPTaTokenizer.from_config(lowercase_) __snake_case = model_from_config(lowercase_) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def _a ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run __snake_case = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = tf_tokenizer(lowercase_ , max_length=lowercase_) __snake_case = out['input_ids'].numpy().shape[1] assert out_length == max_length
676
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A ( snake_case__ : str ) -> None: '''simple docstring''' __snake_case , __snake_case = analyze_text(snake_case__ ) __snake_case = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __snake_case = sum(single_char_strings.values() ) # one length string __snake_case = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __snake_case = single_char_strings[ch] __snake_case = my_str / all_sum my_fir_sum += prob * math.loga(snake_case__ ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string __snake_case = sum(two_char_strings.values() ) __snake_case = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __snake_case = cha + cha if sequence in two_char_strings: __snake_case = two_char_strings[sequence] __snake_case = int(snake_case__ ) / all_sum my_sec_sum += prob * math.loga(snake_case__ ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def A ( snake_case__ : str ) -> tuple[dict, dict]: '''simple docstring''' __snake_case = Counter() # type: ignore __snake_case = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(snake_case__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A ( ) -> Tuple: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
676
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=3 , lowercase_=4 , lowercase_=2 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_6 , lowercase_=3 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=6 , lowercase_=6 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=1_0_0_0 , ) -> List[Any]: __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = text_seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = coordinate_size __snake_case = shape_size __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case = text_seq_length __snake_case = (image_size // patch_size) ** 2 + 1 __snake_case = self.text_seq_length + self.image_seq_length def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) __snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.text_seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) __snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict: __snake_case = LayoutLMvaModel(config=lowercase_) model.to(lowercase_) model.eval() # text + image __snake_case = model(lowercase_ , pixel_values=lowercase_) __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) __snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_) __snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only __snake_case = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only __snake_case = model(pixel_values=lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = self.num_labels __snake_case = LayoutLMvaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: __snake_case = self.num_labels __snake_case = LayoutLMvaForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: __snake_case = LayoutLMvaForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _a ( self) -> str: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _a ( self) -> Tuple: __snake_case = LayoutLMvaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> Union[str, Any]: __snake_case = copy.deepcopy(lowercase_) if model_class in get_values(lowercase_): __snake_case = { k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(lowercase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_): __snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in get_values(lowercase_): __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def _a ( self) -> Any: self.config_tester.run_common_tests() def _a ( self) -> Dict: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_) def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _a ( self) -> Optional[int]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LayoutLMvaModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A ( ) -> Tuple: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=lowercase_) if is_vision_available() else None @slow def _a ( self) -> Any: __snake_case = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base').to(lowercase_) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='pt').pixel_values.to(lowercase_) __snake_case = torch.tensor([[1, 2]]) __snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass __snake_case = model( input_ids=input_ids.to(lowercase_) , bbox=bbox.to(lowercase_) , pixel_values=pixel_values.to(lowercase_) , ) # verify the logits __snake_case = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) __snake_case = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4))
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A ( snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return x + 2 class __lowercase ( unittest.TestCase ): def _a ( self) -> Tuple: __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3}) __snake_case = 'x = y' __snake_case = {'y': 5} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 5, 'y': 5}) def _a ( self) -> List[Any]: __snake_case = 'y = add_two(x)' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result is None assert "tried to execute add_two" in out.out def _a ( self) -> str: __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3}) def _a ( self) -> int: __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) self.assertDictEqual(lowercase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def _a ( self) -> List[Any]: __snake_case = 'x = 3\ny = 5' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) def _a ( self) -> Optional[Any]: __snake_case = 'text = f\'This is x: {x}.\'' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase_ , {'x': 3, 'text': 'This is x: 3.'}) def _a ( self) -> Optional[int]: __snake_case = 'if x <= 3:\n y = 2\nelse:\n y = 5' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 2}) __snake_case = {'x': 8} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 8, 'y': 5}) def _a ( self) -> Union[str, Any]: __snake_case = 'test_list = [x, add_two(x)]' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) self.assertListEqual(lowercase_ , [3, 5]) self.assertDictEqual(lowercase_ , {'x': 3, 'test_list': [3, 5]}) def _a ( self) -> Optional[Any]: __snake_case = 'y = x' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 3}) def _a ( self) -> Optional[int]: __snake_case = 'test_list = [x, add_two(x)]\ntest_list[1]' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'test_list': [3, 5]}) __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def _a ( self) -> List[str]: __snake_case = 'x = 0\nfor i in range(3):\n x = i' __snake_case = {} __snake_case = evaluate(lowercase_ , {'range': range} , state=lowercase_) assert result == 2 self.assertDictEqual(lowercase_ , {'x': 2, 'i': 2})
676
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
676
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( snake_case__ : Optional[int] , snake_case__ : Any=0.999 , snake_case__ : str="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __snake_case = [] for i in range(snake_case__ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase = 2 @register_to_config def __init__( self , lowercase_ = 1_0_0_0 , lowercase_ = 0.0_0085 , lowercase_ = 0.012 , lowercase_ = "linear" , lowercase_ = None , lowercase_ = "epsilon" , lowercase_ = False , lowercase_ = False , lowercase_ = 1.0 , lowercase_ = "linspace" , lowercase_ = 0 , ) -> List[str]: if trained_betas is not None: __snake_case = torch.tensor(lowercase_ , dtype=torch.floataa) elif beta_schedule == "linear": __snake_case = torch.linspace(lowercase_ , lowercase_ , lowercase_ , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase_ , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(lowercase_ , alpha_transform_type='cosine') elif beta_schedule == "exp": __snake_case = betas_for_alpha_bar(lowercase_ , alpha_transform_type='exp') else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(lowercase_ , lowercase_ , lowercase_) __snake_case = use_karras_sigmas def _a ( self , lowercase_ , lowercase_=None) -> Union[str, Any]: if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: __snake_case = 1 if len(lowercase_) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(lowercase_) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def _a ( self) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _a ( self , lowercase_ , lowercase_ , ) -> torch.FloatTensor: __snake_case = self.index_for_timestep(lowercase_) __snake_case = self.sigmas[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , ) -> str: __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , lowercase_ , dtype=lowercase_)[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , lowercase_) * step_ratio).round()[::-1].copy().astype(lowercase_) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(lowercase_ , 0 , -step_ratio)).round().copy().astype(lowercase_) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) __snake_case = np.log(lowercase_) __snake_case = np.interp(lowercase_ , np.arange(0 , len(lowercase_)) , lowercase_) if self.config.use_karras_sigmas: __snake_case = self._convert_to_karras(in_sigmas=lowercase_ , num_inference_steps=self.num_inference_steps) __snake_case = np.array([self._sigma_to_t(lowercase_ , lowercase_) for sigma in sigmas]) __snake_case = np.concatenate([sigmas, [0.0]]).astype(np.floataa) __snake_case = torch.from_numpy(lowercase_).to(device=lowercase_) __snake_case = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) __snake_case = torch.from_numpy(lowercase_) __snake_case = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if str(lowercase_).startswith('mps'): # mps does not support float64 __snake_case = timesteps.to(lowercase_ , dtype=torch.floataa) else: __snake_case = timesteps.to(device=lowercase_) # empty dt and derivative __snake_case = None __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(lowercase_) def _a ( self , lowercase_ , lowercase_) -> List[str]: # get log sigma __snake_case = np.log(lowercase_) # get distribution __snake_case = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __snake_case = np.cumsum((dists >= 0) , axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) __snake_case = low_idx + 1 __snake_case = log_sigmas[low_idx] __snake_case = log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = np.clip(lowercase_ , 0 , 1) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.reshape(sigma.shape) return t def _a ( self , lowercase_ , lowercase_) -> torch.FloatTensor: __snake_case = in_sigmas[-1].item() __snake_case = in_sigmas[0].item() __snake_case = 7.0 # 7.0 is the value used in the paper __snake_case = np.linspace(0 , 1 , lowercase_) __snake_case = sigma_min ** (1 / rho) __snake_case = sigma_max ** (1 / rho) __snake_case = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _a ( self) -> Tuple: return self.dt is None def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: __snake_case = self.index_for_timestep(lowercase_) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(lowercase_) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __snake_case = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.config.clip_sample: __snake_case = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_next - sigma_hat # store for 2nd order step __snake_case = derivative __snake_case = dt __snake_case = sample else: # 2. 2nd order / Heun's method __snake_case = (sample - pred_original_sample) / sigma_next __snake_case = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __snake_case = self.dt __snake_case = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __snake_case = None __snake_case = None __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase_): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa) else: __snake_case = self.timesteps.to(original_samples.device) __snake_case = timesteps.to(original_samples.device) __snake_case = [self.index_for_timestep(lowercase_ , lowercase_) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): __snake_case = sigma.unsqueeze(-1) __snake_case = original_samples + noise * sigma return noisy_samples def __len__( self) -> Tuple: return self.config.num_train_timesteps
676
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
1
def A ( snake_case__ : Union[str, Any] ) -> bool: '''simple docstring''' __snake_case = 0 for ch in input_str: __snake_case = ord(SCREAMING_SNAKE_CASE_ ) __snake_case = pow(2 , SCREAMING_SNAKE_CASE_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A ( snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def A ( snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[int]=True ) -> Any: '''simple docstring''' model.train() __snake_case = model(__A ) __snake_case = F.mse_loss(__A , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__A ) def A ( snake_case__ : Dict , snake_case__ : Dict=False ) -> Tuple: '''simple docstring''' set_seed(42 ) __snake_case = RegressionModel() __snake_case = deepcopy(__A ) __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(__A , batch_size=16 ) model.to(accelerator.device ) if sched: __snake_case = AdamW(params=model.parameters() , lr=1e-3 ) __snake_case = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __snake_case = LambdaLR(__A , lr_lambda=lambda snake_case__ : epoch**0.65 ) __snake_case = LambdaLR(__A , lr_lambda=lambda snake_case__ : epoch**0.65 ) # Make a copy of `model` if sched: __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare(__A , __A , __A , __A ) else: __snake_case , __snake_case = accelerator.prepare(__A , __A ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A ( snake_case__ : Dict ) -> Any: '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing __snake_case , __snake_case , __snake_case = get_training_setup(__A ) # Use a single batch __snake_case , __snake_case = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__A , __A , __A , __A ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(__A ) )] def A ( snake_case__ : Dict ) -> Optional[int]: '''simple docstring''' # Test on distributed setup that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(__A ) # Use a single batch __snake_case , __snake_case = next(iter(__A ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__A ): step_model(__A , __A , __A , __A ) else: # Sync grads step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(__A ) )] def A ( snake_case__ : List[Any]=False , snake_case__ : Optional[Any]=False ) -> int: '''simple docstring''' __snake_case = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(__A ) for iteration, batch in enumerate(__A ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__A , __A , __A , __A , __A ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__A ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(__A ) )] GradientState._reset_state() def A ( snake_case__ : Union[str, Any]=False , snake_case__ : Dict=False ) -> List[Any]: '''simple docstring''' __snake_case = Accelerator( split_batches=__A , dispatch_batches=__A , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = get_training_setup(__A , __A ) for iteration, batch in enumerate(__A ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__A , __A , __A , __A , __A ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__A )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__A ): step_model(__A , __A , __A , __A ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" __snake_case = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__A )) if accelerator.num_processes > 1: check_model_parameters(__A , __A , __A , __A ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def A ( ) -> int: '''simple docstring''' __snake_case = Accelerator() __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(__A , batch_size=16 ) __snake_case = RegressionDataset(length=96 ) __snake_case = DataLoader(__A , batch_size=16 ) __snake_case , __snake_case = accelerator.prepare(__A , __A ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if iteration < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__A ): assert id(accelerator.gradient_state.active_dataloader ) == id(__A ) if batch_num < len(__A ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A ( ) -> Dict: '''simple docstring''' __snake_case = Accelerator() __snake_case = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(__A ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(__A ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(__A , __A ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(__A , __A ) def A ( snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : str , snake_case__ : Dict=True , snake_case__ : Optional[Any]="pt" ) -> str: '''simple docstring''' __snake_case = {'add_prefix_space': True} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not line.startswith(' ' ) else {} __snake_case = padding_side return tokenizer( [line] , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' if pad_to_max_length else None , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def A ( snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : str=None , ) -> Any: '''simple docstring''' __snake_case = input_ids.ne(_SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowercase ( snake_case__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_="train" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="" , ) -> Tuple: super().__init__() __snake_case = Path(UpperCAmelCase_).joinpath(type_path + '.source') __snake_case = Path(UpperCAmelCase_).joinpath(type_path + '.target') __snake_case = self.get_char_lens(self.src_file) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self) -> List[Any]: return len(self.src_lens) def __getitem__( self , lowercase_) -> Dict[str, torch.Tensor]: __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file) , UpperCAmelCase_).rstrip('\n') __snake_case = linecache.getline(str(self.tgt_file) , UpperCAmelCase_).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase_): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase_) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase_) else self.tokenizer __snake_case = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_source_length , 'right') __snake_case = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_target_length , 'right') __snake_case = source_inputs['input_ids'].squeeze() __snake_case = target_inputs['input_ids'].squeeze() __snake_case = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( lowercase_) -> List[str]: return [len(UpperCAmelCase_) for x in Path(UpperCAmelCase_).open().readlines()] def _a ( self , lowercase_) -> Dict[str, torch.Tensor]: __snake_case = torch.stack([x['input_ids'] for x in batch]) __snake_case = torch.stack([x['attention_mask'] for x in batch]) __snake_case = torch.stack([x['decoder_input_ids'] for x in batch]) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(UpperCAmelCase_ , UpperCAmelCase_) __snake_case , __snake_case = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ , attention_mask=UpperCAmelCase_) __snake_case = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCAmelCase__ : List[Any] = getLogger(__name__) def A ( snake_case__ : List[Any] ) -> int: '''simple docstring''' return list(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ) def A ( snake_case__ : str ) -> None: '''simple docstring''' __snake_case = get_git_info() save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'git_log.json' ) ) def A ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str]=4 , **snake_case__ : Optional[Any] ) -> int: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A ( snake_case__ : List[str] ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def A ( ) -> Any: '''simple docstring''' __snake_case = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) __snake_case = { 'repo_id': str(_SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def A ( snake_case__ : str , snake_case__ : int ) -> List: '''simple docstring''' return list(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def A ( snake_case__ : Any , snake_case__ : str ) -> Dict: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: return pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A ( snake_case__ : Dict ) -> str: '''simple docstring''' def remove_articles(snake_case__ : List[str] ): return re.sub(r'\b(a|an|the)\b' , ' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(snake_case__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(snake_case__ : Union[str, Any] ): __snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def A ( snake_case__ : List[str] , snake_case__ : str ) -> Any: '''simple docstring''' __snake_case = normalize_answer(_SCREAMING_SNAKE_CASE ).split() __snake_case = normalize_answer(_SCREAMING_SNAKE_CASE ).split() __snake_case = Counter(_SCREAMING_SNAKE_CASE ) & Counter(_SCREAMING_SNAKE_CASE ) __snake_case = sum(common.values() ) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __snake_case = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __snake_case = (2 * precision * recall) / (precision + recall) return fa def A ( snake_case__ : Any , snake_case__ : List[str] ) -> Any: '''simple docstring''' return normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) def A ( snake_case__ : List[Any] , snake_case__ : str ) -> Dict: '''simple docstring''' assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) __snake_case = 0 for hypo, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): em += exact_match_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: em /= len(_SCREAMING_SNAKE_CASE ) return {"em": em} def A ( snake_case__ : Any ) -> Dict: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( snake_case__ : int , snake_case__ : Dict , snake_case__ : Dict ) -> List[str]: '''simple docstring''' __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = 'dropout_rate' for p in extra_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not hasattr(_SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue __snake_case = p if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return hparams, config
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=1_8 , lowercase_=3_0 , lowercase_=4_0_0 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ) -> Tuple: __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size if size is not None else {'height': 1_8, 'width': 2_0} __snake_case = do_thumbnail __snake_case = do_align_axis __snake_case = do_pad __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def _a ( self) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCAmelCase = DonutImageProcessor if is_vision_available() else None def _a ( self) -> List[Any]: __snake_case = DonutImageProcessingTester(self) @property def _a ( self) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self) -> int: __snake_case = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A_ , 'do_resize')) self.assertTrue(hasattr(A_ , 'size')) self.assertTrue(hasattr(A_ , 'do_thumbnail')) self.assertTrue(hasattr(A_ , 'do_align_long_axis')) self.assertTrue(hasattr(A_ , 'do_pad')) self.assertTrue(hasattr(A_ , 'do_normalize')) self.assertTrue(hasattr(A_ , 'image_mean')) self.assertTrue(hasattr(A_ , 'image_std')) def _a ( self) -> str: __snake_case = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 2_0}) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2}) # Previous config had dimensions in (width, height) order __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4)) self.assertEqual(image_processor.size , {'height': 8_4, 'width': 4_2}) def _a ( self) -> Optional[Any]: pass @is_flaky() def _a ( self) -> int: __snake_case = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_) for image in image_inputs: self.assertIsInstance(A_ , Image.Image) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(A_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _a ( self) -> Any: __snake_case = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(A_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _a ( self) -> Union[str, Any]: __snake_case = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(A_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''instructblip_vision_model''' def __init__( self , lowercase_=1_4_0_8 , lowercase_=6_1_4_4 , lowercase_=3_9 , lowercase_=1_6 , lowercase_=2_2_4 , lowercase_=1_4 , lowercase_="gelu" , lowercase_=1e-6 , lowercase_=0.0 , lowercase_=1e-10 , lowercase_=True , **lowercase_ , ) -> Any: super().__init__(**UpperCamelCase_) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act __snake_case = qkv_bias @classmethod def _a ( cls , lowercase_ , **lowercase_) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_) __snake_case = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''instructblip_qformer''' def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=2 , lowercase_=1_4_0_8 , **lowercase_ , ) -> Any: super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = cross_attention_frequency __snake_case = encoder_hidden_size @classmethod def _a ( cls , lowercase_ , **lowercase_) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_) __snake_case = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": __snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''instructblip''' __UpperCAmelCase = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=3_2 , **lowercase_) -> List[str]: super().__init__(**UpperCamelCase_) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.') if qformer_config is None: __snake_case = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.') if text_config is None: __snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).') __snake_case = InstructBlipVisionConfig(**UpperCamelCase_) __snake_case = InstructBlipQFormerConfig(**UpperCamelCase_) __snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case = CONFIG_MAPPING[text_model_type](**UpperCamelCase_) __snake_case = self.text_config.tie_word_embeddings __snake_case = self.text_config.is_encoder_decoder __snake_case = num_query_tokens __snake_case = self.vision_config.hidden_size __snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case = 1.0 __snake_case = 0.02 @classmethod def _a ( cls , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , ) -> List[str]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def _a ( self) -> List[str]: __snake_case = copy.deepcopy(self.__dict__) __snake_case = self.vision_config.to_dict() __snake_case = self.qformer_config.to_dict() __snake_case = self.text_config.to_dict() __snake_case = self.__class__.model_type return output
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class __lowercase ( lowercase__ ): __UpperCAmelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCAmelCase = Features({'''text''': Value('''string''' )} ) __UpperCAmelCase = Features({'''summary''': Value('''string''' )} ) __UpperCAmelCase = '''text''' __UpperCAmelCase = '''summary''' @property def _a ( self) -> Dict: return {self.text_column: "text", self.summary_column: "summary"}
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowercase : __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None UpperCAmelCase__ : Any = namedtuple("CoinsDistribResult", "moves excess") def A ( snake_case__ : List[str] ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(snake_case__ : Optional[Any] ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(snake_case__ : List[Any] ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCamelCase_ ) != count_coins(lowerCamelCase_ ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(snake_case__ : Any ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case = get_distrib(node.left ) __snake_case = get_distrib(node.right ) __snake_case = 1 - left_distrib_excess __snake_case = 1 - right_distrib_excess __snake_case = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) ) __snake_case = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase_ , lowerCamelCase_ ) return get_distrib(lowerCamelCase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase : int = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" lowerCAmelCase : str = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" lowerCAmelCase : Tuple = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def _a ( self) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="auto" , lowercase_=-1 , lowercase_=0.9 , lowercase_=5 , lowercase_=5_0_0 , lowercase_="gpt2-large" , lowercase_=-1 , lowercase_=1_0_2_4 , lowercase_=2_5 , lowercase_=5 , lowercase_=True , lowercase_=2_5 , ) -> str: __snake_case = compute_mauve( p_text=_lowercase , q_text=_lowercase , p_features=_lowercase , q_features=_lowercase , p_tokens=_lowercase , q_tokens=_lowercase , num_buckets=_lowercase , pca_max_data=_lowercase , kmeans_explained_var=_lowercase , kmeans_num_redo=_lowercase , kmeans_max_iter=_lowercase , featurize_model_name=_lowercase , device_id=_lowercase , max_text_length=_lowercase , divergence_curve_discretization_size=_lowercase , mauve_scaling_factor=_lowercase , verbose=_lowercase , seed=_lowercase , ) return out
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) def A ( snake_case__ : List[str]=None , snake_case__ : Any=None ) -> List[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class __lowercase : __UpperCAmelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __UpperCAmelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __UpperCAmelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __UpperCAmelCase = field( default=__A , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __UpperCAmelCase = field( default=__A , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __UpperCAmelCase = field( default=__A , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Benchmark training of model'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Verbose memory tracing'''} ) __UpperCAmelCase = field( default=__A , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __UpperCAmelCase = field( default=__A , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Trace memory line by line'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Save result to a CSV file'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Save all print statements in a log file'''} ) __UpperCAmelCase = field(default=__A , metadata={'''help''': '''Whether to print environment information'''} ) __UpperCAmelCase = field( default=__A , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __UpperCAmelCase = field( default=f"inference_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __UpperCAmelCase = field( default=f"inference_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __UpperCAmelCase = field( default=f"train_time_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __UpperCAmelCase = field( default=f"train_memory_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __UpperCAmelCase = field( default=f"env_info_{round(time() )}.csv" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __UpperCAmelCase = field( default=f"log_{round(time() )}.csv" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __UpperCAmelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __UpperCAmelCase = field( default=__A , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def _a ( self) -> List[str]: warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , lowercase_ , ) def _a ( self) -> Optional[Any]: return json.dumps(dataclasses.asdict(self) , indent=2) @property def _a ( self) -> List[str]: if len(self.models) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].') return self.models @property def _a ( self) -> Optional[Any]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.') return False else: return True
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0
'''simple docstring''' def A ( snake_case__ : list[list[float]] ) -> int: '''simple docstring''' __snake_case = [] for data in source_data: for i, el in enumerate(__lowerCAmelCase ): if len(__lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCAmelCase ) ) return data_lists def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> Tuple: '''simple docstring''' __snake_case = [] for dlist, weight in zip(__lowerCAmelCase , __lowerCAmelCase ): __snake_case = min(__lowerCAmelCase ) __snake_case = max(__lowerCAmelCase ) __snake_case = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __snake_case = f"Invalid weight of {weight:f} provided" raise ValueError(__lowerCAmelCase ) score_lists.append(__lowerCAmelCase ) return score_lists def A ( snake_case__ : list[list[float]] ) -> List[str]: '''simple docstring''' __snake_case = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCAmelCase ): __snake_case = final_scores[j] + ele return final_scores def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> Optional[Any]: '''simple docstring''' __snake_case = get_data(__lowerCAmelCase ) __snake_case = calculate_each_score(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = generate_final_scores(__lowerCAmelCase ) # append scores to source data for i, ele in enumerate(__lowerCAmelCase ): source_data[i].append(__lowerCAmelCase ) return source_data
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A ( snake_case__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = StableDiffusionLatentUpscalePipeline __UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } __UpperCAmelCase = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} __UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase = frozenset([] ) __UpperCAmelCase = True @property def _a ( self) -> Tuple: __snake_case = 1 __snake_case = 4 __snake_case = (1_6, 1_6) __snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCamelCase_) return image def _a ( self) -> Tuple: torch.manual_seed(0) __snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) __snake_case = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) __snake_case = EulerDiscreteScheduler(prediction_type='sample') __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) __snake_case = CLIPTextModel(UpperCamelCase_) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __snake_case = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _a ( self , lowercase_ , lowercase_=0) -> List[Any]: if str(UpperCamelCase_).startswith('mps'): __snake_case = torch.manual_seed(UpperCamelCase_) else: __snake_case = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _a ( self) -> List[str]: __snake_case = "cpu" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**UpperCamelCase_) pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __snake_case = self.get_dummy_inputs(UpperCamelCase_) __snake_case = pipe(**UpperCamelCase_).images __snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3)) __snake_case = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055]) __snake_case = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase_ , 1e-3) def _a ( self) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3) def _a ( self) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3) def _a ( self) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def _a ( self) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=7e-3) def _a ( self) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3) def _a ( self) -> Tuple: super().test_save_load_local(expected_max_difference=3e-3) def _a ( self) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3e-3) def _a ( self) -> Tuple: __snake_case = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**UpperCamelCase_) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_) pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __snake_case = self.get_dummy_inputs(UpperCamelCase_) __snake_case = 2 __snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __snake_case = getattr(UpperCamelCase_ , scheduler_enum.name) __snake_case = scheduler_cls.from_config(pipe.scheduler.config) __snake_case = pipe(**UpperCamelCase_)[0] outputs.append(UpperCamelCase_) assert check_same_shape(UpperCamelCase_) @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): def _a ( self) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self) -> Any: __snake_case = torch.manual_seed(3_3) __snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa) pipe.to('cuda') __snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') __snake_case = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __snake_case = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type='latent').images __snake_case = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=2_0 , guidance_scale=0 , generator=UpperCamelCase_ , output_type='np' , ).images[0] __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5e-2 def _a ( self) -> Any: __snake_case = torch.manual_seed(3_3) __snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') __snake_case = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') __snake_case = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=2_0 , guidance_scale=0 , generator=UpperCamelCase_ , output_type='np' , ).images[0] __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5e-2
710
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
0
def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) __snake_case = 0 __snake_case = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: __snake_case = [int(_lowerCAmelCase ) for i in num_string] __snake_case = 1 for i in range(0 , len(_lowerCAmelCase ) ): total *= numbers[i] __snake_case = str(_lowerCAmelCase ) steps += 1 return steps def A ( snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) __snake_case = 0 __snake_case = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: __snake_case = [int(_lowerCAmelCase ) for i in num_string] __snake_case = 0 for i in range(0 , len(_lowerCAmelCase ) ): total += numbers[i] __snake_case = str(_lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
import unittest import numpy as np def A ( snake_case__ : Any , snake_case__ : Any , snake_case__ : str , snake_case__ : List[str] = None , ) -> np.ndarray: '''simple docstring''' __snake_case = np.shape(__lowerCAmelCase ) __snake_case = np.shape(__lowerCAmelCase ) __snake_case = np.shape(__lowerCAmelCase ) if shape_a[0] != shape_b[0]: __snake_case = ( """Expected the same number of rows for A and B. """ f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__lowerCAmelCase ) if shape_b[1] != shape_c[1]: __snake_case = ( """Expected the same number of columns for B and C. """ f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__lowerCAmelCase ) __snake_case = pseudo_inv if a_inv is None: try: __snake_case = np.linalg.inv(__lowerCAmelCase ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class __lowercase ( unittest.TestCase ): def _a ( self) -> None: __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __snake_case = np.array([[0, 3], [3, 0], [2, 3]]) __snake_case = np.array([[2, 1], [6, 3]]) __snake_case = schur_complement(_a , _a , _a) __snake_case = np.block([[a, b], [b.T, c]]) __snake_case = np.linalg.det(_a) __snake_case = np.linalg.det(_a) __snake_case = np.linalg.det(_a) self.assertAlmostEqual(_a , det_a * det_s) def _a ( self) -> None: __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __snake_case = np.array([[0, 3], [3, 0], [2, 3]]) __snake_case = np.array([[2, 1], [6, 3]]) with self.assertRaises(_a): schur_complement(_a , _a , _a) def _a ( self) -> None: __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __snake_case = np.array([[0, 3], [3, 0], [2, 3]]) __snake_case = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(_a): schur_complement(_a , _a , _a) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
712
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : int = "bart" UpperCAmelCase__ : int = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def A ( ) -> List[str]: '''simple docstring''' if LOAD_DENSE_INDEX: __snake_case = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __snake_case = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __snake_case = qar_model.eval() else: __snake_case , __snake_case = (None, None) if MODEL_TYPE == "bart": __snake_case = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __snake_case = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __snake_case = sas_model.eval() else: __snake_case , __snake_case = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def A ( ) -> List[Any]: '''simple docstring''' if LOAD_DENSE_INDEX: __snake_case = faiss.StandardGpuResources() __snake_case = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __snake_case = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case = faiss.IndexFlatIP(128 ) __snake_case = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case = (None, None) __snake_case = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def A ( ) -> int: '''simple docstring''' __snake_case = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __snake_case = elia['train_eli5'] __snake_case = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __snake_case = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = load_models() UpperCAmelCase__ , UpperCAmelCase__ : Dict = load_train_data() def A ( snake_case__ : List[Any] , snake_case__ : List[Any]=10 ) -> Optional[Any]: '''simple docstring''' __snake_case = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) __snake_case , __snake_case = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) __snake_case = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def A ( snake_case__ : str , snake_case__ : List[str]="wiki40b" , snake_case__ : str="dense" , snake_case__ : Union[str, Any]=10 ) -> Optional[int]: '''simple docstring''' if source == "none": __snake_case , __snake_case = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: __snake_case , __snake_case = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=__UpperCAmelCase , ) __snake_case = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __snake_case = 'question: {} context: {}'.format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case__ : None), } ) def A ( snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[Any]=64 , snake_case__ : Optional[int]=256 , snake_case__ : List[Any]=False , snake_case__ : int=2 , snake_case__ : Union[str, Any]=0.95 , snake_case__ : Optional[int]=0.8 ) -> Any: '''simple docstring''' with torch.no_grad(): __snake_case = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ : List[Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ : Optional[int] = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : str = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : Any = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ : List[Any] = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ : List[Any] = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ : Tuple = action_list.index(action_st) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ : Optional[int] = show_type == "Show full text of passages" else: UpperCAmelCase__ : Optional[Any] = 3 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ : int = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ : List[str] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ : Tuple = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ : Tuple = "wiki40b" UpperCAmelCase__ : Any = "dense" UpperCAmelCase__ : Optional[int] = "beam" UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Optional[Any] = 64 UpperCAmelCase__ : int = 2_56 UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Tuple = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ : List[Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ : Tuple = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ : str = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Tuple = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : int = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : str = None # start main text UpperCAmelCase__ : int = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ : Optional[Any] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : Union[str, Any] = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ : List[str] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ : int = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ : Any = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : Union[str, Any] = support_list[:10] UpperCAmelCase__ : int = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ : Any = res[1].strip() if sec_titles == "": UpperCAmelCase__ : Optional[int] = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ : Optional[int] = sec_titles.split(" & ") UpperCAmelCase__ : Tuple = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : str = find_nearest_training(question) UpperCAmelCase__ : Tuple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ : Optional[Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
from __future__ import annotations import math def A ( snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) def A ( ) -> int: '''simple docstring''' __snake_case = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case = math.log(len(lowerCAmelCase__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A ( snake_case__ : int , snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]="pt" ) -> str: '''simple docstring''' __snake_case = {"""add_prefix_space""": True} if isinstance(__A , __A ) and not line.startswith(' ' ) else {} __snake_case = padding_side return tokenizer( [line] , max_length=__A , padding='max_length' if pad_to_max_length else None , truncation=__A , return_tensors=__A , add_special_tokens=__A , **__A , ) def A ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str=None , ) -> Tuple: '''simple docstring''' __snake_case = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowercase ( __lowerCAmelCase ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_="train" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="" , ) -> str: super().__init__() __snake_case = Path(_UpperCamelCase).joinpath(type_path + '.source') __snake_case = Path(_UpperCamelCase).joinpath(type_path + '.target') __snake_case = self.get_char_lens(self.src_file) __snake_case = max_source_length __snake_case = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __snake_case = tokenizer __snake_case = prefix if n_obs is not None: __snake_case = self.src_lens[:n_obs] __snake_case = src_lang __snake_case = tgt_lang def __len__( self) -> Union[str, Any]: return len(self.src_lens) def __getitem__( self , lowercase_) -> Dict[str, torch.Tensor]: __snake_case = index + 1 # linecache starts at 1 __snake_case = self.prefix + linecache.getline(str(self.src_file) , _UpperCamelCase).rstrip('\n') __snake_case = linecache.getline(str(self.tgt_file) , _UpperCamelCase).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __snake_case = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer ) __snake_case = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer __snake_case = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , 'right') __snake_case = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , 'right') __snake_case = source_inputs["""input_ids"""].squeeze() __snake_case = target_inputs["""input_ids"""].squeeze() __snake_case = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( lowercase_) -> Optional[Any]: return [len(_UpperCamelCase) for x in Path(_UpperCamelCase).open().readlines()] def _a ( self , lowercase_) -> Dict[str, torch.Tensor]: __snake_case = torch.stack([x['input_ids'] for x in batch]) __snake_case = torch.stack([x['attention_mask'] for x in batch]) __snake_case = torch.stack([x['decoder_input_ids'] for x in batch]) __snake_case = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) __snake_case = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) __snake_case = trim_batch(_UpperCamelCase , _UpperCamelCase) __snake_case = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase) __snake_case = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase__ : Dict = getLogger(__name__) def A ( snake_case__ : Tuple ) -> str: '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def A ( snake_case__ : int ) -> Dict: '''simple docstring''' __snake_case = get_git_info() save_json(__A , os.path.join(__A , 'git_log.json' ) ) def A ( snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : str=4 , **snake_case__ : Optional[int] ) -> Any: '''simple docstring''' with open(__A , 'w' ) as f: json.dump(__A , __A , indent=__A , **__A ) def A ( snake_case__ : Union[str, Any] ) -> Tuple: '''simple docstring''' with open(__A ) as f: return json.load(__A ) def A ( ) -> Any: '''simple docstring''' __snake_case = git.Repo(search_parent_directories=__A ) __snake_case = { """repo_id""": str(__A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def A ( snake_case__ : Optional[Any] , snake_case__ : str ) -> Any: '''simple docstring''' return list(map(__A , __A ) ) def A ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ) -> Tuple: '''simple docstring''' with open(__A , 'wb' ) as f: return pickle.dump(__A , __A ) def A ( snake_case__ : Union[str, Any] ) -> Any: '''simple docstring''' def remove_articles(snake_case__ : str ): return re.sub(r'\b(a|an|the)\b' , ' ' , __A ) def white_space_fix(snake_case__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(snake_case__ : List[str] ): __snake_case = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def A ( snake_case__ : int , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' __snake_case = normalize_answer(__A ).split() __snake_case = normalize_answer(__A ).split() __snake_case = Counter(__A ) & Counter(__A ) __snake_case = sum(common.values() ) if num_same == 0: return 0 __snake_case = 1.0 * num_same / len(__A ) __snake_case = 1.0 * num_same / len(__A ) __snake_case = (2 * precision * recall) / (precision + recall) return fa def A ( snake_case__ : List[str] , snake_case__ : List[str] ) -> str: '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def A ( snake_case__ : Dict , snake_case__ : int ) -> Tuple: '''simple docstring''' assert len(__A ) == len(__A ) __snake_case = 0 for hypo, pred in zip(__A , __A ): em += exact_match_score(__A , __A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def A ( snake_case__ : Any ) -> Tuple: '''simple docstring''' return model_prefix.startswith('rag' ) def A ( snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : str ) -> Union[str, Any]: '''simple docstring''' __snake_case = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __snake_case = """dropout_rate""" for p in extra_params: if getattr(__A , __A , __A ): if not hasattr(__A , __A ) and not hasattr(__A , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__A ) ) delattr(__A , __A ) continue __snake_case = p if hasattr(__A , __A ) else equivalent_param[p] setattr(__A , __A , getattr(__A , __A ) ) delattr(__A , __A ) return hparams, config
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
def A ( snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict ) -> int: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCamelCase ) ) def A ( snake_case__ : str , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' if index == len(_lowerCamelCase ): return True # Recursive Step for i in range(_lowerCamelCase ): if valid_coloring(graph[index] , _lowerCamelCase , _lowerCamelCase ): # Color current vertex __snake_case = i # Validate coloring if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ): return True # Backtrack __snake_case = -1 return False def A ( snake_case__ : int , snake_case__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __snake_case = [-1] * len(_lowerCamelCase ) if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 0 ): return colored_vertices return []
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import requests UpperCAmelCase__ : List[Any] = "" # <-- Put your OpenWeatherMap appid here! UpperCAmelCase__ : Optional[Any] = "https://api.openweathermap.org/data/2.5/" def A ( snake_case__ : str = "Chicago" , snake_case__ : List[str] = APPID ) -> str: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A ( snake_case__ : Any = "Kolkata, India" , snake_case__ : Any = APPID ) -> Union[str, Any]: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A ( snake_case__ : Dict = 55.68 , snake_case__ : int = 12.57 , snake_case__ : Any = APPID ) -> int: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase__ : List[Any] = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
717
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( snake_case__ : Tuple , snake_case__ : str=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __snake_case = [] for i in range(a_ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a_ ) / alpha_bar_fn(a_ ) , a_ ) ) return torch.tensor(a_ , dtype=torch.floataa ) class __lowercase ( _UpperCAmelCase , _UpperCAmelCase ): __UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase = 2 @register_to_config def __init__( self , lowercase_ = 1_0_0_0 , lowercase_ = 0.0_0085 , lowercase_ = 0.012 , lowercase_ = "linear" , lowercase_ = None , lowercase_ = "epsilon" , lowercase_ = False , lowercase_ = False , lowercase_ = 1.0 , lowercase_ = "linspace" , lowercase_ = 0 , ) -> Tuple: if trained_betas is not None: __snake_case = torch.tensor(lowerCamelCase_ , dtype=torch.floataa) elif beta_schedule == "linear": __snake_case = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(lowerCamelCase_ , alpha_transform_type='cosine') elif beta_schedule == "exp": __snake_case = betas_for_alpha_bar(lowerCamelCase_ , alpha_transform_type='exp') else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) __snake_case = use_karras_sigmas def _a ( self , lowercase_ , lowercase_=None) -> Dict: if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: __snake_case = 1 if len(lowerCamelCase_) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def _a ( self) -> str: if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _a ( self , lowercase_ , lowercase_ , ) -> torch.FloatTensor: __snake_case = self.index_for_timestep(lowerCamelCase_) __snake_case = self.sigmas[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , ) -> str: __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase_ , dtype=lowerCamelCase_)[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , lowerCamelCase_) * step_ratio).round()[::-1].copy().astype(lowerCamelCase_) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(lowerCamelCase_ , 0 , -step_ratio)).round().copy().astype(lowerCamelCase_) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) __snake_case = np.log(lowerCamelCase_) __snake_case = np.interp(lowerCamelCase_ , np.arange(0 , len(lowerCamelCase_)) , lowerCamelCase_) if self.config.use_karras_sigmas: __snake_case = self._convert_to_karras(in_sigmas=lowerCamelCase_ , num_inference_steps=self.num_inference_steps) __snake_case = np.array([self._sigma_to_t(lowerCamelCase_ , lowerCamelCase_) for sigma in sigmas]) __snake_case = np.concatenate([sigmas, [0.0]]).astype(np.floataa) __snake_case = torch.from_numpy(lowerCamelCase_).to(device=lowerCamelCase_) __snake_case = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) __snake_case = torch.from_numpy(lowerCamelCase_) __snake_case = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) if str(lowerCamelCase_).startswith('mps'): # mps does not support float64 __snake_case = timesteps.to(lowerCamelCase_ , dtype=torch.floataa) else: __snake_case = timesteps.to(device=lowerCamelCase_) # empty dt and derivative __snake_case = None __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(lowerCamelCase_) def _a ( self , lowercase_ , lowercase_) -> List[Any]: __snake_case = np.log(lowerCamelCase_) # get distribution __snake_case = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __snake_case = np.cumsum((dists >= 0) , axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) __snake_case = low_idx + 1 __snake_case = log_sigmas[low_idx] __snake_case = log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = np.clip(lowerCamelCase_ , 0 , 1) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.reshape(sigma.shape) return t def _a ( self , lowercase_ , lowercase_) -> torch.FloatTensor: __snake_case = in_sigmas[-1].item() __snake_case = in_sigmas[0].item() __snake_case = 7.0 # 7.0 is the value used in the paper __snake_case = np.linspace(0 , 1 , lowerCamelCase_) __snake_case = sigma_min ** (1 / rho) __snake_case = sigma_max ** (1 / rho) __snake_case = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _a ( self) -> Optional[int]: return self.dt is None def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: __snake_case = self.index_for_timestep(lowerCamelCase_) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __snake_case = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.config.clip_sample: __snake_case = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_next - sigma_hat # store for 2nd order step __snake_case = derivative __snake_case = dt __snake_case = sample else: # 2. 2nd order / Heun's method __snake_case = (sample - pred_original_sample) / sigma_next __snake_case = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __snake_case = self.dt __snake_case = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __snake_case = None __snake_case = None __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase_): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa) else: __snake_case = self.timesteps.to(original_samples.device) __snake_case = timesteps.to(original_samples.device) __snake_case = [self.index_for_timestep(lowerCamelCase_ , lowerCamelCase_) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): __snake_case = sigma.unsqueeze(-1) __snake_case = original_samples + noise * sigma return noisy_samples def __len__( self) -> int: return self.config.num_train_timesteps
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : List[str] = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase__ : Tuple = """__DUMMY_TRANSFORMERS_USER__""" UpperCAmelCase__ : Dict = """Dummy User""" UpperCAmelCase__ : Union[str, Any] = """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""" UpperCAmelCase__ : Union[str, Any] = """https://hub-ci.huggingface.co""" UpperCAmelCase__ : List[Any] = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" UpperCAmelCase__ : Union[str, Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" UpperCAmelCase__ : List[Any] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def A ( snake_case__ : str ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , snake_case__ ) @pytest.fixture def A ( snake_case__ : Tuple ) -> List[Any]: '''simple docstring''' monkeypatch.setattr('datasets.config.HF_ENDPOINT' , snake_case__ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , snake_case__ ) @pytest.fixture def A ( snake_case__ : Tuple ) -> int: '''simple docstring''' monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , snake_case__ ) @pytest.fixture def A ( snake_case__ : str , snake_case__ : Tuple ) -> str: '''simple docstring''' HfFolder.save_token(snake_case__ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def A ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=snake_case__ ) @pytest.fixture(scope='session' ) def A ( snake_case__ : Tuple ) -> int: '''simple docstring''' __snake_case = HfFolder.get_token() HfFolder.save_token(snake_case__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(snake_case__ ) @pytest.fixture def A ( snake_case__ : int ) -> int: '''simple docstring''' def _cleanup_repo(snake_case__ : Optional[Any] ): hf_api.delete_repo(snake_case__ , token=snake_case__ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def A ( snake_case__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' @contextmanager def _temporary_repo(snake_case__ : Any ): try: yield repo_id finally: cleanup_repo(snake_case__ ) return _temporary_repo @pytest.fixture(scope='session' ) def A ( snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] ) -> Any: '''simple docstring''' __snake_case = f"repo_txt_data-{int(time.time() * 10e3 )}" __snake_case = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(snake_case__ , token=snake_case__ , repo_type='dataset' , private=snake_case__ ) hf_api.upload_file( token=snake_case__ , path_or_fileobj=str(snake_case__ ) , path_in_repo='data/text_data.txt' , repo_id=snake_case__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(snake_case__ , token=snake_case__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A ( snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def A ( snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case = f"repo_zipped_txt_data-{int(time.time() * 10e3 )}" __snake_case = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(snake_case__ , token=snake_case__ , repo_type='dataset' , private=snake_case__ ) hf_api.upload_file( token=snake_case__ , path_or_fileobj=str(snake_case__ ) , path_in_repo='data.zip' , repo_id=snake_case__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(snake_case__ , token=snake_case__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def A ( snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' __snake_case = f"repo_zipped_img_data-{int(time.time() * 10e3 )}" __snake_case = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(snake_case__ , token=snake_case__ , repo_type='dataset' , private=snake_case__ ) hf_api.upload_file( token=snake_case__ , path_or_fileobj=str(snake_case__ ) , path_in_repo='data.zip' , repo_id=snake_case__ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(snake_case__ , token=snake_case__ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def A ( snake_case__ : Dict , snake_case__ : int , snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def A ( *snake_case__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): __snake_case = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __snake_case = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def A ( snake_case__ : Exception ) -> Optional[Any]: '''simple docstring''' __snake_case = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def A ( snake_case__ : callable = None , snake_case__ : int = 128 ) -> Tuple: '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) __snake_case = starting_batch_size def decorator(*snake_case__ : Dict , **snake_case__ : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __snake_case = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): __snake_case = """, """.join([f"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"Batch size was passed into `{function.__name__}` as the first argument when called." f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase__ : int = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class __lowercase ( _lowercase ): def __init__( self , **lowercase_) -> int: super().__init__(**A_) requires_backends(self , 'vision') requires_backends(self , 'torch') if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch.") self.check_model_type(A_) def _a ( self , **lowercase_) -> Union[str, Any]: __snake_case = {} __snake_case = {} __snake_case = {} # preprocess args if "points_per_batch" in kwargs: __snake_case = kwargs['points_per_batch'] if "points_per_crop" in kwargs: __snake_case = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: __snake_case = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: __snake_case = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: __snake_case = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: __snake_case = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: __snake_case = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: __snake_case = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: __snake_case = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: __snake_case = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: __snake_case = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: __snake_case = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , lowercase_ , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Any: return super().__call__(A_ , *A_ , num_workers=A_ , batch_size=A_ , **A_) def _a ( self , lowercase_ , lowercase_=6_4 , lowercase_ = 0 , lowercase_ = 5_1_2 / 1_5_0_0 , lowercase_ = 3_2 , lowercase_ = 1 , ) -> Dict: __snake_case = load_image(A_) __snake_case = self.image_processor.size['longest_edge'] __snake_case , __snake_case , __snake_case , __snake_case = self.image_processor.generate_crop_boxes( A_ , A_ , A_ , A_ , A_ , A_) __snake_case = self.image_processor(images=A_ , return_tensors='pt') with self.device_placement(): if self.framework == "pt": __snake_case = self.get_inference_context() with inference_context(): __snake_case = self._ensure_tensor_on_device(A_ , device=self.device) __snake_case = self.model.get_image_embeddings(model_inputs.pop('pixel_values')) __snake_case = image_embeddings __snake_case = grid_points.shape[1] __snake_case = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None') for i in range(0 , A_ , A_): __snake_case = grid_points[:, i : i + points_per_batch, :, :] __snake_case = input_labels[:, i : i + points_per_batch] __snake_case = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _a ( self , lowercase_ , lowercase_=0.88 , lowercase_=0.95 , lowercase_=0 , lowercase_=1 , ) -> int: __snake_case = model_inputs.pop('input_boxes') __snake_case = model_inputs.pop('is_last') __snake_case = model_inputs.pop('original_sizes').tolist() __snake_case = model_inputs.pop('reshaped_input_sizes').tolist() __snake_case = self.model(**A_) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __snake_case = model_outputs['pred_masks'] __snake_case = self.image_processor.post_process_masks( A_ , A_ , A_ , A_ , binarize=A_) __snake_case = model_outputs['iou_scores'] __snake_case , __snake_case , __snake_case = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , A_ , A_ , A_ , A_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _a ( self , lowercase_ , lowercase_=False , lowercase_=False , lowercase_=0.7 , ) -> List[str]: __snake_case = [] __snake_case = [] __snake_case = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores')) all_masks.extend(model_output.pop('masks')) all_boxes.append(model_output.pop('boxes')) __snake_case = torch.cat(A_) __snake_case = torch.cat(A_) __snake_case , __snake_case , __snake_case , __snake_case = self.image_processor.post_process_for_mask_generation( A_ , A_ , A_ , A_) __snake_case = defaultdict(A_) for output in model_outputs: for k, v in output.items(): extra[k].append(A_) __snake_case = {} if output_rle_mask: __snake_case = rle_mask if output_bboxes_mask: __snake_case = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' import math def A ( snake_case__ : Any ) -> list[int]: '''simple docstring''' __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) # Size of every segment __snake_case = [True] * (end + 1) __snake_case = [] while start <= end: if temp[start] is True: in_prime.append(__SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , __SCREAMING_SNAKE_CASE ): __snake_case = False start += 1 prime += in_prime __snake_case = end + 1 __snake_case = min(2 * end , __SCREAMING_SNAKE_CASE ) while low <= n: __snake_case = [True] * (high - low + 1) for each in in_prime: __snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(__SCREAMING_SNAKE_CASE , high + 1 , __SCREAMING_SNAKE_CASE ): __snake_case = False for j in range(len(__SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) __snake_case = high + 1 __snake_case = min(high + end , __SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
from collections.abc import Callable import numpy as np def A ( snake_case__ : Callable , snake_case__ : float , snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> Union[str, Any]: '''simple docstring''' __snake_case = int(np.ceil((x_end - xa) / step_size ) ) __snake_case = np.zeros((n + 1,) ) __snake_case = ya __snake_case = xa for k in range(snake_case__ ): __snake_case = y[k] + step_size * ode_func(snake_case__ , y[k] ) __snake_case = y[k] + ( (step_size / 2) * (ode_func(snake_case__ , y[k] ) + ode_func(x + step_size , snake_case__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
import math def A ( snake_case__ : list , snake_case__ : int = 0 , snake_case__ : int = 0 ) -> int: '''simple docstring''' __snake_case = end or len(snake_case_ ) for i in range(snake_case_ , snake_case_ ): __snake_case = i __snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case = array[temp_index - 1] temp_index -= 1 __snake_case = temp_index_value return array def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int ) -> List[Any]: # Max Heap '''simple docstring''' __snake_case = index __snake_case = 2 * index + 1 # Left Node __snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case = right_index if largest != index: __snake_case = array[largest], array[index] heapify(snake_case_ , snake_case_ , snake_case_ ) def A ( snake_case__ : list ) -> Optional[Any]: '''simple docstring''' __snake_case = len(snake_case_ ) for i in range(n // 2 , -1 , -1 ): heapify(snake_case_ , snake_case_ , snake_case_ ) for i in range(n - 1 , 0 , -1 ): __snake_case = array[0], array[i] heapify(snake_case_ , 0 , snake_case_ ) return array def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Dict: '''simple docstring''' __snake_case = low __snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case = array[j], array[i] i += 1 def A ( snake_case__ : list ) -> Dict: '''simple docstring''' if len(snake_case_ ) == 0: return array __snake_case = 2 * math.ceil(math.loga(len(snake_case_ ) ) ) __snake_case = 16 return intro_sort(snake_case_ , 0 , len(snake_case_ ) , snake_case_ , snake_case_ ) def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Any: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case_ ) max_depth -= 1 __snake_case = median_of_a(snake_case_ , snake_case_ , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case = partition(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) intro_sort(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __snake_case = p return insertion_sort(snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Optional[Any] = input("Enter numbers separated by a comma : ").strip() UpperCAmelCase__ : int = [float(item) for item in user_input.split(",")] print(sort(unsorted))
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' def A ( snake_case__ : int = 10 , snake_case__ : int = 1000 , snake_case__ : bool = True ) -> List[Any]: '''simple docstring''' assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def A ( snake_case__ : int , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' return int((number_a + number_a) / 2 ) def A ( snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(snake_case__ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __snake_case = lower __snake_case = higher __snake_case = [] while True: __snake_case = get_avg(_lowerCamelCase , _lowerCamelCase ) last_numbers.append(_lowerCamelCase ) if answer(_lowerCamelCase ) == "low": __snake_case = number elif answer(_lowerCamelCase ) == "high": __snake_case = number else: break print(f"guess the number : {last_numbers[-1]}" ) print(f"details : {last_numbers!s}" ) def A ( ) -> Tuple: '''simple docstring''' __snake_case = int(input('Enter lower value : ' ).strip() ) __snake_case = int(input('Enter high value : ' ).strip() ) __snake_case = int(input('Enter value to guess : ' ).strip() ) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
def A ( snake_case__ : int ) -> str: '''simple docstring''' __snake_case = generate_pascal_triangle(snake_case__ ) for row_idx in range(snake_case__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def A ( snake_case__ : int ) -> Any: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __snake_case = [] for current_row_idx in range(snake_case__ ): __snake_case = populate_current_row(snake_case__ , snake_case__ ) triangle.append(snake_case__ ) return triangle def A ( snake_case__ : list[list[int]] , snake_case__ : int ) -> Any: '''simple docstring''' __snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __snake_case = 1, 1 for current_col_idx in range(1 , snake_case__ ): calculate_current_element( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return current_row def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int , ) -> Tuple: '''simple docstring''' __snake_case = triangle[current_row_idx - 1][current_col_idx - 1] __snake_case = triangle[current_row_idx - 1][current_col_idx] __snake_case = above_to_left_elt + above_to_right_elt def A ( snake_case__ : int ) -> List[Any]: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __snake_case = [[1]] for row_index in range(1 , snake_case__ ): __snake_case = [0] + result[-1] + [0] __snake_case = row_index + 1 # Calculate the number of distinct elements in a row __snake_case = sum(divmod(snake_case__ , 2 ) ) __snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __snake_case = row_first_half + row_second_half result.append(snake_case__ ) return result def A ( ) -> List[Any]: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case__ : Callable , snake_case__ : int ) -> None: __snake_case = f"{func.__name__}({value})" __snake_case = timeit(f"__main__.{call}" , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case__ , snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = "▁" UpperCAmelCase__ : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : Union[str, Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } UpperCAmelCase__ : List[Any] = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off UpperCAmelCase__ : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __lowercase ( __a ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase = [] __UpperCAmelCase = [] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_ = None , lowercase_=None , **lowercase_ , ) -> str: __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_) if isinstance(a_ , a_) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , tokenizer_file=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(a_)) __snake_case = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __snake_case = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case = 1 __snake_case = len(self.sp_model) __snake_case = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a_) } __snake_case = {v: k for k, v in self.lang_code_to_id.items()} __snake_case = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __snake_case = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) __snake_case = src_lang if src_lang is not None else """en_XX""" __snake_case = self.lang_code_to_id[self._src_lang] __snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Dict: __snake_case = self.__dict__.copy() __snake_case = None __snake_case = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase_) -> Any: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def _a ( self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _a ( self) -> List[Any]: return self._src_lang @src_lang.setter def _a ( self , lowercase_) -> List[str]: __snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = False) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_) __snake_case = [1] * len(self.prefix_tokens) __snake_case = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(a_)) + suffix_ones return prefix_ones + ([0] * len(a_)) + ([0] * len(a_)) + suffix_ones def _a ( self , lowercase_ , lowercase_ = None) -> Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , lowercase_ , lowercase_ = None) -> Tuple: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') __snake_case = src_lang __snake_case = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_) __snake_case = self.convert_tokens_to_ids(a_) __snake_case = tgt_lang_id return inputs def _a ( self) -> Optional[int]: __snake_case = {self.convert_ids_to_tokens(a_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _a ( self , lowercase_) -> List[str]: return self.sp_model.encode(a_ , out_type=a_) def _a ( self , lowercase_) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case = self.sp_model.PieceToId(a_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self , lowercase_) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _a ( self , lowercase_) -> List[str]: __snake_case = """""".join(a_).replace(a_ , ' ').strip() return out_string def _a ( self , lowercase_ , lowercase_ = None) -> Tuple: if not os.path.isdir(a_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __snake_case = os.path.join( a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a_) elif not os.path.isfile(self.vocab_file): with open(a_ , 'wb') as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(a_) return (out_vocab_file,) def _a ( self , lowercase_ , lowercase_ = "en_XX" , lowercase_ = None , lowercase_ = "ro_RO" , **lowercase_ , ) -> Tuple: __snake_case = src_lang __snake_case = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_) def _a ( self) -> Any: return self.set_src_lang_special_tokens(self.src_lang) def _a ( self) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _a ( self , lowercase_) -> Tuple: __snake_case = self.lang_code_to_id[src_lang] __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code] def _a ( self , lowercase_) -> int: __snake_case = self.lang_code_to_id[lang] __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code]
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
from __future__ import annotations lowerCAmelCase : Any = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __lowercase : def __init__( self , lowercase_ , lowercase_) -> Dict: __snake_case = graph # mapping node to its parent in resulting breadth first tree __snake_case = {} __snake_case = source_vertex def _a ( self) -> Union[str, Any]: __snake_case = {self.source_vertex} __snake_case = None __snake_case = [self.source_vertex] # first in first out queue while queue: __snake_case = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCAmelCase) __snake_case = vertex queue.append(__lowerCAmelCase) def _a ( self , lowercase_) -> Dict: if target_vertex == self.source_vertex: return self.source_vertex __snake_case = self.parent.get(__lowerCAmelCase) if target_vertex_parent is None: __snake_case = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowerCAmelCase) return self.shortest_path(__lowerCAmelCase) + F"->{target_vertex}" if __name__ == "__main__": lowerCAmelCase : Dict = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
def A ( ) -> Any: '''simple docstring''' __snake_case = 0 for i in range(1 , 1001 ): total += i**i return str(UpperCAmelCase__ )[-10:] if __name__ == "__main__": print(solution())
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( a__ , a__ , a__ , unittest.TestCase ): __UpperCAmelCase = StableUnCLIPPipeline __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __UpperCAmelCase = False def _a ( self) -> Any: __snake_case = 3_2 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowerCAmelCase__ , num_layers=1 , ) torch.manual_seed(0) __snake_case = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__) __snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) __snake_case = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0) __snake_case = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0) __snake_case = AutoencoderKL() __snake_case = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _a ( self , lowercase_ , lowercase_=0) -> Any: if str(lowerCAmelCase__).startswith('mps'): __snake_case = torch.manual_seed(lowerCAmelCase__) else: __snake_case = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _a ( self) -> Union[str, Any]: __snake_case = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__) def _a ( self) -> Tuple: __snake_case = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def _a ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self) -> int: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy') __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device='cpu').manual_seed(0) __snake_case = pipe('anime turle' , generator=lowerCAmelCase__ , output_type='np') __snake_case = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__) def _a ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa) __snake_case = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
def A ( snake_case__ : int ) -> Tuple: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(UpperCAmelCase__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
710
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class __lowercase ( __UpperCAmelCase ): __UpperCAmelCase = ["""input_features""", """is_longer"""] def __init__( self , lowercase_=6_4 , lowercase_=4_8_0_0_0 , lowercase_=4_8_0 , lowercase_=1_0 , lowercase_=1_0_2_4 , lowercase_=0.0 , lowercase_=False , lowercase_ = 0 , lowercase_ = 1_4_0_0_0 , lowercase_ = None , lowercase_ = "fusion" , lowercase_ = "repeatpad" , **lowercase_ , ) -> int: super().__init__( feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) __snake_case = top_db __snake_case = truncation __snake_case = padding __snake_case = fft_window_size __snake_case = (fft_window_size >> 1) + 1 __snake_case = hop_length __snake_case = max_length_s __snake_case = max_length_s * sampling_rate __snake_case = sampling_rate __snake_case = frequency_min __snake_case = frequency_max __snake_case = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase_ , min_frequency=UpperCAmelCase_ , max_frequency=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , norm=UpperCAmelCase_ , mel_scale='htk' , ) __snake_case = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase_ , min_frequency=UpperCAmelCase_ , max_frequency=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , norm='slaney' , mel_scale='slaney' , ) def _a ( self) -> Tuple: __snake_case = copy.deepcopy(self.__dict__) __snake_case = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self , lowercase_ , lowercase_ = None) -> Dict: __snake_case = spectrogram( UpperCAmelCase_ , window_function(self.fft_window_size , 'hann') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __snake_case = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __snake_case = [0] # randomly choose index for each part __snake_case = np.random.choice(ranges[0]) __snake_case = np.random.choice(ranges[1]) __snake_case = np.random.choice(ranges[2]) __snake_case = mel[idx_front : idx_front + chunk_frames, :] __snake_case = mel[idx_middle : idx_middle + chunk_frames, :] __snake_case = mel[idx_back : idx_back + chunk_frames, :] __snake_case = torch.tensor(mel[None, None, :]) __snake_case = torch.nn.functional.interpolate( UpperCAmelCase_ , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=UpperCAmelCase_) __snake_case = mel_shrink[0][0].numpy() __snake_case = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Tuple: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __snake_case = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __snake_case = len(UpperCAmelCase_) - max_length __snake_case = np.random.randint(0 , overflow + 1) __snake_case = waveform[idx : idx + max_length] __snake_case = self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __snake_case = self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters) __snake_case = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __snake_case = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __snake_case = np.stack([mel, mel, mel, mel] , axis=0) __snake_case = False else: __snake_case = self._random_mel_fusion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) __snake_case = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented") else: __snake_case = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __snake_case = int(max_length / len(UpperCAmelCase_)) __snake_case = np.stack(np.tile(UpperCAmelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": __snake_case = int(max_length / len(UpperCAmelCase_)) __snake_case = np.stack(np.tile(UpperCAmelCase_ , UpperCAmelCase_)) __snake_case = np.pad(UpperCAmelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0) if truncation == "fusion": __snake_case = self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters) __snake_case = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __snake_case = self._np_extract_fbank_features(UpperCAmelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> Any: __snake_case = truncation if truncation is not None else self.truncation __snake_case = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __snake_case = isinstance(UpperCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __snake_case = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __snake_case = [np.asarray(UpperCAmelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray): __snake_case = np.asarray(UpperCAmelCase_ , dtype=np.floataa) elif isinstance(UpperCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __snake_case = raw_speech.astype(np.floataa) # always return batch if not is_batched: __snake_case = [np.asarray(UpperCAmelCase_)] # convert to mel spectrogram, truncate and pad if needed. __snake_case = [ self._get_input_mel(UpperCAmelCase_ , max_length if max_length else self.nb_max_samples , UpperCAmelCase_ , UpperCAmelCase_) for waveform in raw_speech ] __snake_case = [] __snake_case = [] for mel, longer in padded_inputs: input_mel.append(UpperCAmelCase_) is_longer.append(UpperCAmelCase_) if truncation == "fusion" and sum(UpperCAmelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __snake_case = np.random.randint(0 , len(UpperCAmelCase_)) __snake_case = True if isinstance(input_mel[0] , UpperCAmelCase_): __snake_case = [np.asarray(UpperCAmelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __snake_case = [[longer] for longer in is_longer] __snake_case = {'input_features': input_mel, 'is_longer': is_longer} __snake_case = BatchFeature(UpperCAmelCase_) if return_tensors is not None: __snake_case = input_features.convert_to_tensors(UpperCAmelCase_) return input_features
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
import inspect import unittest class __lowercase ( unittest.TestCase ): def _a ( self) -> str: try: import diffusers # noqa: F401 except ImportError: assert False def _a ( self) -> str: import diffusers from diffusers.dependency_versions_table import deps __snake_case = inspect.getmembers(UpperCamelCase__ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __snake_case = '''k-diffusion''' elif backend == "invisible_watermark": __snake_case = '''invisible-watermark''' assert backend in deps, F"{backend} is not in the deps table!"
712
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''speech_to_text''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase_=1_0_0_0_0 , lowercase_=1_2 , lowercase_=2_0_4_8 , lowercase_=4 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=4 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=2 , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=6_0_0_0 , lowercase_=1_0_2_4 , lowercase_=2 , lowercase_=(5, 5) , lowercase_=1_0_2_4 , lowercase_=8_0 , lowercase_=1 , **lowercase_ , ) -> Tuple: __snake_case = vocab_size __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = max_source_positions __snake_case = max_target_positions __snake_case = num_conv_layers __snake_case = list(_SCREAMING_SNAKE_CASE) __snake_case = conv_channels __snake_case = input_feat_per_channel __snake_case = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " F"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
def A ( snake_case__ : List[Any] , snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) __snake_case = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __snake_case = True for i in range(snake_case__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __snake_case = True if a[i].islower(): __snake_case = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
0
def A ( snake_case__ : Any ) -> Any: '''simple docstring''' stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def A ( snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __snake_case , __snake_case = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __snake_case = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": UpperCAmelCase__ : int = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ : Any = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
from math import asin, atan, cos, radians, sin, sqrt, tan UpperCAmelCase__ : Optional[int] = 6_37_81_37.0 UpperCAmelCase__ : Tuple = 6_35_67_52.31_42_45 UpperCAmelCase__ : Tuple = 6_37_81_37 def A ( snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] ) -> float: '''simple docstring''' __snake_case = (AXIS_A - AXIS_B) / AXIS_A __snake_case = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) __snake_case = radians(_lowerCAmelCase ) __snake_case = radians(_lowerCAmelCase ) # Equation __snake_case = sin((phi_a - phi_a) / 2 ) __snake_case = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __snake_case = sqrt(sin_sq_phi + (cos(_lowerCAmelCase ) * cos(_lowerCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=3 , lowercase_=4 , lowercase_=2 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=3_6 , lowercase_=3 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=6 , lowercase_=6 , lowercase_=3 , lowercase_=4 , lowercase_=None , lowercase_=1_0_0_0 , ) -> Tuple: __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = text_seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = coordinate_size __snake_case = shape_size __snake_case = num_labels __snake_case = num_choices __snake_case = scope __snake_case = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case = text_seq_length __snake_case = (image_size // patch_size) ** 2 + 1 __snake_case = self.text_seq_length + self.image_seq_length def _a ( self) -> str: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) __snake_case = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.text_seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) __snake_case = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> int: __snake_case = LayoutLMvaModel(config=lowercase_) model.to(lowercase_) model.eval() # text + image __snake_case = model(lowercase_ , pixel_values=lowercase_) __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) __snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_) __snake_case = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only __snake_case = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only __snake_case = model(pixel_values=lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = self.num_labels __snake_case = LayoutLMvaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[int]: __snake_case = self.num_labels __snake_case = LayoutLMvaForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: __snake_case = LayoutLMvaForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _a ( self) -> Tuple: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowercase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Tuple: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _a ( self) -> List[str]: __snake_case = LayoutLMvaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self , lowercase_ , lowercase_ , lowercase_=False) -> str: __snake_case = copy.deepcopy(lowercase_) if model_class in get_values(lowercase_): __snake_case = { k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(lowercase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_): __snake_case = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in get_values(lowercase_): __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) elif model_class in [ *get_values(lowercase_), ]: __snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def _a ( self) -> List[str]: self.config_tester.run_common_tests() def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Dict: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_) def _a ( self) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _a ( self) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LayoutLMvaModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A ( ) -> int: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> Tuple: return LayoutLMvaImageProcessor(apply_ocr=lowercase_) if is_vision_available() else None @slow def _a ( self) -> int: __snake_case = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base').to(lowercase_) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='pt').pixel_values.to(lowercase_) __snake_case = torch.tensor([[1, 2]]) __snake_case = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass __snake_case = model( input_ids=input_ids.to(lowercase_) , bbox=bbox.to(lowercase_) , pixel_values=pixel_values.to(lowercase_) , ) # verify the logits __snake_case = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) __snake_case = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4))
717
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
0
UpperCAmelCase__ : str = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") UpperCAmelCase__ : List[Any] = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) UpperCAmelCase__ : List[str] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) UpperCAmelCase__ : Tuple = BeautifulSoup(res.text, "html.parser") UpperCAmelCase__ : int = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowercase ( __lowercase ): __UpperCAmelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCAmelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCAmelCase = '''summarizer''' __UpperCAmelCase = AutoTokenizer __UpperCAmelCase = AutoModelForSeqaSeqLM __UpperCAmelCase = ['''text'''] __UpperCAmelCase = ['''text'''] def _a ( self , lowercase_) -> str: return self.pre_processor(__a , return_tensors='pt' , truncation=__a) def _a ( self , lowercase_) -> List[Any]: return self.model.generate(**__a)[0] def _a ( self , lowercase_) -> int: return self.pre_processor.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a)
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
from torch import nn def A ( snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __lowercase ( __a ): __UpperCAmelCase = '''bert''' def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_=True , lowercase_=None , **lowercase_ , ) -> List[Any]: super().__init__(pad_token_id=A__ , **A__) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class __lowercase ( __a ): @property def _a ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase__ : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __lowercase ( nn.Module ): def __init__( self , lowercase_) -> Optional[Any]: super().__init__() __snake_case = torchvision.models.resnetaaa(pretrained=lowercase_) __snake_case = list(model.children())[:-2] __snake_case = nn.Sequential(*lowercase_) __snake_case = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _a ( self , lowercase_) -> List[str]: __snake_case = self.pool(self.model(lowercase_)) __snake_case = torch.flatten(lowercase_ , start_dim=2) __snake_case = out.transpose(1 , 2).contiguous() return out # BxNx2048 class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = [json.loads(lowercase_) for l in open(lowercase_)] __snake_case = os.path.dirname(lowercase_) __snake_case = tokenizer __snake_case = labels __snake_case = len(lowercase_) __snake_case = max_seq_length __snake_case = transforms def __len__( self) -> Any: return len(self.data) def __getitem__( self , lowercase_) -> Any: __snake_case = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=lowercase_)) __snake_case , __snake_case , __snake_case = sentence[0], sentence[1:-1], sentence[-1] __snake_case = sentence[: self.max_seq_length] __snake_case = torch.zeros(self.n_classes) __snake_case = 1 __snake_case = Image.open(os.path.join(self.data_dir , self.data[index]['img'])).convert('RGB') __snake_case = self.transforms(lowercase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self) -> List[str]: __snake_case = Counter() for row in self.data: label_freqs.update(row['label']) return label_freqs def A ( snake_case__ : Optional[Any] ) -> int: '''simple docstring''' __snake_case = [len(row['sentence'] ) for row in batch] __snake_case , __snake_case = len(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) __snake_case = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) __snake_case = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): __snake_case = input_row['sentence'] __snake_case = 1 __snake_case = torch.stack([row['image'] for row in batch] ) __snake_case = torch.stack([row['label'] for row in batch] ) __snake_case = torch.stack([row['image_start_token'] for row in batch] ) __snake_case = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A ( ) -> List[str]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A ( ) -> Dict: '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
from typing import Any def A ( snake_case__ : str ) -> Optional[Any]: '''simple docstring''' if not input_list: return [] __snake_case = [input_list.count(lowercase__ ) for value in input_list] __snake_case = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : str = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ['YolosFeatureExtractor'] UpperCAmelCase__ : Dict = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase__ : int = "." if __name__ == "__main__": UpperCAmelCase__ : Dict = os.path.join(REPO_PATH, "utils/documentation_tests.txt") UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Tuple = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase__ : int = line.strip() UpperCAmelCase__ : Any = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase__ : Optional[int] = "\n".join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = {"vocab_file": "sentencepiece.model"} UpperCAmelCase__ : Dict = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCAmelCase__ : str = { "google/rembert": 2_56, } class __lowercase ( __SCREAMING_SNAKE_CASE ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase_ , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="[CLS]" , lowercase_="[SEP]" , lowercase_="[UNK]" , lowercase_="[SEP]" , lowercase_="[PAD]" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ) -> Tuple: super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case) @property def _a ( self) -> int: return len(self.sp_model) def _a ( self) -> str: __snake_case = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> str: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self , lowercase_) -> Dict: __snake_case = d __snake_case = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _a ( self , lowercase_ , lowercase_=False) -> Dict: __snake_case = self.sp_model.EncodeAsPieces(__snake_case) return pieces def _a ( self , lowercase_) -> Tuple: return self.sp_model.PieceToId(__snake_case) def _a ( self , lowercase_) -> str: return self.sp_model.IdToPiece(__snake_case) def _a ( self , lowercase_) -> Optional[Any]: __snake_case = self.sp_model.decode_pieces(__snake_case) return out_string def _a ( self , lowercase_ , lowercase_ = None) -> str: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = False) -> str: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case)) + [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1] def _a ( self , lowercase_ , lowercase_ = None) -> str: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _a ( self , lowercase_ , lowercase_ = None) -> Union[str, Any]: if not os.path.isdir(__snake_case): logger.error('Vocabulary path ({}) should be a directory'.format(__snake_case)) return __snake_case = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case): copyfile(self.vocab_file , __snake_case) return (out_vocab_file,)
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = "dpr" def __init__( self , lowercase_=3_0_5_2_2 , lowercase_=7_6_8 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3_0_7_2 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0 , lowercase_="absolute" , lowercase_ = 0 , **lowercase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , **lowercase_) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = projection_dim __snake_case = position_embedding_type
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : Dict = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } lowerCAmelCase : Optional[Any] = { "camembert-base": 5_12, } lowerCAmelCase : Union[str, Any] = "▁" class __lowercase ( _UpperCamelCase ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = CamembertTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase_ , ) -> str: # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(__a , lstrip=__a , rstrip=__a) if isinstance(__a , __a) else mask_token super().__init__( __a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(__a): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __snake_case = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file , __a) return (out_vocab_file,)
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : int = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase = "convnextv2" def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=4 , lowercase_=None , lowercase_=None , lowercase_="gelu" , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=0.0 , lowercase_=2_2_4 , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Optional[Any]: super().__init__(**_snake_case) __snake_case = num_channels __snake_case = patch_size __snake_case = num_stages __snake_case = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes __snake_case = [3, 3, 9, 3] if depths is None else depths __snake_case = hidden_act __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = drop_path_rate __snake_case = image_size __snake_case = ['stem'] + [F"stage{idx}" for idx in range(1 , len(self.depths) + 1)] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names)
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0