code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''segformer''' def __init__( self , lowercase_=3 , lowercase_=4 , lowercase_=[2, 2, 2, 2] , lowercase_=[8, 4, 2, 1] , lowercase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowercase_=[7, 3, 3, 3] , lowercase_=[4, 2, 2, 2] , lowercase_=[1, 2, 5, 8] , lowercase_=[4, 4, 4, 4] , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=0.02 , lowercase_=0.1 , lowercase_=1e-6 , lowercase_=2_5_6 , lowercase_=2_5_5 , **lowercase_ , ) -> int: super().__init__(**lowercase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowercase_ , ) __snake_case = num_channels __snake_case = num_encoder_blocks __snake_case = depths __snake_case = sr_ratios __snake_case = hidden_sizes __snake_case = patch_sizes __snake_case = strides __snake_case = mlp_ratios __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = drop_path_rate __snake_case = layer_norm_eps __snake_case = decoder_hidden_size __snake_case = kwargs.get('reshape_last_stage' , lowercase_) __snake_case = semantic_loss_ignore_index class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def _a ( self) -> float: return 1e-4 @property def _a ( self) -> int: return 1_2
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A ( snake_case__ : Optional[int] , snake_case__ : List[str] ) -> List[str]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = torch.permute(snake_case__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ): # linear layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def A ( snake_case__ : Tuple , snake_case__ : Any , snake_case__ : int ) -> Dict: '''simple docstring''' if "metadata" in layer: __snake_case = layer.split('metadata' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __snake_case = layer.split('kvstore' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __snake_case = layer.split('/' ) __snake_case = '/'.join(split_layer[:-1] ) __snake_case = (split_layer[-1],) if "kvstore/path" in layer: __snake_case = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __snake_case = 'file' else: __snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ) -> int: '''simple docstring''' __snake_case = rename_keys(snake_case__ ) __snake_case = {} for k, v in current_block.items(): __snake_case = v __snake_case = new_current_block torch.save(snake_case__ , snake_case__ ) def A ( snake_case__ : str , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str = WEIGHTS_NAME ) -> Optional[int]: '''simple docstring''' __snake_case = convert_file_size_to_int(snake_case__ ) __snake_case = [] __snake_case = {} __snake_case = 0 __snake_case = 0 os.makedirs(snake_case__ , exist_ok=snake_case__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __snake_case = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __snake_case = flatten_dict(snake_case__ , sep='/' ) __snake_case = {} for layer in checkpoint_info.keys(): __snake_case , __snake_case , __snake_case = get_key_and_tensorstore_dict( snake_case__ , snake_case__ , snake_case__ ) if curr_real_layer_name in all_layers: __snake_case = content else: __snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __snake_case = torch.tensor(snake_case__ ) __snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __snake_case , __snake_case = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case__ ) __snake_case = '/'.join(snake_case__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __snake_case = os.path.join( snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __snake_case = {} __snake_case = 0 __snake_case = raw_weights.to(getattr(snake_case__ , snake_case__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __snake_case = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{len(snake_case__ )+1:05d}-of-???.bin" ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(snake_case__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __snake_case = {} __snake_case = {} for idx, shard in enumerate(snake_case__ ): __snake_case = weights_name.replace( '.bin' , f"-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin" ) # len(sharded_state_dicts):05d} __snake_case = os.path.join(snake_case__ , weights_name.replace('.bin' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) __snake_case = shard for key in shard: __snake_case = shard_file # Add the metadata __snake_case = {'total_size': total_size} __snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' ) as f: __snake_case = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n' f.write(snake_case__ ) return metadata, index if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A ( ) -> Optional[int]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __snake_case = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __snake_case = TaTokenizer.from_pretrained('t5-small' ) __snake_case = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __snake_case = tokenizer(snake_case__ , return_tensors='pt' ).input_ids __snake_case = model.generate(snake_case__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
def A ( snake_case__ : List[str] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(snake_case__ ): for j in range(snake_case__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def A ( snake_case__ : Dict , snake_case__ : List[Any] ) -> int: '''simple docstring''' __snake_case = [[float('inf' ) for _ in range(snake_case__ )] for _ in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): __snake_case = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(snake_case__ ): # looping through rows of graph array for i in range(snake_case__ ): # looping through columns of graph array for j in range(snake_case__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __snake_case = dist[i][k] + dist[k][j] _print_dist(snake_case__ , snake_case__ ) return dist, v if __name__ == "__main__": UpperCAmelCase__ : List[Any] = int(input("Enter number of vertices: ")) UpperCAmelCase__ : int = int(input("Enter number of edges: ")) UpperCAmelCase__ : Optional[int] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase__ : List[str] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCAmelCase__ : Dict = int(input("Enter source:")) UpperCAmelCase__ : Optional[int] = int(input("Enter destination:")) UpperCAmelCase__ : List[str] = float(input("Enter weight:")) UpperCAmelCase__ : Optional[int] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' UpperCAmelCase__ : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def A ( snake_case__ : str , snake_case__ : str , snake_case__ : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __snake_case = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(snake_case__ )}" ) raise ValueError(snake_case__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
def A ( snake_case__ : int , snake_case__ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __snake_case = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __snake_case = str(bin(snake_case__ ) )[2:] # remove the leading "0b" __snake_case = max(len(snake_case__ ) , len(snake_case__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(snake_case__ ) , b_binary.zfill(snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class __lowercase : def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: __snake_case = question_encoder __snake_case = generator __snake_case = self.question_encoder def _a ( self , lowercase_) -> List[str]: if os.path.isfile(lowercase_): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowercase_ , exist_ok=lowercase_) __snake_case = os.path.join(lowercase_ , 'question_encoder_tokenizer') __snake_case = os.path.join(lowercase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(lowercase_) self.generator.save_pretrained(lowercase_) @classmethod def _a ( cls , lowercase_ , **lowercase_) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __snake_case = kwargs.pop('config' , lowercase_) if config is None: __snake_case = RagConfig.from_pretrained(lowercase_) __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') __snake_case = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=lowercase_ , generator=lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> Tuple: return self.current_tokenizer(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.generator.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.generator.decode(*lowercase_ , **lowercase_) def _a ( self) -> int: __snake_case = self.question_encoder def _a ( self) -> Optional[int]: __snake_case = self.generator def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "longest" , lowercase_ = None , lowercase_ = True , **lowercase_ , ) -> BatchEncoding: warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase_ , ) if max_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __snake_case = self.current_tokenizer.model_max_length __snake_case = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) __snake_case = labels['input_ids'] return model_inputs
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''rwkv''' __UpperCAmelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self , lowercase_=5_0_2_7_7 , lowercase_=1_0_2_4 , lowercase_=4_0_9_6 , lowercase_=3_2 , lowercase_=None , lowercase_=None , lowercase_=1e-5 , lowercase_=0 , lowercase_=0 , lowercase_=6 , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Optional[Any]: __snake_case = vocab_size __snake_case = context_length __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = attention_hidden_size if attention_hidden_size is not None else hidden_size __snake_case = intermediate_size if intermediate_size is not None else 4 * hidden_size __snake_case = layer_norm_epsilon __snake_case = rescale_every __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) __snake_case = ( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case = [] for char_count in range(snake_case__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0
'''simple docstring''' def A ( snake_case__ : float ) -> float: '''simple docstring''' return 10 - x * x def A ( snake_case__ : float , snake_case__ : float ) -> float: '''simple docstring''' # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('Wrong space!' ) __snake_case = a while (b - a) >= 0.01: # Find middle point __snake_case = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: __snake_case = c else: __snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
710
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Any = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
712
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
0
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
0
from __future__ import annotations UpperCAmelCase__ : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __lowercase : def __init__( self , lowercase_ , lowercase_) -> None: __snake_case = graph # mapping node to its parent in resulting breadth first tree __snake_case = {} __snake_case = source_vertex def _a ( self) -> None: __snake_case = {self.source_vertex} __snake_case = None __snake_case = [self.source_vertex] # first in first out queue while queue: __snake_case = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowercase_) __snake_case = vertex queue.append(lowercase_) def _a ( self , lowercase_) -> str: if target_vertex == self.source_vertex: return self.source_vertex __snake_case = self.parent.get(lowercase_) if target_vertex_parent is None: __snake_case = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(lowercase_) return self.shortest_path(lowercase_) + F"->{target_vertex}" if __name__ == "__main__": UpperCAmelCase__ : Dict = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ : Dict = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = BertConfig.from_json_file(snake_case__ ) print(f"Building PyTorch model from configuration: {config}" ) __snake_case = BertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
717
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCAmelCase__ : Optional[int] = float("nan") class __lowercase : def __init__( self , lowercase_) -> Optional[Any]: __snake_case = sys.stdout __snake_case = open(lowercase_ , 'a') def __getattr__( self , lowercase_) -> Tuple: return getattr(self.stdout , lowercase_) def _a ( self , lowercase_) -> str: self.stdout.write(lowercase_) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , lowercase_ , 0 , re.M)) def A ( snake_case__ : Union[str, Any]=80 , snake_case__ : str=False ) -> Any: '''simple docstring''' __snake_case = [] # deal with critical env vars __snake_case = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: __snake_case = os.environ.get(snake_case__ , snake_case__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = '' while len(snake_case__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) __snake_case = '' return "\\\n".join(snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Optional[int] ) -> Dict: '''simple docstring''' __snake_case = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir __snake_case = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def A ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str] ) -> Dict: '''simple docstring''' # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) __snake_case = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams __snake_case = variation.replace(' ' , '-' ) with open(Path(snake_case__ ) / f"log.{prefix}.stdout.txt" , 'w' ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / f"log.{prefix}.stderr.txt" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , 'r' , encoding='utf-8' ) as f: __snake_case = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def A ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict , ) -> int: '''simple docstring''' __snake_case = [] __snake_case = [] __snake_case = f"{id}: {variation:<{longest_variation_len}}" __snake_case = f"{preamble}: " __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ): __snake_case = process_run_single( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" __snake_case = f"\33[2K\r{outcome}" if len(snake_case__ ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = f"{outcome} {mean_target}" if len(snake_case__ ) > 1: results_str += f" {tuple(round(snake_case__ , 2 ) for x in results )}" print(snake_case__ ) __snake_case = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def A ( ) -> Optional[Any]: '''simple docstring''' __snake_case = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def A ( snake_case__ : str , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' __snake_case = pd.DataFrame(snake_case__ ) __snake_case = 'variation' __snake_case = 'diff_%' __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): __snake_case = df.apply( lambda snake_case__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(snake_case__ , axis='columns' ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible __snake_case = df.rename(lambda snake_case__ : c.replace('_' , '<br>' ) , axis='columns' ) __snake_case = df.rename(lambda snake_case__ : c.replace('_' , '\n' ) , axis='columns' ) __snake_case = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt='.2f' )] print('\n\n'.join(snake_case__ ) ) def A ( ) -> str: '''simple docstring''' __snake_case = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=snake_case__ , type=snake_case__ , nargs='+' , required=snake_case__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=snake_case__ , type=snake_case__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=snake_case__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=snake_case__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=snake_case__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=snake_case__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) __snake_case = get_base_command(snake_case__ , snake_case__ ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(r'\|' , snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(' '.join , itertools.product(*snake_case__ ) ) ) ) __snake_case = max(len(snake_case__ ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) __snake_case = Tee(snake_case__ ) print(f"\n*** Running {len(snake_case__ )} benchmarks:" ) print(f"Base command: {' '.join(snake_case__ )}" ) __snake_case = 'variation' __snake_case = [] for id, variation in enumerate(tqdm(snake_case__ , desc='Total completion: ' , leave=snake_case__ ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) ) process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ ) if __name__ == "__main__": main()
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) __snake_case = Vector() def _a ( self) -> None: __snake_case = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowercase_) , '(0,0,0,0,0,1)') def _a ( self) -> None: __snake_case = Vector([1, 2, 3, 4]) self.assertEqual(len(lowercase_) , 4) def _a ( self) -> None: __snake_case = Vector([1, 2]) __snake_case = Vector([1, 2, 3, 4, 5]) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([2, -1, 4]) # for test of dot product __snake_case = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)') self.assertEqual((a * b) , 0) def _a ( self) -> None: self.assertEqual(str(zero_vector(1_0)).count('0') , 1_0) def _a ( self) -> None: self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)') def _a ( self) -> None: __snake_case = Vector([1, 2, 3]) __snake_case = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowercase_ , lowercase_)) , '(3,4,7)') def _a ( self) -> None: __snake_case = Vector([1, 0, 0, 0, 0, 0]) __snake_case = x.copy() self.assertEqual(str(lowercase_) , str(lowercase_)) def _a ( self) -> None: __snake_case = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowercase_) , '(0,1,0)') def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowercase_ , lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase_ , lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) __snake_case = Vector([1, 2, 3]) self.assertEqual('(14,32,50)' , str(a * x)) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowercase_)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b)) def _a ( self) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b)) def _a ( self) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A ( snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return x + 2 class __lowercase ( unittest.TestCase ): def _a ( self) -> Tuple: __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3}) __snake_case = 'x = y' __snake_case = {'y': 5} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 5, 'y': 5}) def _a ( self) -> List[Any]: __snake_case = 'y = add_two(x)' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) # Won't work without the tool with CaptureStdout() as out: __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result is None assert "tried to execute add_two" in out.out def _a ( self) -> str: __snake_case = 'x = 3' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3}) def _a ( self) -> int: __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) self.assertDictEqual(lowercase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def _a ( self) -> List[Any]: __snake_case = 'x = 3\ny = 5' __snake_case = {} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 5}) def _a ( self) -> Optional[Any]: __snake_case = 'text = f\'This is x: {x}.\'' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase_ , {'x': 3, 'text': 'This is x: 3.'}) def _a ( self) -> Optional[int]: __snake_case = 'if x <= 3:\n y = 2\nelse:\n y = 5' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 2}) __snake_case = {'x': 8} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {'x': 8, 'y': 5}) def _a ( self) -> Union[str, Any]: __snake_case = 'test_list = [x, add_two(x)]' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) self.assertListEqual(lowercase_ , [3, 5]) self.assertDictEqual(lowercase_ , {'x': 3, 'test_list': [3, 5]}) def _a ( self) -> Optional[Any]: __snake_case = 'y = x' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {} , state=lowercase_) assert result == 3 self.assertDictEqual(lowercase_ , {'x': 3, 'y': 3}) def _a ( self) -> Optional[int]: __snake_case = 'test_list = [x, add_two(x)]\ntest_list[1]' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'test_list': [3, 5]}) __snake_case = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' __snake_case = {'x': 3} __snake_case = evaluate(lowercase_ , {'add_two': add_two} , state=lowercase_) assert result == 5 self.assertDictEqual(lowercase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}}) def _a ( self) -> List[str]: __snake_case = 'x = 0\nfor i in range(3):\n x = i' __snake_case = {} __snake_case = evaluate(lowercase_ , {'range': range} , state=lowercase_) assert result == 2 self.assertDictEqual(lowercase_ , {'x': 2, 'i': 2})
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) UpperCAmelCase__ : Dict = logging.getLogger(__name__) def A ( snake_case__ : str ) -> List[str]: '''simple docstring''' __snake_case = git.Repo(search_parent_directories=snake_case__ ) __snake_case = { 'repo_id': str(snake_case__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(snake_case__ , 'git_log.json' ) , 'w' ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def A ( snake_case__ : Optional[Any] ) -> Tuple: '''simple docstring''' if params.n_gpu <= 0: __snake_case = 0 __snake_case = -1 __snake_case = True __snake_case = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case = int(os.environ['WORLD_SIZE'] ) __snake_case = int(os.environ['N_GPU_NODE'] ) __snake_case = int(os.environ['RANK'] ) # number of nodes / node ID __snake_case = params.world_size // params.n_gpu_per_node __snake_case = params.global_rank // params.n_gpu_per_node __snake_case = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case = 1 __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 1 __snake_case = 1 __snake_case = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case = params.node_id == 0 and params.local_rank == 0 __snake_case = params.n_nodes > 1 # summary __snake_case = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def A ( snake_case__ : Dict ) -> Tuple: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = 42 __UpperCAmelCase = 42 class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = 1 @register_to_config def __init__( self , lowercase_ = 2_0_0_0 , lowercase_ = 0.15 , lowercase_ = 0.01 , lowercase_ = 1348.0 , lowercase_ = 1e-5 , lowercase_ = 1 , ) -> List[str]: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _a ( self , lowercase_ , lowercase_ = None) -> torch.FloatTensor: return sample def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None) -> List[Any]: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , lowercase_ , lowercase_ , device=lowercase_) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None) -> List[Any]: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase_ , lowercase_) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(lowercase_) , math.log(lowercase_) , lowercase_)) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def _a ( self , lowercase_ , lowercase_) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device) __snake_case = self.discrete_sigmas[timesteps].to(sample.device) __snake_case = self.get_adjacent_sigma(lowercase_ , lowercase_).to(sample.device) __snake_case = torch.zeros_like(lowercase_) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): __snake_case = diffusion.unsqueeze(-1) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=lowercase_ , device=sample.device , dtype=sample.dtype) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase_ , prev_sample_mean=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=lowercase_).to(sample.device) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape) < len(sample.shape): __snake_case = step_size.unsqueeze(-1) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device) __snake_case = self.discrete_sigmas.to(original_samples.device)[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase_) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self) -> Any: return self.config.num_train_timesteps
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' def A ( snake_case__ : list[list[float]] ) -> list[list[float]]: '''simple docstring''' __snake_case = [] for data in source_data: for i, el in enumerate(snake_case__ ): if len(snake_case__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(snake_case__ ) ) return data_lists def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> list[list[float]]: '''simple docstring''' __snake_case = [] for dlist, weight in zip(snake_case__ , snake_case__ ): __snake_case = min(snake_case__ ) __snake_case = max(snake_case__ ) __snake_case = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __snake_case = f"Invalid weight of {weight:f} provided" raise ValueError(snake_case__ ) score_lists.append(snake_case__ ) return score_lists def A ( snake_case__ : list[list[float]] ) -> list[float]: '''simple docstring''' __snake_case = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(snake_case__ ): __snake_case = final_scores[j] + ele return final_scores def A ( snake_case__ : list[list[float]] , snake_case__ : list[int] ) -> list[list[float]]: '''simple docstring''' __snake_case = get_data(snake_case__ ) __snake_case = calculate_each_score(snake_case__ , snake_case__ ) __snake_case = generate_final_scores(snake_case__ ) # append scores to source data for i, ele in enumerate(snake_case__ ): source_data[i].append(snake_case__ ) return source_data
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase__ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> int: super().__init__() if hasattr(scheduler.config , 'steps_offset') and scheduler.config.steps_offset != 1: __snake_case = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , lowercase_ , standard_warn=lowercase_) __snake_case = dict(scheduler.config) __snake_case = 1 __snake_case = FrozenDict(lowercase_) if hasattr(scheduler.config , 'skip_prk_steps') and scheduler.config.skip_prk_steps is False: __snake_case = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , lowercase_ , standard_warn=lowercase_) __snake_case = dict(scheduler.config) __snake_case = True __snake_case = FrozenDict(lowercase_) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( segmentation_model=lowercase_ , segmentation_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Union[str, Any]: self.enable_attention_slicing(lowercase_) def _a ( self) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') __snake_case = torch.device('cuda') for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self) -> Union[str, Any]: if self.device != torch.device('meta') or not hasattr(self.unet , '_hf_hook'): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt').to(self.device) __snake_case = self.segmentation_model(**lowercase_) __snake_case = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() __snake_case = self.numpy_to_pil(lowercase_)[0].resize(image.size) # Run inpainting pipeline with the generated mask __snake_case = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , )
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
UpperCAmelCase__ : List[Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = 8 , **lowercase_ , ) -> None: super().__init__(**lowercase_) __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_pad __snake_case = pad_size def _a ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ = None) -> List[str]: __snake_case , __snake_case = get_image_size(lowercase_) __snake_case = (old_height // size + 1) * size - old_height __snake_case = (old_width // size + 1) * size - old_width return pad(lowercase_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase_) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> int: __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_pad if do_pad is not None else self.do_pad __snake_case = pad_size if pad_size is not None else self.pad_size __snake_case = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. __snake_case = [to_numpy_array(lowercase_) for image in images] if do_rescale: __snake_case = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_pad: __snake_case = [self.pad(lowercase_ , size=lowercase_) for image in images] __snake_case = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def A ( snake_case__ : Tuple , snake_case__ : Tuple ) -> Dict: '''simple docstring''' __snake_case = Mock() __snake_case = conn, Mock() __snake_case = iter([1, None] ) __snake_case = lambda snake_case__ : next(snake_case__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=snake_case__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
import re def A ( snake_case__ : str ) -> bool: '''simple docstring''' __snake_case = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(snake_case__ , snake_case__ ) ) if __name__ == "__main__": UpperCAmelCase__ : int = "0094702343221" print(is_sri_lankan_phone_number(phone))
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = 42 class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (6_4,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 2_5_6 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = 0.1_8215 , lowercase_ = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder __snake_case = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) __snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels __snake_case = nn.Convad(lowercase_ , lowercase_ , 1) __snake_case = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_) __snake_case = nn.Convad(lowercase_ , lowercase_ , 1) # pass init params to Decoder __snake_case = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , ) @apply_forward_hook def _a ( self , lowercase_ , lowercase_ = True) -> VQEncoderOutput: __snake_case = self.encoder(lowercase_) __snake_case = self.quant_conv(lowercase_) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_) @apply_forward_hook def _a ( self , lowercase_ , lowercase_ = False , lowercase_ = True) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: __snake_case , __snake_case , __snake_case = self.quantize(lowercase_) else: __snake_case = h __snake_case = self.post_quant_conv(lowercase_) __snake_case = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_) def _a ( self , lowercase_ , lowercase_ = True) -> Union[DecoderOutput, torch.FloatTensor]: __snake_case = sample __snake_case = self.encode(lowercase_).latents __snake_case = self.decode(lowercase_).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_)
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
import string def A ( snake_case__ : str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __snake_case = '' for symbol in message: if symbol in string.ascii_uppercase: __snake_case = string.ascii_uppercase.find(snake_case__ ) __snake_case = num - key if num < 0: __snake_case = num + len(string.ascii_uppercase ) __snake_case = translated + string.ascii_uppercase[num] else: __snake_case = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def A ( ) -> None: '''simple docstring''' __snake_case = input('Encrypted message: ' ) __snake_case = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class __lowercase : def __init__( self) -> int: __snake_case = {} def _a ( self , lowercase_ , lowercase_ , lowercase_=1) -> str: if self.graph.get(lowercase_): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: __snake_case = [[w, v]] if not self.graph.get(lowercase_): __snake_case = [] def _a ( self) -> int: return list(self.graph) def _a ( self , lowercase_ , lowercase_) -> Optional[Any]: if self.graph.get(lowercase_): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_) def _a ( self , lowercase_=-2 , lowercase_=-1) -> Optional[int]: if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase_) return visited else: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return visited def _a ( self , lowercase_=-1) -> List[Any]: if c == -1: __snake_case = floor(random() * 1_0_0_0_0) + 1_0 for i in range(lowercase_): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __snake_case = floor(random() * c) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1) def _a ( self , lowercase_=-2) -> List[str]: __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] d.append(lowercase_) visited.append(lowercase_) while d: __snake_case = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def _a ( self , lowercase_) -> Any: __snake_case = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _a ( self , lowercase_) -> Dict: return len(self.graph[u]) def _a ( self , lowercase_=-2) -> Union[str, Any]: __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s __snake_case = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return sorted_nodes def _a ( self) -> Optional[Any]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return list(lowercase_) def _a ( self) -> List[Any]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return False def _a ( self , lowercase_=-2 , lowercase_=-1) -> List[Any]: __snake_case = time() self.dfs(lowercase_ , lowercase_) __snake_case = time() return end - begin def _a ( self , lowercase_=-2) -> Dict: __snake_case = time() self.bfs(lowercase_) __snake_case = time() return end - begin class __lowercase : def __init__( self) -> str: __snake_case = {} def _a ( self , lowercase_ , lowercase_ , lowercase_=1) -> str: # check if the u exists if self.graph.get(lowercase_): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist __snake_case = [[w, v]] # add the other way if self.graph.get(lowercase_): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist __snake_case = [[w, u]] def _a ( self , lowercase_ , lowercase_) -> Union[str, Any]: if self.graph.get(lowercase_): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase_) # the other way round if self.graph.get(lowercase_): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase_) def _a ( self , lowercase_=-2 , lowercase_=-1) -> Tuple: if s == d: return [] __snake_case = [] __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase_) return visited else: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return visited def _a ( self , lowercase_=-1) -> Dict: if c == -1: __snake_case = floor(random() * 1_0_0_0_0) + 1_0 for i in range(lowercase_): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2) + 1): __snake_case = floor(random() * c) + 1 if n != i: self.add_pair(lowercase_ , lowercase_ , 1) def _a ( self , lowercase_=-2) -> int: __snake_case = deque() __snake_case = [] if s == -2: __snake_case = list(self.graph)[0] d.append(lowercase_) visited.append(lowercase_) while d: __snake_case = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def _a ( self , lowercase_) -> Union[str, Any]: return len(self.graph[u]) def _a ( self) -> List[str]: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return list(lowercase_) def _a ( self) -> int: __snake_case = [] __snake_case = [] __snake_case = list(self.graph)[0] stack.append(lowercase_) visited.append(lowercase_) __snake_case = -2 __snake_case = [] __snake_case = s __snake_case = False __snake_case = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: __snake_case = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): __snake_case = len(lowercase_) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) __snake_case = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case = True if len(lowercase_) != 0: __snake_case = stack[len(lowercase_) - 1] else: __snake_case = False indirect_parents.append(lowercase_) __snake_case = s __snake_case = ss # check if se have reached the starting point if len(lowercase_) == 0: return False def _a ( self) -> Tuple: return list(self.graph) def _a ( self , lowercase_=-2 , lowercase_=-1) -> int: __snake_case = time() self.dfs(lowercase_ , lowercase_) __snake_case = time() return end - begin def _a ( self , lowercase_=-2) -> str: __snake_case = time() self.bfs(lowercase_) __snake_case = time() return end - begin
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''imagegpt''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase_=5_1_2 + 1 , lowercase_=3_2 * 3_2 , lowercase_=5_1_2 , lowercase_=2_4 , lowercase_=8 , lowercase_=None , lowercase_="quick_gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1e-5 , lowercase_=0.02 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , **lowercase_ , ) -> Union[str, Any]: __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = n_inner __snake_case = activation_function __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = scale_attn_weights __snake_case = use_cache __snake_case = scale_attn_by_inverse_layer_idx __snake_case = reorder_and_upcast_attn __snake_case = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase_ , **lowercase_) class __lowercase ( lowerCamelCase__ ): @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ]) def _a ( self , lowercase_ , lowercase_ = 1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 3_2 , ) -> Mapping[str, Any]: __snake_case = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_) __snake_case = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_)) return inputs
710
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
0
from __future__ import annotations def A ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ) -> None: '''simple docstring''' __snake_case = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def A ( snake_case__ : int ) -> None: '''simple docstring''' __snake_case = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print('' ) print(len(snake_case__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase__ : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def A ( snake_case__ : Dict="no" , snake_case__ : str = default_json_config_file , snake_case__ : bool = False ) -> Optional[int]: '''simple docstring''' __snake_case = Path(snake_case__ ) path.parent.mkdir(parents=snake_case__ , exist_ok=snake_case__ ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False __snake_case = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) __snake_case = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() __snake_case = num_gpus __snake_case = False if num_gpus > 1: __snake_case = 'MULTI_GPU' else: __snake_case = 'NO' elif is_xpu_available() and use_xpu: __snake_case = torch.xpu.device_count() __snake_case = num_xpus __snake_case = False if num_xpus > 1: __snake_case = 'MULTI_XPU' else: __snake_case = 'NO' elif is_npu_available(): __snake_case = torch.npu.device_count() __snake_case = num_npus __snake_case = False if num_npus > 1: __snake_case = 'MULTI_NPU' else: __snake_case = 'NO' else: __snake_case = 0 __snake_case = True __snake_case = 1 __snake_case = 'NO' __snake_case = ClusterConfig(**snake_case__ ) config.to_json_file(snake_case__ ) return path def A ( snake_case__ : Dict , snake_case__ : Dict ) -> Any: '''simple docstring''' __snake_case = parser.add_parser('default' , parents=snake_case__ , help=snake_case__ , formatter_class=snake_case__ ) parser.add_argument( '--config_file' , default=snake_case__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=snake_case__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=snake_case__ ) return parser def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
712
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
0
from collections.abc import Sequence def A ( snake_case__ : Sequence[float] , snake_case__ : float ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(snake_case__ ) ) def A ( snake_case__ : Sequence[float] , snake_case__ : float ) -> float: '''simple docstring''' __snake_case = 0.0 for coeff in reversed(snake_case__ ): __snake_case = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase__ : Dict = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): UpperCAmelCase__ : List[str] = True from torch.cuda.amp import autocast UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) def A ( snake_case__ : Dict=None , snake_case__ : Optional[Any]=None ) -> Optional[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class __lowercase : __UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) __UpperCAmelCase = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) __UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) __UpperCAmelCase = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) __UpperCAmelCase = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class __lowercase : __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __UpperCAmelCase = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __UpperCAmelCase = field( default=lowerCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) __UpperCAmelCase = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class __lowercase : __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , lowercase_) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __snake_case = [{'input_values': feature['input_values']} for feature in features] __snake_case = [{'input_ids': feature['labels']} for feature in features] __snake_case = self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __snake_case = self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __snake_case = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_0_0) __snake_case = labels return batch class __lowercase ( lowerCamelCase__ ): def _a ( self , lowercase_ , lowercase_) -> torch.Tensor: model.train() __snake_case = self._prepare_inputs(lowercase_) if self.use_amp: with autocast(): __snake_case = self.compute_loss(lowercase_ , lowercase_) else: __snake_case = self.compute_loss(lowercase_ , lowercase_) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __snake_case = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __snake_case = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: __snake_case = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_) else: loss.backward() return loss.detach() def A ( ) -> str: '''simple docstring''' __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __snake_case = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) __snake_case = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer __snake_case = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(snake_case__ : str ): __snake_case = re.sub(snake_case__ , '' , batch['sentence'] ).lower() + ' ' return batch __snake_case = train_dataset.map(snake_case__ , remove_columns=['sentence'] ) __snake_case = eval_dataset.map(snake_case__ , remove_columns=['sentence'] ) def extract_all_chars(snake_case__ : Optional[Any] ): __snake_case = ' '.join(batch['text'] ) __snake_case = list(set(snake_case__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __snake_case = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=train_dataset.column_names , ) __snake_case = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=eval_dataset.column_names , ) __snake_case = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __snake_case = {v: k for k, v in enumerate(snake_case__ )} __snake_case = vocab_dict[' '] del vocab_dict[" "] __snake_case = len(snake_case__ ) __snake_case = len(snake_case__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(snake_case__ , snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ ) __snake_case = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) __snake_case = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __snake_case = min(len(snake_case__ ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(snake_case__ ) ) if data_args.max_val_samples is not None: __snake_case = eval_dataset.select(range(data_args.max_val_samples ) ) __snake_case = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case__ : List[str] ): __snake_case , __snake_case = torchaudio.load(batch['path'] ) __snake_case = resampler(snake_case__ ).squeeze().numpy() __snake_case = 1_6000 __snake_case = batch['text'] return batch __snake_case = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __snake_case = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case__ : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __snake_case = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(snake_case__ ) return batch __snake_case = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) __snake_case = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __snake_case = datasets.load_metric('wer' ) def compute_metrics(snake_case__ : int ): __snake_case = pred.predictions __snake_case = np.argmax(snake_case__ , axis=-1 ) __snake_case = processor.tokenizer.pad_token_id __snake_case = processor.batch_decode(snake_case__ ) # we do not want to group tokens when computing the metrics __snake_case = processor.batch_decode(pred.label_ids , group_tokens=snake_case__ ) __snake_case = wer_metric.compute(predictions=snake_case__ , references=snake_case__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __snake_case = DataCollatorCTCWithPadding(processor=snake_case__ , padding=snake_case__ ) # Initialize our Trainer __snake_case = CTCTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , compute_metrics=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __snake_case = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __snake_case = model_args.model_name_or_path else: __snake_case = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __snake_case = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) __snake_case = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('train' , snake_case__ ) trainer.save_metrics('train' , snake_case__ ) trainer.save_state() # Evaluation __snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case__ ) __snake_case = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) return results if __name__ == "__main__": main()
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM __snake_case = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowercase_ , scheduler=lowercase_) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = None , lowercase_ = 0.0 , lowercase_ = 5_0 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowercase_): __snake_case = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __snake_case = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowercase_ , lowercase_) and len(lowercase_) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowercase_)}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators.") __snake_case = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowercase_) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output __snake_case = self.unet(lowercase_ , lowercase_).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_).prev_sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) __snake_case = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_)
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __lowercase ( lowerCamelCase__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = None class __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = 2 @register_to_config def __init__( self , lowercase_ = 0.02 , lowercase_ = 1_0_0 , lowercase_ = 1.007 , lowercase_ = 8_0 , lowercase_ = 0.05 , lowercase_ = 5_0 , ) -> Any: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None __snake_case = None __snake_case = None # sigma(t_i) def _a ( self , lowercase_ , lowercase_ = None) -> torch.FloatTensor: return sample def _a ( self , lowercase_ , lowercase_ = None) -> Tuple: __snake_case = num_inference_steps __snake_case = np.arange(0 , self.num_inference_steps)[::-1].copy() __snake_case = torch.from_numpy(lowercase_).to(lowercase_) __snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __snake_case = torch.tensor(lowercase_ , dtype=torch.floataa , device=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ = None) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: __snake_case = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) __snake_case = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase_).to(sample.device) __snake_case = sigma + gamma * sigma __snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[KarrasVeOutput, Tuple]: __snake_case = sample_hat + sigma_hat * model_output __snake_case = (sample_hat - pred_original_sample) / sigma_hat __snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_ , derivative=lowercase_ , pred_original_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[KarrasVeOutput, Tuple]: __snake_case = sample_prev + sigma_prev * model_output __snake_case = (sample_prev - pred_original_sample) / sigma_prev __snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_ , derivative=lowercase_ , pred_original_sample=lowercase_) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: raise NotImplementedError()
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) def A ( snake_case__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: '''simple docstring''' if isinstance(snake_case__ , np.ndarray ): return list(tensor.shape ) __snake_case = tf.shape(snake_case__ ) if tensor.shape == tf.TensorShape(snake_case__ ): return dynamic __snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case__ )] def A ( snake_case__ : tf.Tensor , snake_case__ : Optional[int] = None , snake_case__ : Optional[str] = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=snake_case__ , name=snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=1e-5 , snake_case__ : List[str]=-1 ) -> List[Any]: '''simple docstring''' # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case__ , snake_case__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __snake_case , __snake_case = tf.nn.moments(snake_case__ , axes=[axis] , keepdims=snake_case__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __snake_case = [1] * inputs.shape.rank __snake_case = shape_list(snake_case__ )[axis] __snake_case = tf.reshape(snake_case__ , snake_case__ ) __snake_case = tf.reshape(snake_case__ , snake_case__ ) # Compute layer normalization using the batch_normalization # function. __snake_case = tf.nn.batch_normalization( snake_case__ , snake_case__ , snake_case__ , offset=snake_case__ , scale=snake_case__ , variance_epsilon=snake_case__ , ) return outputs def A ( snake_case__ : Any , snake_case__ : str=0 , snake_case__ : str=-1 ) -> Optional[int]: '''simple docstring''' # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __snake_case = tf.shape(snake_case__ ) __snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case__ , snake_case__ ) def A ( snake_case__ : tf.Tensor ) -> tf.Tensor: '''simple docstring''' if not isinstance(snake_case__ , tf.Tensor ): __snake_case = tf.convert_to_tensor(snake_case__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __snake_case = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( snake_case__ : tf.Tensor , snake_case__ : int , snake_case__ : str = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( snake_case__ , tf.cast(snake_case__ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case__ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : str ) -> Tuple: '''simple docstring''' __snake_case = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __snake_case = [x for x in data if len(snake_case__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) __snake_case = np.asarray(snake_case__ ) __snake_case = 1 __snake_case = np.array_split(snake_case__ , snake_case__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __snake_case = np.array_split(snake_case__ , snake_case__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case__ ): __snake_case = chunk_data else: __snake_case = data def A ( snake_case__ : Optional[int] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' if name in group.attrs: __snake_case = [n.decode('utf8' ) if hasattr(snake_case__ , 'decode' ) else n for n in group.attrs[name]] else: __snake_case = [] __snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(snake_case__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def A ( snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' def _expand_single_ad_tensor(snake_case__ : List[Any] ): if isinstance(snake_case__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case__ )
717
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ : Any = "http://www.mocksite.com/file1.txt" UpperCAmelCase__ : Dict = "\"text\": [\"foo\", \"foo\"]" UpperCAmelCase__ : Union[str, Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __lowercase : __UpperCAmelCase = 200 __UpperCAmelCase = {'''Content-Length''': '''100'''} __UpperCAmelCase = {} def _a ( self , **lowercase_) -> str: return [bytes(lowercase_ , 'utf-8')] def A ( *snake_case__ : int , **snake_case__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def A ( snake_case__ : Dict , snake_case__ : str , snake_case__ : int ) -> List[Any]: '''simple docstring''' import requests monkeypatch.setattr(snake_case__ , 'request' , snake_case__ ) __snake_case = URL if issubclass(snake_case__ , snake_case__ ): __snake_case = url elif issubclass(snake_case__ , snake_case__ ): __snake_case = [url] elif issubclass(snake_case__ , snake_case__ ): __snake_case = {'train': url} __snake_case = 'dummy' __snake_case = 'downloads' __snake_case = tmp_path __snake_case = DownloadConfig( cache_dir=os.path.join(snake_case__ , snake_case__ ) , use_etag=snake_case__ , ) __snake_case = DownloadManager(dataset_name=snake_case__ , download_config=snake_case__ ) __snake_case = dl_manager.download(snake_case__ ) __snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case__ , snake_case__ ): __snake_case = [downloaded_paths] __snake_case = [urls] elif isinstance(snake_case__ , snake_case__ ): assert "train" in downloaded_paths.keys() __snake_case = downloaded_paths.values() __snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case__ , snake_case__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case = Path(snake_case__ ) __snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case = downloaded_path.read_text() assert content == CONTENT __snake_case = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() __snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def A ( snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case = str(snake_case__ ) if issubclass(snake_case__ , snake_case__ ): __snake_case = filename elif issubclass(snake_case__ , snake_case__ ): __snake_case = [filename] elif issubclass(snake_case__ , snake_case__ ): __snake_case = {'train': filename} __snake_case = 'dummy' __snake_case = xz_file.parent __snake_case = 'extracted' __snake_case = DownloadConfig( cache_dir=snake_case__ , use_etag=snake_case__ , ) __snake_case = DownloadManager(dataset_name=snake_case__ , download_config=snake_case__ ) __snake_case = dl_manager.extract(snake_case__ ) __snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case__ , snake_case__ ): __snake_case = [extracted_paths] __snake_case = [paths] elif isinstance(snake_case__ , snake_case__ ): assert "train" in extracted_paths.keys() __snake_case = extracted_paths.values() __snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case__ , snake_case__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case = Path(snake_case__ ) __snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case__ , etag=snake_case__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case = extracted_path.read_text() __snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def A ( snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' assert path.endswith('.jsonl' ) for num_items, line in enumerate(snake_case__ , start=1 ): __snake_case = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def A ( snake_case__ : Any , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' __snake_case = request.getfixturevalue(snake_case__ ) __snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ): _test_jsonl(snake_case__ , snake_case__ ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def A ( snake_case__ : List[str] , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' __snake_case = request.getfixturevalue(snake_case__ ) __snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case__ ) , start=1 ): _test_jsonl(snake_case__ , snake_case__ ) assert num_tar == 1 assert num_jsonl == 2 def A ( snake_case__ : List[Any] ) -> int: '''simple docstring''' __snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case__ ) , start=1 ): assert os.path.basename(snake_case__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer UpperCAmelCase__ : Any = ["gpt2"] UpperCAmelCase__ : List[str] = "gpt2" if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( tf.Module ): def __init__( self , lowercase_) -> int: super().__init__() __snake_case = tokenizer __snake_case = AutoConfig.from_pretrained(lowercase_) __snake_case = TFGPTaLMHeadModel.from_config(lowercase_) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text'),)) def _a ( self , lowercase_) -> Dict: __snake_case = self.tokenizer(lowercase_) __snake_case = tokenized['input_ids'].to_tensor() __snake_case = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __snake_case = self.model(input_ids=lowercase_ , attention_mask=lowercase_)['logits'] return outputs @require_tf @require_keras_nlp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _a ( self) -> List[Any]: super().setUp() __snake_case = [GPTaTokenizer.from_pretrained(lowercase_) for checkpoint in (TOKENIZER_CHECKPOINTS)] __snake_case = [TFGPTaTokenizer.from_pretrained(lowercase_) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) __snake_case = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __snake_case = list(zip(self.test_sentences , self.test_sentences[::-1])) def _a ( self) -> List[str]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: __snake_case = tokenizer([test_inputs] , return_tensors='tf') __snake_case = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __snake_case = python_outputs[key].numpy() __snake_case = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa) == tf_outputs_values)) @slow def _a ( self) -> int: for tf_tokenizer in self.tf_tokenizers: __snake_case = tf.function(lowercase_) for test_inputs in self.test_sentences: __snake_case = tf.constant(lowercase_) __snake_case = compiled_tokenizer(lowercase_) __snake_case = tf_tokenizer(lowercase_) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def _a ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: __snake_case = ModelToSave(tokenizer=lowercase_) __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = model.serving(lowercase_) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __snake_case = Path(lowercase_) / 'saved.model' tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': model.serving}) __snake_case = tf.saved_model.load(lowercase_) __snake_case = loaded_model.signatures['serving_default'](lowercase_)['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def _a ( self) -> Dict: for tf_tokenizer in self.tf_tokenizers: __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = tf_tokenizer(lowercase_) # Build model with some sample inputs __snake_case = tf_tokenizer.get_config() __snake_case = TFGPTaTokenizer.from_config(lowercase_) __snake_case = model_from_config(lowercase_) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def _a ( self) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run __snake_case = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __snake_case = tf.convert_to_tensor([self.test_sentences[0]]) __snake_case = tf_tokenizer(lowercase_ , max_length=lowercase_) __snake_case = out['input_ids'].numpy().shape[1] assert out_length == max_length
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = CustomTokenizer pass
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : str = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : Optional[Any] = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : int = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : str = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = "tabby, tabby cat" UpperCAmelCase__ : Optional[int] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 3 , lowercase_ = 1 , lowercase_ = 1 , lowercase_ = "relu" , ) -> List[str]: super().__init__() __snake_case = nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , groups=lowercase_ , bias=lowercase_ , ) __snake_case = nn.BatchNormad(lowercase_) __snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def _a ( self , lowercase_) -> int: __snake_case = self.convolution(lowercase_) __snake_case = self.normalization(lowercase_) __snake_case = self.activation(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_) -> Optional[int]: super().__init__() __snake_case = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) __snake_case = config.num_channels def _a ( self , lowercase_) -> Any: __snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') __snake_case = self.embedder(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 2) -> Union[str, Any]: super().__init__() __snake_case = nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_) __snake_case = nn.BatchNormad(lowercase_) def _a ( self , lowercase_) -> Tensor: __snake_case = self.convolution(lowercase_) __snake_case = self.normalization(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_) -> List[str]: super().__init__() __snake_case = nn.AdaptiveAvgPoolad((1, 1)) __snake_case = nn.Sequential( nn.Convad(lowercase_ , lowercase_ , kernel_size=1) , nn.ReLU() , nn.Convad(lowercase_ , lowercase_ , kernel_size=1) , nn.Sigmoid() , ) def _a ( self , lowercase_) -> int: # b c h w -> b c 1 1 __snake_case = self.pooler(lowercase_) __snake_case = self.attention(lowercase_) __snake_case = hidden_state * attention return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1) -> Any: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width) __snake_case = ( RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_) , ) __snake_case = ACTaFN[config.hidden_act] def _a ( self , lowercase_) -> Optional[int]: __snake_case = hidden_state __snake_case = self.layer(lowercase_) __snake_case = self.shortcut(lowercase_) hidden_state += residual __snake_case = self.activation(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1) -> Dict: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width) __snake_case = ( RegNetShortCut(lowercase_ , lowercase_ , stride=lowercase_) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ , groups=lowercase_ , activation=config.hidden_act) , RegNetSELayer(lowercase_ , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_) , ) __snake_case = ACTaFN[config.hidden_act] def _a ( self , lowercase_) -> Union[str, Any]: __snake_case = hidden_state __snake_case = self.layer(lowercase_) __snake_case = self.shortcut(lowercase_) hidden_state += residual __snake_case = self.activation(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 2 , lowercase_ = 2 , ) -> Dict: super().__init__() __snake_case = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowercase_ , lowercase_ , lowercase_ , stride=lowercase_ , ) , *[layer(lowercase_ , lowercase_ , lowercase_) for _ in range(depth - 1)] , ) def _a ( self , lowercase_) -> Union[str, Any]: __snake_case = self.layers(lowercase_) return hidden_state class __lowercase ( nn.Module ): def __init__( self , lowercase_) -> Union[str, Any]: super().__init__() __snake_case = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) __snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:]): self.stages.append(RegNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_)) def _a ( self , lowercase_ , lowercase_ = False , lowercase_ = True) -> BaseModelOutputWithNoAttention: __snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case = hidden_states + (hidden_state,) __snake_case = stage_module(lowercase_) if output_hidden_states: __snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase_ , hidden_states=lowercase_) class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = RegNetConfig __UpperCAmelCase = '''regnet''' __UpperCAmelCase = '''pixel_values''' __UpperCAmelCase = True def _a ( self , lowercase_) -> Union[str, Any]: if isinstance(lowercase_ , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu') elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def _a ( self , lowercase_ , lowercase_=False) -> Union[str, Any]: if isinstance(lowercase_ , lowercase_): __snake_case = value UpperCAmelCase__ : List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Dict = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , lowerCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_) -> List[Any]: super().__init__(lowercase_) __snake_case = config __snake_case = RegNetEmbeddings(lowercase_) __snake_case = RegNetEncoder(lowercase_) __snake_case = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None) -> BaseModelOutputWithPoolingAndNoAttention: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.embedder(lowercase_) __snake_case = self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_) __snake_case = encoder_outputs[0] __snake_case = self.pooler(lowercase_) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_) -> Any: super().__init__(lowercase_) __snake_case = config.num_labels __snake_case = RegNetModel(lowercase_) # classification head __snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> ImageClassifierOutputWithNoAttention: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.regnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(lowercase_) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze()) else: __snake_case = loss_fct(lowercase_ , lowercase_) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(lowercase_ , lowercase_) if not return_dict: __snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states)
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = ["BeitFeatureExtractor"] UpperCAmelCase__ : Union[str, Any] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .') self.register_modules( speech_model=lowercase_ , speech_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , ) def _a ( self , lowercase_ = "auto") -> Union[str, Any]: if slice_size == "auto": __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def _a ( self) -> Any: self.enable_attention_slicing(lowercase_) @torch.no_grad() def __call__( self , lowercase_ , lowercase_=1_6_0_0_0 , lowercase_ = 5_1_2 , lowercase_ = 5_1_2 , lowercase_ = 5_0 , lowercase_ = 7.5 , lowercase_ = None , lowercase_ = 1 , lowercase_ = 0.0 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , lowercase_ = None , lowercase_ = 1 , **lowercase_ , ) -> List[str]: __snake_case = self.speech_processor.feature_extractor( lowercase_ , return_tensors='pt' , sampling_rate=lowercase_).input_features.to(self.device) __snake_case = self.speech_model.generate(lowercase_ , max_length=4_8_0_0_0_0) __snake_case = self.speech_processor.tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , normalize=lowercase_)[ 0 ] if isinstance(lowercase_ , lowercase_): __snake_case = 1 elif isinstance(lowercase_ , lowercase_): __snake_case = len(lowercase_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_)}.") # get prompt text embeddings __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}") __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case = text_embeddings.shape __snake_case = text_embeddings.repeat(1 , lowercase_ , 1) __snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''] * batch_size elif type(lowercase_) is not type(lowercase_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_)} !=" F" {type(lowercase_)}.") elif isinstance(lowercase_ , lowercase_): __snake_case = [negative_prompt] elif batch_size != len(lowercase_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.') else: __snake_case = negative_prompt __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='pt' , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = uncond_embeddings.shape[1] __snake_case = uncond_embeddings.repeat(1 , lowercase_ , 1) __snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device='cpu' , dtype=lowercase_).to( self.device) else: __snake_case = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") __snake_case = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowercase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __snake_case = {} if accepts_eta: __snake_case = eta for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __snake_case = self.scheduler.scale_model_input(lowercase_ , lowercase_) # predict the noise residual __snake_case = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.chunk(2) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_) __snake_case = 1 / 0.1_8215 * latents __snake_case = self.vae.decode(lowercase_).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(lowercase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_)
676
0
'''simple docstring''' from string import ascii_uppercase UpperCAmelCase__ : str = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase__ : Optional[int] = dict(enumerate(ascii_uppercase)) def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = len(snake_case__ ) __snake_case = 0 while True: if x == i: __snake_case = 0 if len(snake_case__ ) == len(snake_case__ ): break key += key[i] i += 1 return key def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '' __snake_case = 0 for letter in message: if letter == " ": cipher_text += " " else: __snake_case = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( snake_case__ : str , snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '' __snake_case = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __snake_case = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' __snake_case = 'THE GERMAN ATTACK' __snake_case = 'SECRET' __snake_case = generate_key(snake_case__ , snake_case__ ) __snake_case = cipher_text(snake_case__ , snake_case__ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(snake_case__ , snake_case__ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
701
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , lowercase_=None , lowercase_=None , **lowercase_) -> Tuple: super().__init__(*lowercase_ , **lowercase_) __snake_case = eval_examples __snake_case = post_process_function def _a ( self , lowercase_ = None , lowercase_=None , lowercase_ = None , lowercase_ = "eval" , **lowercase_ , ) -> Dict[str, float]: __snake_case = gen_kwargs.copy() __snake_case = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) __snake_case = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) __snake_case = gen_kwargs __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(lowercase_) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_) __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_) return metrics def _a ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_ = "test" , **lowercase_) -> Union[str, Any]: __snake_case = gen_kwargs.copy() __snake_case = self.get_test_dataloader(lowercase_) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = time.time() __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case = eval_loop( lowercase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(lowercase_ , lowercase_ , lowercase_ , 'predict') __snake_case = self.compute_metrics(lowercase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"{metric_key_prefix}_"): __snake_case = metrics.pop(lowercase_) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_)
676
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A ( snake_case__ : str ) -> None: '''simple docstring''' __snake_case , __snake_case = analyze_text(snake_case__ ) __snake_case = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. __snake_case = sum(single_char_strings.values() ) # one length string __snake_case = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __snake_case = single_char_strings[ch] __snake_case = my_str / all_sum my_fir_sum += prob * math.loga(snake_case__ ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string __snake_case = sum(two_char_strings.values() ) __snake_case = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __snake_case = cha + cha if sequence in two_char_strings: __snake_case = two_char_strings[sequence] __snake_case = int(snake_case__ ) / all_sum my_sec_sum += prob * math.loga(snake_case__ ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def A ( snake_case__ : str ) -> tuple[dict, dict]: '''simple docstring''' __snake_case = Counter() # type: ignore __snake_case = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(snake_case__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A ( ) -> Tuple: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
702
from __future__ import annotations UpperCAmelCase__ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A ( snake_case__ : list[list[int]] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : int , snake_case__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ : str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ : int = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ : int = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ : Optional[Any] = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ : Optional[int] = 99 UpperCAmelCase__ , UpperCAmelCase__ : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
676
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
'''simple docstring''' from __future__ import annotations UpperCAmelCase__ : str = list[list[int]] # assigning initial values to the grid UpperCAmelCase__ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase__ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A ( snake_case__ : Matrix , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A ( snake_case__ : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A ( snake_case__ : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(snake_case__ ): __snake_case , __snake_case = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __snake_case = digit if sudoku(snake_case__ ) is not None: return grid __snake_case = 0 return None def A ( snake_case__ : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(snake_case__ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCAmelCase__ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
704
def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case__ : int , snake_case__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __snake_case = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case__ ) for item in array ) __snake_case = answer return answer __snake_case = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case__ , snake_case__ ) def A ( snake_case__ : int , snake_case__ : list[int] , snake_case__ : int ) -> int: '''simple docstring''' __snake_case = [0] * (target + 1) __snake_case = 1 for i in range(1 , target + 1 ): for j in range(snake_case__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = 3 UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Tuple = [1, 2, 5] print(combination_sum_iv(n, array, target))
676
0
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> int: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) def A ( *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : int , **snake_case__ : Dict ) -> List[str]: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : Optional[int] , **snake_case__ : Tuple ) -> Dict: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : Tuple , **snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : str , **snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : int , **snake_case__ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) def A ( *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(snake_case__ , ['torch'] ) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> int: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Tuple: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[str]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Dict: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Any: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> int: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> str: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Tuple: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Tuple: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Tuple: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Any: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Tuple: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> int: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> str: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Dict: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(cls , ['torch']) class __lowercase ( metaclass=lowerCamelCase__ ): __UpperCAmelCase = ['''torch'''] def __init__( self , *lowercase_ , **lowercase_) -> Union[str, Any]: requires_backends(self , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> List[str]: requires_backends(cls , ['torch']) @classmethod def _a ( cls , *lowercase_ , **lowercase_) -> Optional[int]: requires_backends(cls , ['torch'])
705
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase__ : Union[str, Any] = pytest.mark.integration @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> List[str]: __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(lowercase_) for x in np.arange(3_0).tolist()]}) return dset def _a ( self) -> Optional[int]: import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda lowercase_ , lowercase_: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=lowercase_ , keep_in_memory=lowercase_) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') dset.drop_index('vecs') def _a ( self) -> str: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> int: import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name) dset.load_faiss_index('vecs2' , tmp_file.name) os.unlink(tmp_file.name) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples['filename'][0] , 'my_name-train_29') def _a ( self) -> List[Any]: __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5)) * np.arange(3_0).reshape(-1 , 1) , index_name='vecs') dset.drop_index('vecs') self.assertRaises(lowercase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa))) def _a ( self) -> Any: from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=lowercase_) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29') self.assertEqual(examples['filename'][0] , 'my_name-train_29') @require_faiss class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[int]: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 1_0) # single query __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertRaises(lowercase_ , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries __snake_case = np.eye(5 , dtype=np.floataa)[::-1] __snake_case , __snake_case = index.search_batch(lowercase_) self.assertRaises(lowercase_ , index.search_batch , queries[0]) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([4, 3, 2, 1, 0] , lowercase_) def _a ( self) -> str: import faiss __snake_case = FaissIndex(string_factory='Flat') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) __snake_case = FaissIndex(string_factory='LSH') index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(lowercase_): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5)) def _a ( self) -> Optional[int]: import faiss __snake_case = faiss.IndexFlat(5) __snake_case = FaissIndex(custom_index=lowercase_) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _a ( self) -> Tuple: import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase_) as tmp_file: index.save(tmp_file.name) __snake_case = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) __snake_case = np.zeros(5 , dtype=np.floataa) __snake_case = 1 __snake_case , __snake_case = index.search(lowercase_) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A ( snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f"mock://{index_name}" index.save(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase ( lowerCamelCase__ ): def _a ( self) -> Optional[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search') as mocked_search, patch( 'elasticsearch.client.IndicesClient.create') as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk') as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=lowercase_) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(['foo', 'bar', 'foobar']) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(lowercase_ , request_timeout=3_0) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(lowercase_ , request_timeout=3_0) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase_) , 0) self.assertListEqual([1, 1, 1] , lowercase_)
676
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase__ : Dict = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , **lowercase_) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
706
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : List[Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , 'r' ) as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX ) try: print(*snake_case__ ) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN ) UpperCAmelCase__ : Any = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) UpperCAmelCase__ : Any = torch.device("cuda", local_rank) UpperCAmelCase__ : Union[str, Any] = socket.gethostname() UpperCAmelCase__ : int = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase__ : Optional[int] = dist.get_rank() UpperCAmelCase__ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
676
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowercase ( lowerCamelCase__ ): def _a ( self) -> str: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _a ( self) -> Optional[int]: __snake_case = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(lowercase_) def _a ( self) -> Tuple: __snake_case = self._create_example_records() __snake_case = Dataset.from_list(lowercase_) self.assertListEqual(dset.column_names , ['col_1', 'col_2']) for i, r in enumerate(lowercase_): self.assertDictEqual(lowercase_ , example_records[i]) def _a ( self) -> Optional[Any]: __snake_case = self._create_example_records() __snake_case = Dataset.from_list(lowercase_) __snake_case = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def _a ( self) -> int: # checks what happens with missing columns __snake_case = [{'col_1': 1}, {'col_2': 'x'}] __snake_case = Dataset.from_list(lowercase_) self.assertDictEqual(dset[0] , {'col_1': 1}) self.assertDictEqual(dset[1] , {'col_1': None}) # NB: first record is used for columns def _a ( self) -> List[Any]: # checks if the type can be inferred from the second record __snake_case = [{'col_1': []}, {'col_1': [1, 2]}] __snake_case = Dataset.from_list(lowercase_) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64'))) def _a ( self) -> Optional[Any]: __snake_case = Dataset.from_list([]) self.assertEqual(len(lowercase_) , 0) self.assertListEqual(dset.column_names , [])
708
from datetime import datetime import requests def A ( snake_case__ : str ) -> bytes: '''simple docstring''' __snake_case = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(snake_case__ ).content if __name__ == "__main__": UpperCAmelCase__ : Dict = input("Enter Video/IGTV url: ").strip() UpperCAmelCase__ : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
676
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A ( snake_case__ : str , snake_case__ : int=1 ) -> Union[str, Any]: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def A ( snake_case__ : List[Any] , snake_case__ : List[str]=0 ) -> List[Any]: '''simple docstring''' __snake_case = [] for old_item in old_list: __snake_case = old_item.replace('in_layers.0' , 'norm1' ) __snake_case = new_item.replace('in_layers.2' , 'conv1' ) __snake_case = new_item.replace('out_layers.0' , 'norm2' ) __snake_case = new_item.replace('out_layers.3' , 'conv2' ) __snake_case = new_item.replace('emb_layers.1' , 'time_emb_proj' ) __snake_case = new_item.replace('skip_connection' , 'conv_shortcut' ) __snake_case = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( snake_case__ : Any , snake_case__ : Dict=0 ) -> Dict: '''simple docstring''' __snake_case = [] for old_item in old_list: __snake_case = old_item __snake_case = new_item.replace('norm.weight' , 'group_norm.weight' ) __snake_case = new_item.replace('norm.bias' , 'group_norm.bias' ) __snake_case = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) __snake_case = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) __snake_case = shave_segments(snake_case__ , n_shave_prefix_segments=snake_case__ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def A ( snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None ) -> Optional[int]: '''simple docstring''' assert isinstance(snake_case__ , snake_case__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __snake_case = old_checkpoint[path] __snake_case = old_tensor.shape[0] // 3 __snake_case = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __snake_case = old_tensor.shape[0] // config['num_head_channels'] // 3 __snake_case = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __snake_case , __snake_case , __snake_case = old_tensor.split(channels // num_heads , dim=1 ) __snake_case = query.reshape(snake_case__ ) __snake_case = key.reshape(snake_case__ ) __snake_case = value.reshape(snake_case__ ) for path in paths: __snake_case = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __snake_case = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) __snake_case = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) __snake_case = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: __snake_case = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __snake_case = old_checkpoint[path['old']][:, :, 0] else: __snake_case = old_checkpoint[path['old']] def A ( snake_case__ : List[str] , snake_case__ : Tuple ) -> str: '''simple docstring''' __snake_case = {} __snake_case = checkpoint['time_embed.0.weight'] __snake_case = checkpoint['time_embed.0.bias'] __snake_case = checkpoint['time_embed.2.weight'] __snake_case = checkpoint['time_embed.2.bias'] __snake_case = checkpoint['input_blocks.0.0.weight'] __snake_case = checkpoint['input_blocks.0.0.bias'] __snake_case = checkpoint['out.0.weight'] __snake_case = checkpoint['out.0.bias'] __snake_case = checkpoint['out.2.weight'] __snake_case = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only __snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) __snake_case = { layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the middle blocks only __snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) __snake_case = { layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] for layer_id in range(snake_case__ ) } # Retrieves the keys for the output blocks only __snake_case = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) __snake_case = { layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] for layer_id in range(snake_case__ ) } for i in range(1 , snake_case__ ): __snake_case = (i - 1) // (config['num_res_blocks'] + 1) __snake_case = (i - 1) % (config['num_res_blocks'] + 1) __snake_case = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] __snake_case = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] if f"input_blocks.{i}.0.op.weight" in checkpoint: __snake_case = checkpoint[ f"input_blocks.{i}.0.op.weight" ] __snake_case = checkpoint[ f"input_blocks.{i}.0.op.bias" ] continue __snake_case = renew_resnet_paths(snake_case__ ) __snake_case = {'old': f"input_blocks.{i}.0", 'new': f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} __snake_case = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path, resnet_op] , config=snake_case__ ) if len(snake_case__ ): __snake_case = renew_attention_paths(snake_case__ ) __snake_case = { 'old': f"input_blocks.{i}.1", 'new': f"down_blocks.{block_id}.attentions.{layer_in_block_id}", } __snake_case = { f"input_blocks.{i}.1.qkv.bias": { 'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"input_blocks.{i}.1.qkv.weight": { 'key': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case__ , config=snake_case__ , ) __snake_case = middle_blocks[0] __snake_case = middle_blocks[1] __snake_case = middle_blocks[2] __snake_case = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) __snake_case = renew_resnet_paths(snake_case__ ) assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , config=snake_case__ ) __snake_case = renew_attention_paths(snake_case__ ) __snake_case = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , attention_paths_to_split=snake_case__ , config=snake_case__ ) for i in range(snake_case__ ): __snake_case = i // (config['num_res_blocks'] + 1) __snake_case = i % (config['num_res_blocks'] + 1) __snake_case = [shave_segments(snake_case__ , 2 ) for name in output_blocks[i]] __snake_case = {} for layer in output_block_layers: __snake_case , __snake_case = layer.split('.' )[0], shave_segments(snake_case__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case__ ) else: __snake_case = [layer_name] if len(snake_case__ ) > 1: __snake_case = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] __snake_case = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] __snake_case = renew_resnet_paths(snake_case__ ) __snake_case = renew_resnet_paths(snake_case__ ) __snake_case = {'old': f"output_blocks.{i}.0", 'new': f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , config=snake_case__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __snake_case = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) __snake_case = checkpoint[ f"output_blocks.{i}.{index}.conv.weight" ] __snake_case = checkpoint[ f"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(snake_case__ ) == 2: __snake_case = [] if len(snake_case__ ): __snake_case = renew_attention_paths(snake_case__ ) __snake_case = { 'old': f"output_blocks.{i}.1", 'new': f"up_blocks.{block_id}.attentions.{layer_in_block_id}", } __snake_case = { f"output_blocks.{i}.1.qkv.bias": { 'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", 'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", 'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, f"output_blocks.{i}.1.qkv.weight": { 'key': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", 'query': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", 'value': f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( snake_case__ , snake_case__ , snake_case__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=snake_case__ , ) else: __snake_case = renew_resnet_paths(snake_case__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __snake_case = '.'.join(['output_blocks', str(snake_case__ ), path['old']] ) __snake_case = '.'.join(['up_blocks', str(snake_case__ ), 'resnets', str(snake_case__ ), path['new']] ) __snake_case = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCAmelCase__ : int = parser.parse_args() UpperCAmelCase__ : Optional[int] = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read()) UpperCAmelCase__ : str = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase__ : Tuple = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase__ : Tuple = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase__ : Optional[Any] = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) UpperCAmelCase__ : List[str] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
709
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = "Hello world! cécé herlolip" def A ( snake_case__ : str , snake_case__ : str , snake_case__ : bool ) -> Optional[Any]: '''simple docstring''' __snake_case = FairseqRobertaModel.from_pretrained(snake_case__ ) roberta.eval() # disable dropout __snake_case = roberta.model.encoder.sentence_encoder __snake_case = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __snake_case = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , snake_case__ ) __snake_case = XLMRobertaXLForSequenceClassification(snake_case__ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __snake_case = roberta_sent_encoder.embed_tokens.weight __snake_case = roberta_sent_encoder.embed_positions.weight __snake_case = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __snake_case = roberta_sent_encoder.layer_norm.weight __snake_case = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __snake_case = model.roberta.encoder.layer[i] __snake_case = roberta_sent_encoder.layers[i] __snake_case = layer.attention __snake_case = roberta_layer.self_attn_layer_norm.weight __snake_case = roberta_layer.self_attn_layer_norm.bias # self attention __snake_case = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __snake_case = roberta_layer.self_attn.q_proj.weight __snake_case = roberta_layer.self_attn.q_proj.bias __snake_case = roberta_layer.self_attn.k_proj.weight __snake_case = roberta_layer.self_attn.k_proj.bias __snake_case = roberta_layer.self_attn.v_proj.weight __snake_case = roberta_layer.self_attn.v_proj.bias # self-attention output __snake_case = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __snake_case = roberta_layer.self_attn.out_proj.weight __snake_case = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __snake_case = roberta_layer.final_layer_norm.weight __snake_case = roberta_layer.final_layer_norm.bias # intermediate __snake_case = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case = roberta_layer.fca.weight __snake_case = roberta_layer.fca.bias # output __snake_case = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __snake_case = roberta_layer.fca.weight __snake_case = roberta_layer.fca.bias # end of layer if classification_head: __snake_case = roberta.model.classification_heads['mnli'].dense.weight __snake_case = roberta.model.classification_heads['mnli'].dense.bias __snake_case = roberta.model.classification_heads['mnli'].out_proj.weight __snake_case = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __snake_case = roberta.model.encoder.lm_head.dense.weight __snake_case = roberta.model.encoder.lm_head.dense.bias __snake_case = roberta.model.encoder.lm_head.layer_norm.weight __snake_case = roberta.model.encoder.lm_head.layer_norm.bias __snake_case = roberta.model.encoder.lm_head.weight __snake_case = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __snake_case = roberta.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 __snake_case = model(snake_case__ )[0] if classification_head: __snake_case = roberta.model.classification_heads['mnli'](roberta.extract_features(snake_case__ ) ) else: __snake_case = roberta.model(snake_case__ )[0] print(our_output.shape , their_output.shape ) __snake_case = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __snake_case = torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase__ : Any = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
710
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if number < 0: return False __snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
676
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCAmelCase__ : Dict = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , **lowercase_) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Dict = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
def A ( snake_case__ : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case = 4 __snake_case = (1 << p) - 1 for _ in range(p - 2 ): __snake_case = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
676
0
def A ( snake_case__ : int ) -> list: '''simple docstring''' # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __snake_case = gray_code_sequence_string(snake_case__ ) # # convert them to integers for i in range(len(snake_case__ ) ): __snake_case = int(sequence[i] , 2 ) return sequence def A ( snake_case__ : int ) -> list: '''simple docstring''' # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case = gray_code_sequence_string(bit_count - 1 ) __snake_case = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case = '0' + smaller_sequence[i] sequence.append(snake_case__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case = '1' + smaller_sequence[i] sequence.append(snake_case__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import argparse import os import re import packaging.version UpperCAmelCase__ : int = "examples/" UpperCAmelCase__ : int = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCAmelCase__ : List[str] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCAmelCase__ : Tuple = "README.md" def A ( snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __snake_case = f.read() __snake_case , __snake_case = REPLACE_PATTERNS[pattern] __snake_case = replace.replace('VERSION' , snake_case__ ) __snake_case = re_pattern.sub(snake_case__ , snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(snake_case__ ) def A ( snake_case__ : int ) -> Any: '''simple docstring''' for folder, directories, fnames in os.walk(snake_case__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='examples' ) def A ( snake_case__ : Dict , snake_case__ : Optional[Any]=False ) -> List[str]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__ ) if not patch: update_version_in_examples(snake_case__ ) def A ( ) -> List[Any]: '''simple docstring''' __snake_case = '🤗 Transformers currently provides the following architectures' __snake_case = '1. Want to contribute a new model?' with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __snake_case = f.readlines() # Find the start of the list. __snake_case = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): __snake_case = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case__ ) def A ( ) -> Optional[Any]: '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: __snake_case = f.read() __snake_case = REPLACE_PATTERNS['init'][0].search(snake_case__ ).groups()[0] return packaging.version.parse(snake_case__ ) def A ( snake_case__ : str=False ) -> Tuple: '''simple docstring''' __snake_case = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: __snake_case = default_version.base_version elif patch: __snake_case = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __snake_case = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __snake_case = input(f"Which version are you releasing? [{default_version}]" ) if len(snake_case__ ) == 0: __snake_case = default_version print(f"Updating version to {version}." ) global_version_update(snake_case__ , patch=snake_case__ ) def A ( ) -> Any: '''simple docstring''' __snake_case = get_version() __snake_case = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __snake_case = current_version.base_version # Check with the user we got that right. __snake_case = input(f"Which version are we developing now? [{dev_version}]" ) if len(snake_case__ ) == 0: __snake_case = dev_version print(f"Updating version to {version}." ) global_version_update(snake_case__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCAmelCase__ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
714
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
676
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Union[str, Any] = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ : List[Any] ) -> Any: '''simple docstring''' __snake_case = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __snake_case = 4 __snake_case = 48 __snake_case = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = [6, 6, 6, 6] __snake_case = 60 __snake_case = [6, 6, 6, 6] __snake_case = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = 4 __snake_case = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __snake_case = 1 __snake_case = 1 __snake_case = 126 __snake_case = 7 __snake_case = 255.0 __snake_case = '' return config def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: __snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __snake_case = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __snake_case = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "conv_first" in name: __snake_case = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __snake_case = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __snake_case = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __snake_case = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __snake_case = name.replace('upsample.2' , 'upsample.convolution_1' ) __snake_case = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __snake_case = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __snake_case = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __snake_case = 'swin2sr.' + name return name def A ( snake_case__ : str , snake_case__ : List[Any] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[4] ) __snake_case = config.embed_dim if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] pass else: __snake_case = val return orig_state_dict def A ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = get_config(snake_case__ ) __snake_case = SwinaSRForImageSuperResolution(snake_case__ ) model.eval() __snake_case = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' ) __snake_case = convert_state_dict(snake_case__ , snake_case__ ) __snake_case , __snake_case = model.load_state_dict(snake_case__ , strict=snake_case__ ) if len(snake_case__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(snake_case__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values __snake_case = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __snake_case = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) __snake_case = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __snake_case = 126 if 'Jpeg' in checkpoint_url else 256 __snake_case = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = transforms(snake_case__ ).unsqueeze(0 ) if config.num_channels == 1: __snake_case = pixel_values[:, 0, :, :].unsqueeze(1 ) __snake_case = model(snake_case__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __snake_case = torch.Size([1, 3, 512, 512] ) __snake_case = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __snake_case = torch.Size([1, 3, 1024, 1024] ) __snake_case = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , snake_case__ , atol=1e-3 ) print('Looks ok!' ) __snake_case = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __snake_case = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") UpperCAmelCase__ : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
676
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCAmelCase__ = IFImgaImgSuperResolutionPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def _a ( self) -> str: return self._get_superresolution_dummy_components() def _a ( self , lowercase_ , lowercase_=0) -> List[str]: if str(lowercase_).startswith('mps'): __snake_case = torch.manual_seed(lowercase_) else: __snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_) __snake_case = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_) __snake_case = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowercase_)).to(lowercase_) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def _a ( self) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _a ( self) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def _a ( self) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def _a ( self) -> List[Any]: self._test_save_load_local() def _a ( self) -> int: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ : int = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "spiece.model"} UpperCAmelCase__ : Any = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } UpperCAmelCase__ : Optional[Any] = {"bert_for_seq_generation": 5_12} class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = [] __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<::::>" , lowercase_ = None , **lowercase_ , ) -> None: __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowercase_) @property def _a ( self) -> Dict: return self.sp_model.get_piece_size() def _a ( self) -> int: __snake_case = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> List[Any]: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self , lowercase_) -> Tuple: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _a ( self , lowercase_) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _a ( self , lowercase_) -> Any: return self.sp_model.piece_to_id(lowercase_) def _a ( self , lowercase_) -> Optional[Any]: __snake_case = self.sp_model.IdToPiece(lowercase_) return token def _a ( self , lowercase_) -> str: __snake_case = [] __snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_) + token __snake_case = [] else: current_sub_tokens.append(lowercase_) out_string += self.sp_model.decode(lowercase_) return out_string.strip() def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not os.path.isdir(lowercase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __snake_case = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , 'wb') as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
717
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
0
import os def A ( ) -> List[str]: '''simple docstring''' __snake_case = os.path.dirname(os.path.realpath(snake_case__ ) ) __snake_case = os.path.join(snake_case__ , 'triangle.txt' ) with open(snake_case__ ) as f: __snake_case = f.readlines() __snake_case = [] for line in triangle: __snake_case = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 , len(snake_case__ ) ): for j in range(len(a[i] ) ): __snake_case = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ , snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''table-transformer''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=1_0_0 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ) -> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __snake_case = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase_ , lowercase_): __snake_case = backbone_config.get('model_type') __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(lowercase_) # set timm attributes to None __snake_case , __snake_case , __snake_case = None, None, None __snake_case = use_timm_backbone __snake_case = backbone_config __snake_case = num_channels __snake_case = num_queries __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = encoder_layers __snake_case = auxiliary_loss __snake_case = position_embedding_type __snake_case = backbone __snake_case = use_pretrained_backbone __snake_case = dilation # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_) @property def _a ( self) -> int: return self.encoder_attention_heads @property def _a ( self) -> int: return self.d_model class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def _a ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def _a ( self) -> float: return 1e-5 @property def _a ( self) -> int: return 1_2
676
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCAmelCase__ : List[Any] = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) UpperCAmelCase__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name def A ( ) -> List[str]: '''simple docstring''' __snake_case = 'https://pypi.org/pypi/diffusers/json' __snake_case = json.loads(request.urlopen(snake_case__ ).read() )['releases'].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def A ( ) -> Optional[int]: '''simple docstring''' # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) __snake_case = Path(snake_case__ ) / '__init__.py' if not init_path.exists(): init_path.touch() def A ( snake_case__ : Union[str, os.PathLike] ) -> Optional[int]: '''simple docstring''' init_hf_modules() __snake_case = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) __snake_case = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def A ( snake_case__ : Any ) -> str: '''simple docstring''' with open(snake_case__ , 'r' , encoding='utf-8' ) as f: __snake_case = f.read() # Imports of the form `import .xxx` __snake_case = re.findall('^\s*import\s+\.(\S+)\s*$' , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def A ( snake_case__ : int ) -> Tuple: '''simple docstring''' __snake_case = False __snake_case = [module_file] __snake_case = [] # Let's recurse through all relative imports while not no_change: __snake_case = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) __snake_case = Path(snake_case__ ).parent __snake_case = [str(module_path / m ) for m in new_imports] __snake_case = [f for f in new_import_files if f not in all_relative_imports] __snake_case = [f"{f}.py" for f in new_import_files] __snake_case = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def A ( snake_case__ : Any ) -> Union[str, Any]: '''simple docstring''' with open(snake_case__ , 'r' , encoding='utf-8' ) as f: __snake_case = f.read() # Imports of the form `import xxx` __snake_case = re.findall('^\s*import\s+(\S+)\s*$' , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module __snake_case = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all __snake_case = list(set(snake_case__ ) ) __snake_case = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def A ( snake_case__ : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' __snake_case = module_path.replace(os.path.sep , '.' ) __snake_case = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' from ..pipelines import DiffusionPipeline __snake_case = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) __snake_case = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) __snake_case = cls return pipeline_class def A ( snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ) -> str: '''simple docstring''' __snake_case = str(snake_case__ ) __snake_case = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): __snake_case = module_file_or_url __snake_case = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: __snake_case = get_diffusers_versions() # cut ".dev0" __snake_case = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: __snake_case = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"Defaulting to latest_version: {revision}." ) elif revision in available_versions: __snake_case = f"v{revision}" elif revision == "main": __snake_case = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub __snake_case = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: __snake_case = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) __snake_case = 'git' __snake_case = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached __snake_case = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) __snake_case = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment __snake_case = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. __snake_case = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) __snake_case = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: __snake_case = f"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): __snake_case = use_auth_token elif use_auth_token is True: __snake_case = HfFolder.get_token() else: __snake_case = None __snake_case = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __snake_case = submodule_path / commit_hash __snake_case = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , f"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def A ( snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : List[Any] , ) -> Dict: '''simple docstring''' __snake_case = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace('.py' , '' ) )
719
from maths.prime_check import is_prime def A ( snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
676
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=5_1_2 , lowercase_="cls" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) __snake_case = project_dim __snake_case = pooler_fn __snake_case = learn_encoder __snake_case = use_attention_mask class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = [R'''pooler''', R'''logit_scale'''] __UpperCAmelCase = [R'''position_ids''', R'''predictions.decoder.bias'''] __UpperCAmelCase = '''roberta''' __UpperCAmelCase = RobertaSeriesConfig def __init__( self , lowercase_) -> Optional[int]: super().__init__(lowercase_) __snake_case = XLMRobertaModel(lowercase_) __snake_case = nn.Linear(config.hidden_size , config.project_dim) __snake_case = getattr(lowercase_ , 'has_pre_transformation' , lowercase_) if self.has_pre_transformation: __snake_case = nn.Linear(config.hidden_size , config.project_dim) __snake_case = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def _a ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> Tuple: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.base_model( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_attentions=lowercase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowercase_ , ) if self.has_pre_transformation: __snake_case = outputs['hidden_states'][-2] __snake_case = self.pre_LN(lowercase_) __snake_case = self.transformation_pre(lowercase_) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __snake_case = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
def A ( snake_case__ : list ) -> list: '''simple docstring''' __snake_case = len(snake_case__ ) for _ in range(snake_case__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase__ : List[str] = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : Optional[int] = hf_hub_url(repo_id=SCREAMING_SNAKE_CASE , path=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(SCREAMING_SNAKE_CASE )}"""
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = False ): _lowercase : Any = scheduler _lowercase : int = optimizers if isinstance(_lowerCAmelCase , (list, tuple) ) else [optimizers] _lowercase : Optional[Any] = split_batches _lowercase : Dict = step_with_optimizer _lowercase : Dict = GradientState() def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCAmelCase , **_lowerCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCAmelCase , **_lowerCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _lowercase : List[str] = AcceleratorState().num_processes for _ in range(_lowerCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCAmelCase , **_lowerCAmelCase ) else: self.scheduler.step(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self ): return self.scheduler.get_last_lr() def __a ( self ): return self.scheduler.state_dict() def __a ( self , _lowerCAmelCase ): self.scheduler.load_state_dict(_lowerCAmelCase ) def __a ( self ): return self.scheduler.get_lr() def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.scheduler.print_lr(*_lowerCAmelCase , **_lowerCAmelCase )
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: print('moving disk from' , SCREAMING_SNAKE_CASE , 'to' , SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : Optional[int] = int(input('Height of hanoi: ' ).strip() ) move_tower(SCREAMING_SNAKE_CASE , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = "pix2struct_text_model" _UpperCamelCase : List[str] = ["past_key_values"] _UpperCamelCase : Optional[int] = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=5_0_2_4_4 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : int = d_kv _lowercase : Dict = d_ff _lowercase : Tuple = num_layers _lowercase : str = num_heads _lowercase : Tuple = relative_attention_num_buckets _lowercase : str = relative_attention_max_distance _lowercase : Optional[Any] = dropout_rate _lowercase : Optional[int] = layer_norm_epsilon _lowercase : Tuple = initializer_factor _lowercase : Tuple = use_cache _lowercase : Optional[Any] = eos_token_id _lowercase : List[Any] = decoder_start_token_id # for backwards compatibility _lowercase : Optional[Any] = dense_act_fn super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , is_decoder=_lowerCAmelCase , **_lowerCAmelCase , ) @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : Dict = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _lowercase : Optional[Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : str = "pix2struct_vision_model" def __init__( self , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1E-10 , _lowerCAmelCase=1.0 , _lowerCAmelCase=4_0_9_6 , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : int = hidden_size _lowercase : Dict = patch_embed_hidden_size _lowercase : str = d_ff _lowercase : Any = dropout_rate _lowercase : str = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Tuple = initializer_range _lowercase : Tuple = initializer_factor _lowercase : str = attention_dropout _lowercase : Dict = layer_norm_eps _lowercase : List[Any] = dense_act_fn _lowercase : int = seq_len _lowercase : Optional[int] = relative_attention_num_buckets _lowercase : Any = relative_attention_max_distance _lowercase : Union[str, Any] = d_kv @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : Tuple = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _lowercase : str = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "pix2struct" _UpperCamelCase : Tuple = True def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__(tie_word_embeddings=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) if text_config is None: _lowercase : List[str] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: _lowercase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) _lowercase : Union[str, Any] = PixaStructTextConfig(**_lowerCAmelCase ) _lowercase : Optional[int] = PixaStructVisionConfig(**_lowerCAmelCase ) _lowercase : Optional[Any] = self.text_config.decoder_start_token_id _lowercase : List[str] = self.text_config.pad_token_id _lowercase : Tuple = self.text_config.eos_token_id _lowercase : Union[str, Any] = initializer_factor _lowercase : Union[str, Any] = initializer_range _lowercase : Any = self.initializer_range _lowercase : str = self.initializer_range _lowercase : List[str] = is_vqa @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = copy.deepcopy(self.__dict__ ) _lowercase : List[Any] = self.text_config.to_dict() _lowercase : Optional[Any] = self.vision_config.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: _lowercase : Tuple = [] _lowercase : Union[str, Any] = [] _lowercase : Optional[Any] = [] for rt in rc.restypes: _lowercase : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowercase : int = {name: i for i, name in enumerate(SCREAMING_SNAKE_CASE )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowercase : str = torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , ) _lowercase : str = torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['aatype'].device , ) _lowercase : List[Any] = torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['aatype'].device , ) _lowercase : Tuple = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowercase : Optional[int] = restype_atomaa_to_atomaa[protein_aatype] _lowercase : Optional[Any] = restype_atomaa_mask[protein_aatype] _lowercase : Optional[Any] = residx_atomaa_mask _lowercase : int = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowercase : Tuple = restype_atomaa_to_atomaa[protein_aatype] _lowercase : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowercase : List[str] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowercase : List[str] = rc.restype_atoa[restype_letter] _lowercase : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowercase : Tuple = rc.atom_order[atom_name] _lowercase : str = 1 _lowercase : Optional[int] = restype_atomaa_mask[protein_aatype] _lowercase : int = residx_atomaa_mask return protein def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict[str, np.ndarray]: _lowercase : Optional[Any] = tree_map(lambda SCREAMING_SNAKE_CASE : torch.tensor(SCREAMING_SNAKE_CASE , device=batch['aatype'].device ) , SCREAMING_SNAKE_CASE , np.ndarray ) _lowercase : List[str] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : np.array(SCREAMING_SNAKE_CASE ) , make_atomaa_masks(SCREAMING_SNAKE_CASE ) ) return out
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , ): super().__init__() self.register_modules(transformer=_lowerCAmelCase , vae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) # create a imagenet -> id dictionary for easier use _lowercase : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): _lowercase : int = int(_lowerCAmelCase ) _lowercase : Optional[int] = dict(sorted(self.labels.items() ) ) def __a ( self , _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = list(_lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase = 4.0 , _lowerCAmelCase = None , _lowerCAmelCase = 5_0 , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , ): _lowercase : List[Any] = len(_lowerCAmelCase ) _lowercase : str = self.transformer.config.sample_size _lowercase : Any = self.transformer.config.in_channels _lowercase : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowerCAmelCase , device=self.device , dtype=self.transformer.dtype , ) _lowercase : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowercase : Dict = torch.tensor(_lowerCAmelCase , device=self.device ).reshape(-1 ) _lowercase : int = torch.tensor([1_0_0_0] * batch_size , device=self.device ) _lowercase : List[str] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowercase : Tuple = latent_model_input[: len(_lowerCAmelCase ) // 2] _lowercase : Dict = torch.cat([half, half] , dim=0 ) _lowercase : Union[str, Any] = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = t if not torch.is_tensor(_lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowercase : str = latent_model_input.device.type == 'mps' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = torch.floataa if is_mps else torch.floataa else: _lowercase : Optional[Any] = torch.intaa if is_mps else torch.intaa _lowercase : List[Any] = torch.tensor([timesteps] , dtype=_lowerCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowercase : Dict = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowercase : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowercase : Tuple = self.transformer( _lowerCAmelCase , timestep=_lowerCAmelCase , class_labels=_lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: _lowercase , _lowercase : List[str] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowercase , _lowercase : Optional[int] = torch.split(_lowerCAmelCase , len(_lowerCAmelCase ) // 2 , dim=0 ) _lowercase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowercase : str = torch.cat([half_eps, half_eps] , dim=0 ) _lowercase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowercase , _lowercase : Tuple = torch.split(_lowerCAmelCase , _lowerCAmelCase , dim=1 ) else: _lowercase : Tuple = noise_pred # compute previous image: x_t -> x_t-1 _lowercase : List[str] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample if guidance_scale > 1: _lowercase , _lowercase : int = latent_model_input.chunk(2 , dim=0 ) else: _lowercase : Optional[Any] = latent_model_input _lowercase : str = 1 / self.vae.config.scaling_factor * latents _lowercase : int = self.vae.decode(_lowerCAmelCase ).sample _lowercase : int = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowercase : Union[str, Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowerCAmelCase )
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
# using dfs for finding eulerian path traversal def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: _lowercase : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowercase , _lowercase : Optional[int] = True, True _lowercase : List[Any] = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Any = 0 _lowercase : Optional[int] = -1 for i in range(SCREAMING_SNAKE_CASE ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowercase : Any = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowercase , _lowercase : List[Any] = check_circuit_or_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowercase : Any = 1 if check == 2: _lowercase : Optional[int] = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowercase : Union[str, Any] = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Tuple: _lowercase : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowercase : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowercase : int = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowercase : Union[str, Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowercase : List[Any] = { 1: [], 2: [] # all degree is zero } _lowercase : Dict = 10 check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Any = graph self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = len(_lowerCAmelCase ) _lowercase : Tuple = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): if sources is int: _lowercase : Union[str, Any] = [sources] if sinks is int: _lowercase : Dict = [sinks] if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: return _lowercase : Tuple = sources[0] _lowercase : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1: _lowercase : Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowercase : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowercase : str = max_input_flow _lowercase : Dict = 0 _lowercase : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowercase : str = max_input_flow _lowercase : List[Any] = size - 1 def __a ( self ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = algorithm(self ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Dict = flow_network _lowercase : List[str] = flow_network.verticesCount _lowercase : Tuple = flow_network.sourceIndex _lowercase : Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowercase : Any = flow_network.graph _lowercase : Optional[Any] = False def __a ( self ): if not self.executed: self._algorithm() _lowercase : str = True def __a ( self ): pass class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) # use this to save your result _lowercase : List[str] = -1 def __a ( self ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] _lowercase : List[Any] = [0] * self.verticies_count _lowercase : Optional[Any] = [0] * self.verticies_count def __a ( self ): _lowercase : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowercase : Dict = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowercase : Tuple = 0 while i < len(_lowerCAmelCase ): _lowercase : List[str] = vertices_list[i] _lowercase : Union[str, Any] = self.heights[vertex_index] self.process_vertex(_lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) ) _lowercase : Any = 0 else: i += 1 _lowercase : Any = sum(self.preflow[self.source_index] ) def __a ( self , _lowerCAmelCase ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCAmelCase , _lowerCAmelCase ) self.relabel(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowercase : str = self.heights[to_index] if min_height is not None: _lowercase : List[str] = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: return EnvironmentCommand() def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: return EnvironmentCommand(args.accelerate_config_file ) class lowerCAmelCase_ ( __snake_case ): @staticmethod def __a ( _lowerCAmelCase ): _lowercase : int = parser.add_parser('env' ) download_parser.set_defaults(func=_lowerCAmelCase ) download_parser.add_argument( '--accelerate-config_file' , default=_lowerCAmelCase , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase , *_lowerCAmelCase ): _lowercase : int = accelerate_config_file def __a ( self ): _lowercase : Optional[Any] = 'not installed' if is_safetensors_available(): import safetensors _lowercase : Optional[int] = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors _lowercase : Optional[Any] = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _lowercase : Optional[Any] = 'not installed' _lowercase : Any = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowercase : List[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowerCAmelCase ): _lowercase : str = load_config_from_file(self._accelerate_config_file ).to_dict() _lowercase : Any = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else F"""\t{accelerate_config}""" ) _lowercase : List[str] = 'not installed' _lowercase : Dict = 'NA' if is_torch_available(): import torch _lowercase : Any = torch.__version__ _lowercase : int = torch.cuda.is_available() _lowercase : List[Any] = 'not installed' _lowercase : int = 'NA' if is_tf_available(): import tensorflow as tf _lowercase : Any = tf.__version__ try: # deprecated in v2.1 _lowercase : Optional[Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowercase : Dict = bool(tf.config.list_physical_devices('GPU' ) ) _lowercase : List[str] = 'not installed' _lowercase : Optional[Any] = 'not installed' _lowercase : List[Any] = 'not installed' _lowercase : Any = 'NA' if is_flax_available(): import flax import jax import jaxlib _lowercase : int = flax.__version__ _lowercase : Union[str, Any] = jax.__version__ _lowercase : str = jaxlib.__version__ _lowercase : int = jax.lib.xla_bridge.get_backend().platform _lowercase : Union[str, Any] = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': F"""{safetensors_version}""", 'Accelerate version': F"""{accelerate_version}""", 'Accelerate config': F"""{accelerate_config_str}""", 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Tensorflow version (GPU?)': F"""{tf_version} ({tf_cuda_available})""", 'Flax version (CPU?/GPU?/TPU?)': F"""{flax_version} ({jax_backend})""", 'Jax version': F"""{jax_version}""", 'JaxLib version': F"""{jaxlib_version}""", 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(_lowerCAmelCase ) ) return info @staticmethod def __a ( _lowerCAmelCase ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
UpperCamelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] UpperCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="pt" ) -> List[Any]: _lowercase : Optional[int] = {'add_prefix_space': True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(' ' ) else {} _lowercase : Optional[Any] = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE , padding='max_length' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: _lowercase : Tuple = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="train" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="" , ): super().__init__() _lowercase : int = Path(_lowerCAmelCase ).joinpath(type_path + '.source' ) _lowercase : Tuple = Path(_lowerCAmelCase ).joinpath(type_path + '.target' ) _lowercase : int = self.get_char_lens(self.src_file ) _lowercase : int = max_source_length _lowercase : int = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowercase : Optional[int] = tokenizer _lowercase : Union[str, Any] = prefix if n_obs is not None: _lowercase : Optional[Any] = self.src_lens[:n_obs] _lowercase : List[Any] = src_lang _lowercase : Dict = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , _lowerCAmelCase ): _lowercase : Optional[int] = index + 1 # linecache starts at 1 _lowercase : int = self.prefix + linecache.getline(str(self.src_file ) , _lowerCAmelCase ).rstrip('\n' ) _lowercase : Optional[int] = linecache.getline(str(self.tgt_file ) , _lowerCAmelCase ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowercase : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer ) _lowercase : Dict = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer _lowercase : Any = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_source_length , 'right' ) _lowercase : Union[str, Any] = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_target_length , 'right' ) _lowercase : List[str] = source_inputs['input_ids'].squeeze() _lowercase : Tuple = target_inputs['input_ids'].squeeze() _lowercase : Tuple = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __a ( _lowerCAmelCase ): return [len(_lowerCAmelCase ) for x in Path(_lowerCAmelCase ).open().readlines()] def __a ( self , _lowerCAmelCase ): _lowercase : Dict = torch.stack([x['input_ids'] for x in batch] ) _lowercase : Any = torch.stack([x['attention_mask'] for x in batch] ) _lowercase : List[Any] = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowercase : Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowercase : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowercase : Tuple = trim_batch(_lowerCAmelCase , _lowerCAmelCase ) _lowercase , _lowercase : Union[str, Any] = trim_batch(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowercase : int = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCamelCase = getLogger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _lowercase : List[str] = get_git_info() save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'git_log.json' ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=4 , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: with open(SCREAMING_SNAKE_CASE ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Dict: _lowercase : Tuple = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = { 'repo_id': str(SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List: return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: def remove_articles(SCREAMING_SNAKE_CASE ): return re.sub(R'\b(a|an|the)\b' , ' ' , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE ): _lowercase : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : int = normalize_answer(SCREAMING_SNAKE_CASE ).split() _lowercase : str = normalize_answer(SCREAMING_SNAKE_CASE ).split() _lowercase : Optional[int] = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = sum(common.values() ) if num_same == 0: return 0 _lowercase : Union[str, Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) _lowercase : Dict = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) _lowercase : str = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: em /= len(SCREAMING_SNAKE_CASE ) return {"em": em} def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: return model_prefix.startswith('rag' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowercase : int = 'dropout_rate' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue _lowercase : Optional[Any] = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return hparams, config
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = ["input_features", "is_longer"] def __init__( self , _lowerCAmelCase=6_4 , _lowerCAmelCase=4_8_0_0_0 , _lowerCAmelCase=4_8_0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=0.0 , _lowerCAmelCase=False , _lowerCAmelCase = 0 , _lowerCAmelCase = 1_4_0_0_0 , _lowerCAmelCase = None , _lowerCAmelCase = "fusion" , _lowerCAmelCase = "repeatpad" , **_lowerCAmelCase , ): super().__init__( feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Optional[Any] = top_db _lowercase : List[Any] = truncation _lowercase : Tuple = padding _lowercase : Optional[int] = fft_window_size _lowercase : Tuple = (fft_window_size >> 1) + 1 _lowercase : Optional[Any] = hop_length _lowercase : List[Any] = max_length_s _lowercase : Optional[Any] = max_length_s * sampling_rate _lowercase : Optional[int] = sampling_rate _lowercase : Union[str, Any] = frequency_min _lowercase : List[Any] = frequency_max _lowercase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm=_lowerCAmelCase , mel_scale='htk' , ) _lowercase : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def __a ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Dict = spectrogram( _lowerCAmelCase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowerCAmelCase , log_mel='dB' , ) return log_mel_spectrogram.T def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] # randomly choose index for each part _lowercase : Optional[Any] = np.random.choice(ranges[0] ) _lowercase : Dict = np.random.choice(ranges[1] ) _lowercase : Tuple = np.random.choice(ranges[2] ) _lowercase : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] _lowercase : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _lowercase : Any = torch.tensor(mel[None, None, :] ) _lowercase : Any = torch.nn.functional.interpolate( _lowerCAmelCase , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=_lowerCAmelCase ) _lowercase : Union[str, Any] = mel_shrink[0][0].numpy() _lowercase : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Optional[Any] = len(_lowerCAmelCase ) - max_length _lowercase : List[Any] = np.random.randint(0 , overflow + 1 ) _lowercase : List[Any] = waveform[idx : idx + max_length] _lowercase : List[Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : Optional[Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) _lowercase : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : Optional[int] = False else: _lowercase : Optional[Any] = self._random_mel_fusion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _lowercase : Union[str, Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : Optional[int] = int(max_length / len(_lowerCAmelCase ) ) _lowercase : List[Any] = np.stack(np.tile(_lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Dict = int(max_length / len(_lowerCAmelCase ) ) _lowercase : Optional[Any] = np.stack(np.tile(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Tuple = np.pad(_lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : Union[str, Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) _lowercase : Union[str, Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : Tuple = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Optional[Any] = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : int = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Union[str, Any] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): _lowercase : Union[str, Any] = np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : Optional[int] = [np.asarray(_lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : List[Any] = [ self._get_input_mel(_lowerCAmelCase , max_length if max_length else self.nb_max_samples , _lowerCAmelCase , _lowerCAmelCase ) for waveform in raw_speech ] _lowercase : Any = [] _lowercase : Tuple = [] for mel, longer in padded_inputs: input_mel.append(_lowerCAmelCase ) is_longer.append(_lowerCAmelCase ) if truncation == "fusion" and sum(_lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : int = np.random.randint(0 , len(_lowerCAmelCase ) ) _lowercase : Union[str, Any] = True if isinstance(input_mel[0] , _lowerCAmelCase ): _lowercase : Optional[int] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : str = [[longer] for longer in is_longer] _lowercase : List[str] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Tuple = BatchFeature(_lowerCAmelCase ) if return_tensors is not None: _lowercase : str = input_features.convert_to_tensors(_lowerCAmelCase ) return input_features
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): _lowercase : List[Any] = parent _lowercase : int = batch_size _lowercase : Union[str, Any] = image_size _lowercase : str = num_channels _lowercase : Dict = embeddings_size _lowercase : Any = hidden_sizes _lowercase : Union[str, Any] = depths _lowercase : List[str] = is_training _lowercase : int = use_labels _lowercase : Optional[int] = hidden_act _lowercase : Optional[Any] = num_labels _lowercase : List[Any] = scope _lowercase : List[str] = len(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[int] = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : str = self.get_config() return config, pixel_values, labels def __a ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFResNetModel(config=_lowerCAmelCase ) _lowercase : Tuple = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : List[str] = TFResNetForImageClassification(_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ): _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCamelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : List[str] = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : Any = TFResNetModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __a ( self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[Any] = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : str = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : str = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase : Dict = layer_type _lowercase : Tuple = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFResNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self ): _lowercase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowercase : Any = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='tf' ) # forward pass _lowercase : str = model(**_lowerCAmelCase ) # verify the logits _lowercase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : List[str] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1E-4 ) )
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: def get_masked_lm_array(SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Tuple = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Tuple = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_array(SCREAMING_SNAKE_CASE ): _lowercase : Any = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : List[str] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Dict = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Optional[int] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : List[str] = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : int = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Optional[int] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = array.reshape(SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Union[str, Any] = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) print(F"""Loading model based on config from {config_path}...""" ) _lowercase : List[Any] = BertConfig.from_json_file(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = BertForMaskedLM(SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowercase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _lowercase : BertSelfAttention = layer.attention.self _lowercase : Any = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _lowercase : Any = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) _lowercase : Optional[Any] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) _lowercase : Optional[int] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _lowercase : BertSelfOutput = layer.attention.output _lowercase : List[Any] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _lowercase : str = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) _lowercase : Union[str, Any] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate _lowercase : BertIntermediate = layer.intermediate _lowercase : Any = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) _lowercase : Optional[Any] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output _lowercase : BertOutput = layer.output _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_dense/bias' ) _lowercase : Any = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) _lowercase : Optional[int] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings _lowercase : List[str] = get_encoder_array('_position_embedding_layer/embeddings' ) _lowercase : int = get_encoder_array('_type_embedding_layer/embeddings' ) _lowercase : Union[str, Any] = get_encoder_array('_embedding_norm_layer/gamma' ) _lowercase : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _lowercase : Dict = model.cls.predictions.transform _lowercase : Dict = get_masked_lm_array('dense/kernel' ) _lowercase : Any = get_masked_lm_array('dense/bias' ) _lowercase : Any = get_masked_lm_array('layer_norm/gamma' ) _lowercase : Dict = get_masked_lm_array('layer_norm/beta' ) _lowercase : Optional[Any] = get_masked_lm_array('embedding_table' ) # Pooling _lowercase : str = BertPooler(config=SCREAMING_SNAKE_CASE ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/kernel' ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) _lowercase : Union[str, Any] = BertForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) UpperCamelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _lowercase , _lowercase : Optional[int] = analyze_text(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Any = sum(single_char_strings.values() ) # one length string _lowercase : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Optional[Any] = single_char_strings[ch] _lowercase : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(SCREAMING_SNAKE_CASE ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : int = cha + cha if sequence in two_char_strings: _lowercase : Any = two_char_strings[sequence] _lowercase : int = int(SCREAMING_SNAKE_CASE ) / all_sum my_sec_sum += prob * math.loga(SCREAMING_SNAKE_CASE ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> tuple[dict, dict]: _lowercase : Tuple = Counter() # type: ignore _lowercase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __magic_name__ ( ) -> Dict: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Optional[Any] = size # approximate the overall size of segment tree with given value _lowercase : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update _lowercase : List[str] = [0 for i in range(0 , 4 * size )] _lowercase : List[Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def __a ( self , _lowerCAmelCase ): return idx * 2 def __a ( self , _lowerCAmelCase ): return idx * 2 + 1 def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if left_element == right_element: _lowercase : Any = a[left_element - 1] else: _lowercase : List[Any] = (left_element + right_element) // 2 self.build(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.build(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Tuple = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if self.flag[idx] is True: _lowercase : Optional[Any] = self.lazy[idx] _lowercase : List[str] = False if left_element != right_element: _lowercase : int = self.lazy[idx] _lowercase : Any = self.lazy[idx] _lowercase : Union[str, Any] = True _lowercase : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _lowercase : str = val if left_element != right_element: _lowercase : str = val _lowercase : List[Any] = val _lowercase : Optional[int] = True _lowercase : Optional[int] = True return True _lowercase : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.update(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) return True def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if self.flag[idx] is True: _lowercase : List[Any] = self.lazy[idx] _lowercase : List[str] = False if left_element != right_element: _lowercase : Union[str, Any] = self.lazy[idx] _lowercase : Union[str, Any] = self.lazy[idx] _lowercase : int = True _lowercase : Any = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _lowercase : Dict = (left_element + right_element) // 2 _lowercase : Union[str, Any] = self.query(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = self.query(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return max(_lowerCAmelCase , _lowerCAmelCase ) def __str__( self ): return str([self.query(1 , 1 , self.size , _lowerCAmelCase , _lowerCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCamelCase = 15 UpperCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase = float("nan") class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : List[str] = sys.stdout _lowercase : Dict = open(_lowerCAmelCase , 'a' ) def __getattr__( self , _lowerCAmelCase ): return getattr(self.stdout , _lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): self.stdout.write(_lowerCAmelCase ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , _lowerCAmelCase , 0 , re.M ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: _lowercase : int = [] # deal with critical env vars _lowercase : int = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: _lowercase : Tuple = os.environ.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(F"""{key}={val}""" ) # python executable (not always needed if the script is executable) _lowercase : Tuple = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _lowercase : Any = [] _lowercase : Optional[Any] = '' while len(SCREAMING_SNAKE_CASE ) > 0: current_line += F"""{cmd.pop(0 )} """ if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = '' return "\\\n".join(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # unwrap multi-line input _lowercase : List[str] = re.sub(R'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own _lowercase : int = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir _lowercase : Tuple = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) _lowercase : Optional[int] = subprocess.run(SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams _lowercase : Any = variation.replace(' ' , '-' ) with open(Path(SCREAMING_SNAKE_CASE ) / F"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(SCREAMING_SNAKE_CASE ) / F"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: _lowercase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Tuple: _lowercase : str = [] _lowercase : List[Any] = [] _lowercase : Any = F"""{id}: {variation:<{longest_variation_len}}""" _lowercase : Union[str, Any] = F"""{preamble}: """ _lowercase : List[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(SCREAMING_SNAKE_CASE ) , desc=SCREAMING_SNAKE_CASE , leave=SCREAMING_SNAKE_CASE ): _lowercase : List[Any] = process_run_single( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Tuple = single_run_metrics[target_metric_key] if not math.isnan(SCREAMING_SNAKE_CASE ): metrics.append(SCREAMING_SNAKE_CASE ) results.append(SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" _lowercase : Optional[int] = F"""\33[2K\r{outcome}""" if len(SCREAMING_SNAKE_CASE ) > 0: _lowercase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _lowercase : str = round(mean_metrics[target_metric_key] , 2 ) _lowercase : Any = F"""{outcome} {mean_target}""" if len(SCREAMING_SNAKE_CASE ) > 1: results_str += F""" {tuple(round(SCREAMING_SNAKE_CASE , 2 ) for x in results )}""" print(SCREAMING_SNAKE_CASE ) _lowercase : str = variation return mean_metrics else: print(SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def __magic_name__ ( ) -> Optional[Any]: _lowercase : List[str] = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Dict = pd.DataFrame(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = 'variation' _lowercase : Union[str, Any] = 'diff_%' _lowercase : Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _lowercase : List[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel _lowercase : Tuple = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(SCREAMING_SNAKE_CASE ): _lowercase : Any = df.apply( lambda SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns _lowercase : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _lowercase : Tuple = df.reindex(SCREAMING_SNAKE_CASE , axis='columns' ) # reorder cols # capitalize _lowercase : Tuple = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible _lowercase : List[str] = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('_' , '<br>' ) , axis='columns' ) _lowercase : List[str] = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('_' , '\n' ) , axis='columns' ) _lowercase : int = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='.2f' )] print('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( ) -> Tuple: _lowercase : str = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Base cmd' , ) parser.add_argument( '--variations' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , nargs='+' , required=SCREAMING_SNAKE_CASE , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=SCREAMING_SNAKE_CASE , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=SCREAMING_SNAKE_CASE , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=SCREAMING_SNAKE_CASE , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=SCREAMING_SNAKE_CASE , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) _lowercase : Dict = parser.parse_args() _lowercase : List[str] = args.output_dir Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Dict = get_base_command(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations _lowercase : Tuple = [list(map(str.strip , re.split(R'\|' , SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _lowercase : Any = list(map(str.strip , map(' '.join , itertools.product(*SCREAMING_SNAKE_CASE ) ) ) ) _lowercase : Dict = max(len(SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys _lowercase : Optional[int] = args.report_metric_keys.split() # capture prints into a log file for convenience _lowercase : List[str] = F"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(F"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(F"""and this script's output is also piped into {report_fn}""" ) _lowercase : int = Tee(SCREAMING_SNAKE_CASE ) print(F"""\n*** Running {len(SCREAMING_SNAKE_CASE )} benchmarks:""" ) print(F"""Base command: {' '.join(SCREAMING_SNAKE_CASE )}""" ) _lowercase : Tuple = 'variation' _lowercase : Dict = [] for id, variation in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc='Total completion: ' , leave=SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.repeat_times , SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.base_variation , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: random.seed(SCREAMING_SNAKE_CASE ) np.random.seed(SCREAMING_SNAKE_CASE ) torch.manual_seed(SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase = 0.99_99 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0 , _lowerCAmelCase = False , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 2 / 3 , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): if isinstance(_lowerCAmelCase , torch.nn.Module ): _lowercase : int = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) _lowercase : List[str] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowercase : Dict = True if kwargs.get('max_value' , _lowerCAmelCase ) is not None: _lowercase : int = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : Dict = kwargs['max_value'] if kwargs.get('min_value' , _lowerCAmelCase ) is not None: _lowercase : List[str] = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : Optional[Any] = kwargs['min_value'] _lowercase : Optional[Any] = list(_lowerCAmelCase ) _lowercase : Tuple = [p.clone().detach() for p in parameters] if kwargs.get('device' , _lowerCAmelCase ) is not None: _lowercase : Union[str, Any] = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) self.to(device=kwargs['device'] ) _lowercase : Optional[Any] = None _lowercase : List[Any] = decay _lowercase : str = min_decay _lowercase : Dict = update_after_step _lowercase : Optional[Any] = use_ema_warmup _lowercase : Dict = inv_gamma _lowercase : Union[str, Any] = power _lowercase : Optional[int] = 0 _lowercase : Union[str, Any] = None # set in `step()` _lowercase : Union[str, Any] = model_cls _lowercase : Dict = model_config @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase : List[Any] = model_cls.load_config(_lowerCAmelCase , return_unused_kwargs=_lowerCAmelCase ) _lowercase : Optional[int] = model_cls.from_pretrained(_lowerCAmelCase ) _lowercase : int = cls(model.parameters() , model_cls=_lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(_lowerCAmelCase ) return ema_model def __a ( self , _lowerCAmelCase ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _lowercase : List[Any] = self.model_cls.from_config(self.model_config ) _lowercase : Dict = self.state_dict() state_dict.pop('shadow_params' , _lowerCAmelCase ) model.register_to_config(**_lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowercase : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowercase : Dict = (1 + step) / (1_0 + step) _lowercase : List[str] = min(_lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _lowercase : Dict = max(_lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def __a ( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , torch.nn.Module ): _lowercase : List[Any] = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) _lowercase : Optional[int] = parameters.parameters() _lowercase : Any = list(_lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowercase : Any = self.get_decay(self.optimization_step ) _lowercase : Union[str, Any] = decay _lowercase : int = 1 - decay _lowercase : Optional[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowercase : Union[str, Any] = deepspeed.zero.GatheredParameters(_lowerCAmelCase , modifier_rank=_lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Dict = list(_lowerCAmelCase ) for s_param, param in zip(self.shadow_params , _lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None ): _lowercase : str = [ p.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) if p.is_floating_point() else p.to(device=_lowerCAmelCase ) for p in self.shadow_params ] def __a ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = [param.detach().cpu().clone() for param in parameters] def __a ( self , _lowerCAmelCase ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _lowercase : str = None def __a ( self , _lowerCAmelCase ): _lowercase : Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) _lowercase : Tuple = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _lowercase : List[str] = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _lowerCAmelCase ): raise ValueError('Invalid min_decay' ) _lowercase : Optional[Any] = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _lowerCAmelCase ): raise ValueError('Invalid optimization_step' ) _lowercase : Any = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _lowerCAmelCase ): raise ValueError('Invalid update_after_step' ) _lowercase : Any = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _lowerCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _lowercase : List[Any] = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _lowercase : int = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _lowercase : Any = state_dict.get('shadow_params' , _lowerCAmelCase ) if shadow_params is not None: _lowercase : Tuple = shadow_params if not isinstance(self.shadow_params , _lowerCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
import math from datetime import datetime, timedelta def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> datetime: _lowercase : Any = year % 19 _lowercase : Tuple = year % 4 _lowercase : Tuple = year % 7 _lowercase : Any = math.floor(year / 100 ) _lowercase : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowercase : int = leap_day_inhibits / 4 _lowercase : List[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowercase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowercase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowercase : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): UpperCamelCase = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase = "src/diffusers" # Matches is_xxx_available() UpperCamelCase = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla UpperCamelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") UpperCamelCase = "\n{0} = None\n" UpperCamelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" UpperCamelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : int = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Optional[int]: with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase : List[str] = f.readlines() # Get to the point we do the actual imports for type checking _lowercase : Dict = 0 _lowercase : List[str] = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowercase : Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 _lowercase : Optional[Any] = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: _lowercase : Optional[Any] = lines[line_index] _lowercase : Dict = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: _lowercase : int = objects else: line_index += 1 return backend_specific_objects def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE=None ) -> str: if backend_specific_objects is None: _lowercase : List[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowercase : int = {} for backend, objects in backend_specific_objects.items(): _lowercase : Tuple = '[' + ', '.join(F"""\"{b}\"""" for b in backend.split('_and_' ) ) + ']' _lowercase : Optional[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) _lowercase : Tuple = dummy_file return dummy_files def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> int: _lowercase : Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowercase : Optional[Any] = {'torch': 'pt'} # Locate actual dummy modules and read their content. _lowercase : Any = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) _lowercase : Optional[int] = { backend: os.path.join(SCREAMING_SNAKE_CASE , F"""dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py""" ) for backend in dummy_files.keys() } _lowercase : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase : int = f.read() else: _lowercase : Optional[Any] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main """ '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F"""diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` """ 'to fix this.' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : _UpperCamelCase : nn.Module _UpperCamelCase : List[nn.Module] = field(default_factory=__snake_case ) _UpperCamelCase : list = field(default_factory=__snake_case ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(_lowerCAmelCase , nn.Convad ) or isinstance(_lowerCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowerCAmelCase ) [x.remove() for x in self.handles] return self @property def __a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : _UpperCamelCase : nn.Module _UpperCamelCase : nn.Module _UpperCamelCase : int = 0 _UpperCamelCase : List = field(default_factory=__snake_case ) _UpperCamelCase : List = field(default_factory=__snake_case ) def __call__( self , _lowerCAmelCase ): _lowercase : Tuple = Tracker(self.dest )(_lowerCAmelCase ).parametrized _lowercase : List[Any] = Tracker(self.src )(_lowerCAmelCase ).parametrized _lowercase : Any = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.src_skip , _lowerCAmelCase ) ) _lowercase : List[str] = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.dest_skip , _lowerCAmelCase ) ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise Exception( F"""Numbers of operations are different. Source module has {len(_lowerCAmelCase )} operations while""" F""" destination module has {len(_lowerCAmelCase )}.""" ) for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> Dict: print(F"""Converting {name}...""" ) with torch.no_grad(): _lowercase : str = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ).eval() _lowercase : Tuple = ResNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() _lowercase : Tuple = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE ) assert torch.allclose(from_model(SCREAMING_SNAKE_CASE ) , our_model(SCREAMING_SNAKE_CASE ).logits ), "The model logits don't match the original one." _lowercase : Dict = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , ) # we can use the convnext one _lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , ) print(F"""Pushed {checkpoint_name}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True ) -> int: _lowercase : Tuple = 'imagenet-1k-id2label.json' _lowercase : Tuple = 1_000 _lowercase : List[Any] = (1, num_labels) _lowercase : int = 'huggingface/label-files' _lowercase : int = num_labels _lowercase : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : Union[str, Any] = idalabel _lowercase : List[Any] = {v: k for k, v in idalabel.items()} _lowercase : Dict = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
UpperCamelCase = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: _lowercase : Optional[Any] = set() # keep track of all the paths to be checked _lowercase : Dict = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowercase : str = queue.pop(0 ) # get the last node from the path _lowercase : Union[str, Any] = path[-1] if node not in explored: _lowercase : Union[str, Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowercase : Any = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowercase : List[Any] = [start] _lowercase : Dict = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. _lowercase : Dict = {start: 0, target: -1} while queue: _lowercase : Any = queue.pop(0 ) if node == target: _lowercase : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) _lowercase : Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( SCREAMING_SNAKE_CASE = "" ) -> dict[str, float]: _lowercase : Any = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _lowercase : List[str] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowercase : str = soup.find_all('td' , attrs='titleColumn' ) _lowercase : List[str] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) } def __magic_name__ ( SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) -> None: _lowercase : int = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: _lowercase : Dict = csv.writer(SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE = 100 ) -> int: _lowercase : List[str] = set() _lowercase : List[str] = 0 _lowercase : int = n + 1 # maximum limit for a in range(2 , SCREAMING_SNAKE_CASE ): for b in range(2 , SCREAMING_SNAKE_CASE ): _lowercase : int = a**b # calculates the current power collect_powers.add(SCREAMING_SNAKE_CASE ) # adds the result to the set return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: return abs(SCREAMING_SNAKE_CASE ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowercase , _lowercase : int = y, x % y return abs(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> List[Any]: try: _lowercase : int = input('Enter two integers separated by comma (,): ' ).split(',' ) _lowercase : Union[str, Any] = int(nums[0] ) _lowercase : int = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = "▁" UpperCamelCase = {"vocab_file": "prophetnet.tokenizer"} UpperCamelCase = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } UpperCamelCase = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } UpperCamelCase = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as reader: _lowercase : List[str] = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = token.rstrip('\n' ) _lowercase : List[str] = index return vocab class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise _lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) _lowercase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _lowercase : Tuple = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(1_0 ): _lowercase : Union[str, Any] = F"""[unused{i}]""" _lowercase : Dict = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _lowercase : Optional[Any] = 1_2 _lowercase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_lowerCAmelCase ) def __getstate__( self ): _lowercase : Tuple = self.__dict__.copy() _lowercase : Optional[int] = None return state def __setstate__( self , _lowerCAmelCase ): _lowercase : Optional[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase : List[Any] = {} _lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + [1] return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self ): return len(self.sp_model ) + self.fairseq_offset def __a ( self ): _lowercase : Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Optional[Any] = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , _lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , _lowerCAmelCase ): _lowercase : int = ''.join(_lowerCAmelCase ).replace(_lowerCAmelCase , ' ' ).strip() return out_string def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , 'wb' ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] _lowercase : Tuple = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
import os import time import numpy as np import onnxruntime as ort UpperCamelCase = "1" UpperCamelCase = "0" UpperCamelCase = "1" UpperCamelCase = ort.SessionOptions() UpperCamelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") UpperCamelCase = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCamelCase = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) UpperCamelCase = ort.RunOptions() UpperCamelCase = 128 UpperCamelCase = 1 UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") UpperCamelCase = time.time() UpperCamelCase = 2_000 UpperCamelCase = {} for iter in range(max_iters): UpperCamelCase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1_000 / max_iters))
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , ) -> Dict: output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Optional[Any]: _lowercase : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowercase : int = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _lowercase : Tuple = 'cpu' _lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : str = Path(SCREAMING_SNAKE_CASE ) # TEXT ENCODER _lowercase : Any = pipeline.text_encoder.config.max_position_embeddings _lowercase : List[str] = pipeline.text_encoder.config.hidden_size _lowercase : Dict = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=SCREAMING_SNAKE_CASE , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.text_encoder # UNET _lowercase : Optional[Any] = pipeline.unet.config.in_channels _lowercase : Any = pipeline.unet.config.sample_size _lowercase : List[str] = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=SCREAMING_SNAKE_CASE , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , ) _lowercase : Any = str(unet_path.absolute().as_posix() ) _lowercase : Dict = os.path.dirname(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = onnx.load(SCREAMING_SNAKE_CASE ) # clean up existing tensor files shutil.rmtree(SCREAMING_SNAKE_CASE ) os.mkdir(SCREAMING_SNAKE_CASE ) # collate external tensor files into one onnx.save_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , save_as_external_data=SCREAMING_SNAKE_CASE , all_tensors_to_one_file=SCREAMING_SNAKE_CASE , location='weights.pb' , convert_attribute=SCREAMING_SNAKE_CASE , ) del pipeline.unet # VAE ENCODER _lowercase : Optional[Any] = pipeline.vae _lowercase : Dict = vae_encoder.config.in_channels _lowercase : Optional[int] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _lowercase : Any = lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : vae_encoder.encode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0].sample() onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) # VAE DECODER _lowercase : str = pipeline.vae _lowercase : int = vae_decoder.config.latent_channels _lowercase : Optional[Any] = vae_decoder.config.out_channels # forward only through the decoder part _lowercase : Union[str, Any] = vae_encoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _lowercase : Optional[int] = pipeline.safety_checker _lowercase : Optional[Any] = safety_checker.config.vision_config.num_channels _lowercase : Any = safety_checker.config.vision_config.image_size _lowercase : Tuple = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.safety_checker _lowercase : Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) _lowercase : Optional[Any] = pipeline.feature_extractor else: _lowercase : str = None _lowercase : Any = None _lowercase : str = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) print('ONNX pipeline saved to' , SCREAMING_SNAKE_CASE ) del pipeline del onnx_pipeline _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __magic_name__ ( ) -> int: _lowercase : int = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=SCREAMING_SNAKE_CASE , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=SCREAMING_SNAKE_CASE , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=SCREAMING_SNAKE_CASE , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=SCREAMING_SNAKE_CASE , default=0 , help='cuda_id.' , ) _lowercase : Dict = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: if not len(SCREAMING_SNAKE_CASE ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) _lowercase , _lowercase : Optional[Any] = imgs[0].size _lowercase : List[str] = Image.new('RGB' , size=(cols * w, rows * h) ) _lowercase , _lowercase : List[Any] = grid.size for i, img in enumerate(SCREAMING_SNAKE_CASE ): grid.paste(SCREAMING_SNAKE_CASE , box=(i % cols * w, i // cols * h) ) return grid def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="robotic cat with wings" , SCREAMING_SNAKE_CASE=7.5 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=42 , ) -> Dict: _lowercase : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(SCREAMING_SNAKE_CASE ) _lowercase : Dict = pipeline( SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , ).images _lowercase : Optional[int] = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = image_grid(SCREAMING_SNAKE_CASE , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCamelCase = parse_args() # Load models and create wrapper for stable diffusion UpperCamelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") UpperCamelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") UpperCamelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") UpperCamelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") UpperCamelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCamelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): UpperCamelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: UpperCamelCase = unet.to(torch.device("cuda", args.cuda_id)) UpperCamelCase = pipeline.to(unet.device) UpperCamelCase , UpperCamelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) UpperCamelCase = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1