code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase = 500_000 UpperCamelCase , UpperCamelCase = os.path.split(__file__) UpperCamelCase = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[str] = dataset.map(**SCREAMING_SNAKE_CASE ) @get_duration def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : List[str] = dataset.filter(**SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> int: _lowercase : List[str] = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : int = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _lowercase : Any = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE , num_examples=SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE ) def tokenize(SCREAMING_SNAKE_CASE ): return tokenizer(examples['text'] ) _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE ) _lowercase : int = map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) _lowercase : str = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='numpy' ): _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='pandas' ): _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='torch' , columns='numbers' ): _lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _lowercase : Any = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) _lowercase : Tuple = filter(SCREAMING_SNAKE_CASE ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('iterations must be defined as integers' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) _lowercase : Optional[Any] = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(SCREAMING_SNAKE_CASE ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase=None , _lowerCAmelCase=None ): if not conversation_id: _lowercase : List[Any] = uuid.uuida() if past_user_inputs is None: _lowercase : Any = [] if generated_responses is None: _lowercase : str = [] _lowercase : uuid.UUID = conversation_id _lowercase : List[str] = past_user_inputs _lowercase : List[str] = generated_responses _lowercase : Optional[str] = text def __eq__( self , _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = False ): if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) _lowercase : int = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _lowercase : Dict = text def __a ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _lowercase : str = None def __a ( self , _lowerCAmelCase ): self.generated_responses.append(_lowerCAmelCase ) def __a ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): _lowercase : str = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _lowercase : str = 'user' if is_user else 'bot' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class lowerCAmelCase_ ( __snake_case ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if self.tokenizer.pad_token_id is None: _lowercase : Union[str, Any] = self.tokenizer.eos_token def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : Dict = {} _lowercase : Dict = {} _lowercase : Tuple = {} if min_length_for_response is not None: _lowercase : List[Any] = min_length_for_response if minimum_tokens is not None: _lowercase : int = minimum_tokens if "max_length" in generate_kwargs: _lowercase : List[Any] = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _lowercase : List[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , _lowerCAmelCase , _lowerCAmelCase=0 , **_lowerCAmelCase ): _lowercase : str = super().__call__(_lowerCAmelCase , num_workers=_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs def __a ( self , _lowerCAmelCase , _lowerCAmelCase=3_2 ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _lowercase : List[Any] = self.tokenizer._build_conversation_input_ids(_lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _lowercase : List[str] = self._legacy_parse_and_tokenize(_lowerCAmelCase ) if self.framework == "pt": _lowercase : Dict = torch.LongTensor([input_ids] ) elif self.framework == "tf": _lowercase : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __a ( self , _lowerCAmelCase , _lowerCAmelCase=1_0 , **_lowerCAmelCase ): _lowercase : Optional[Any] = generate_kwargs.get('max_length' , self.model.config.max_length ) _lowercase : Any = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _lowercase : Optional[Any] = max_length - minimum_tokens _lowercase : Optional[Any] = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _lowercase : Optional[Any] = model_inputs['attention_mask'][:, -trim:] _lowercase : Tuple = model_inputs.pop('conversation' ) _lowercase : List[str] = max_length _lowercase : Dict = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) if self.model.config.is_encoder_decoder: _lowercase : Optional[int] = 1 else: _lowercase : Dict = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __a ( self , _lowerCAmelCase , _lowerCAmelCase=True ): _lowercase : List[str] = model_outputs['output_ids'] _lowercase : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) _lowercase : Optional[Any] = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_lowerCAmelCase ) return conversation def __a ( self , _lowerCAmelCase ): _lowercase : List[Any] = self.tokenizer.eos_token_id _lowercase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > self.tokenizer.model_max_length: _lowercase : Dict = input_ids[-self.tokenizer.model_max_length :] return input_ids
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: _lowercase : Any = str(SCREAMING_SNAKE_CASE ) return n == n[::-1] def __magic_name__ ( SCREAMING_SNAKE_CASE = 1_000_000 ) -> Tuple: _lowercase : int = 0 for i in range(1 , SCREAMING_SNAKE_CASE ): if is_palindrome(SCREAMING_SNAKE_CASE ) and is_palindrome(bin(SCREAMING_SNAKE_CASE ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCamelCase = "src/transformers" UpperCamelCase = "docs/source/en/tasks" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase : Optional[Any] = f.readlines() # Find the start prompt. _lowercase : Tuple = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE ): start_index += 1 start_index += 1 _lowercase : Optional[Any] = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase = direct_transformers_import(TRANSFORMERS_PATH) UpperCamelCase = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCamelCase = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : int = TASK_GUIDE_TO_MODELS[task_guide] _lowercase : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE , set() ) _lowercase : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: _lowercase , _lowercase , _lowercase , _lowercase : int = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _lowercase : List[Any] = get_model_list_for_task(SCREAMING_SNAKE_CASE ) if current_list != new_list: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "vit" def __init__( self , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=2_2_4 , _lowerCAmelCase=1_6 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=1_6 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : Any = hidden_act _lowercase : Tuple = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : List[str] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : Union[str, Any] = image_size _lowercase : Optional[int] = patch_size _lowercase : Any = num_channels _lowercase : int = qkv_bias _lowercase : List[Any] = encoder_stride class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = version.parse("1.11" ) @property def __a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ): return 1E-4
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase = "__DUMMY_TRANSFORMERS_USER__" UpperCamelCase = "Dummy User" UpperCamelCase = "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" UpperCamelCase = "https://hub-ci.huggingface.co" UpperCamelCase = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCamelCase = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCamelCase = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> str: return HfApi(endpoint=SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: def _cleanup_repo(SCREAMING_SNAKE_CASE ): hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Optional[Any] = F"""repo_txt_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _lowercase : Union[str, Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Optional[int] = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return hf_private_dataset_repo_zipped_img_data_
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=1_8 , _lowerCAmelCase=3_0 , _lowerCAmelCase=4_0_0 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ): _lowercase : Dict = size if size is not None else {'height': 1_8, 'width': 1_8} _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : List[Any] = num_channels _lowercase : int = image_size _lowercase : Tuple = min_resolution _lowercase : Any = max_resolution _lowercase : Tuple = do_resize _lowercase : Union[str, Any] = size _lowercase : List[str] = do_normalize def __a ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : str = ImageGPTImageProcessor if is_vision_available() else None def __a ( self ): _lowercase : Any = ImageGPTImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'clusters' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) def __a ( self ): _lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) _lowercase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def __a ( self ): _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) _lowercase : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Optional[int] = os.path.join(_lowerCAmelCase , 'image_processor.json' ) image_processor_first.to_json_file(_lowerCAmelCase ) _lowercase : Any = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() _lowercase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def __a ( self ): _lowercase : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() _lowercase : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip('ImageGPT requires clusters at initialization' ) def __a ( self ): pass def __magic_name__ ( ) -> Tuple: _lowercase : str = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) _lowercase : List[str] = Image.open(dataset[4]['file'] ) _lowercase : Optional[Any] = Image.open(dataset[5]['file'] ) _lowercase : List[Any] = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : int = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) _lowercase : List[Any] = prepare_images() # test non-batched _lowercase : Tuple = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _lowercase : Union[str, Any] = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched _lowercase : List[str] = image_processing(_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _lowercase : Dict = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase = logging.getLogger(__name__) class lowerCAmelCase_ ( __snake_case ): def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): _lowercase : Optional[int] = self.layer[current_layer](_lowerCAmelCase , _lowerCAmelCase , head_mask[current_layer] ) _lowercase : Optional[int] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __snake_case , ) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Optional[Any] = BertEncoderWithPabee(_lowerCAmelCase ) self.init_weights() _lowercase : str = 0 _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = 0 def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = threshold def __a ( self , _lowerCAmelCase ): _lowercase : Any = patience def __a ( self ): _lowercase : Any = 0 _lowercase : List[Any] = 0 def __a ( self ): _lowercase : List[Any] = self.inference_layers_num / self.inference_instances_num _lowercase : Optional[Any] = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_lowerCAmelCase ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _lowercase : Dict = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Optional[Any] = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if token_type_ids is None: _lowercase : Optional[Any] = torch.zeros(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase , _lowercase , _lowercase : Tuple = encoder_hidden_states.size() _lowercase : Any = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase : Tuple = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) _lowercase : Union[str, Any] = self.invert_attention_mask(_lowerCAmelCase ) else: _lowercase : Tuple = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : List[str] = self.get_head_mask(_lowerCAmelCase , self.config.num_hidden_layers ) _lowercase : Optional[int] = self.embeddings( input_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase ) _lowercase : Optional[int] = embedding_output if self.training: _lowercase : Any = [] for i in range(self.config.num_hidden_layers ): _lowercase : List[Any] = self.encoder.adaptive_forward( _lowerCAmelCase , current_layer=_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowercase : Any = self.pooler(_lowerCAmelCase ) _lowercase : int = output_layers[i](output_dropout(_lowerCAmelCase ) ) res.append(_lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase : Union[str, Any] = self.encoder( _lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowercase : Union[str, Any] = self.pooler(encoder_outputs[0] ) _lowercase : Dict = [output_layers[self.config.num_hidden_layers - 1](_lowerCAmelCase )] else: _lowercase : Any = 0 _lowercase : Tuple = None _lowercase : Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase : Any = self.encoder.adaptive_forward( _lowerCAmelCase , current_layer=_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowercase : Dict = self.pooler(_lowerCAmelCase ) _lowercase : int = output_layers[i](_lowerCAmelCase ) if regression: _lowercase : Optional[int] = logits.detach() if patient_result is not None: _lowercase : Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase : Optional[Any] = 0 else: _lowercase : int = logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowerCAmelCase ) ): patient_counter += 1 else: _lowercase : Dict = 0 _lowercase : List[str] = logits if patient_counter == self.patience: break _lowercase : Union[str, Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __snake_case , ) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Tuple = config.num_labels _lowercase : List[str] = BertModelWithPabee(_lowerCAmelCase ) _lowercase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Tuple = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = self.bert( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase : List[str] = (logits[-1],) if labels is not None: _lowercase : Union[str, Any] = None _lowercase : Optional[int] = 0 for ix, logits_item in enumerate(_lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase : List[Any] = MSELoss() _lowercase : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Tuple = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase : List[str] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase : str = (total_loss / total_weights,) + outputs return outputs
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = "philschmid/bart-large-cnn-samsum" _UpperCamelCase : List[str] = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) _UpperCamelCase : str = "summarizer" _UpperCamelCase : Any = AutoTokenizer _UpperCamelCase : int = AutoModelForSeqaSeqLM _UpperCamelCase : Optional[Any] = ["text"] _UpperCamelCase : List[Any] = ["text"] def __a ( self , _lowerCAmelCase ): return self.pre_processor(_lowerCAmelCase , return_tensors='pt' , truncation=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return self.model.generate(**_lowerCAmelCase )[0] def __a ( self , _lowerCAmelCase ): return self.pre_processor.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase_ : @property def __a ( self ): return self.get_dummy_input() @property def __a ( self ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def __a ( self , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ): _lowercase : Optional[Any] = 4 _lowercase : Optional[int] = 3_2 _lowercase : Optional[Any] = (3_2, 3_2) _lowercase : int = torch.manual_seed(0 ) _lowercase : Any = torch.device(_lowerCAmelCase ) _lowercase : Any = (batch_size, num_channels) + sizes _lowercase : Union[str, Any] = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'hidden_states': hidden_states} if include_temb: _lowercase : List[Any] = 1_2_8 _lowercase : str = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: _lowercase : List[str] = torch.manual_seed(1 ) _lowercase : List[str] = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: _lowercase : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(_lowerCAmelCase ) if include_skip_sample: _lowercase : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def __a ( self ): _lowercase : str = { 'in_channels': 3_2, 'out_channels': 3_2, 'temb_channels': 1_2_8, } if self.block_type == "up": _lowercase : Optional[int] = 3_2 if self.block_type == "mid": init_dict.pop('out_channels' ) _lowercase : Optional[int] = self.dummy_input return init_dict, inputs_dict def __a ( self , _lowerCAmelCase ): _lowercase , _lowercase : str = self.prepare_init_args_and_inputs_for_common() _lowercase : Tuple = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): _lowercase : Dict = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = output[0] self.assertEqual(output.shape , self.output_shape ) _lowercase : Any = output[0, -1, -3:, -3:] _lowercase : List[str] = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def __a ( self ): _lowercase , _lowercase : Optional[int] = self.prepare_init_args_and_inputs_for_common() _lowercase : List[Any] = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowercase : Optional[Any] = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = output[0] _lowercase : int = torch.device(_lowerCAmelCase ) _lowercase : Any = randn_tensor(output.shape , device=_lowerCAmelCase ) _lowercase : Dict = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase_ ( __snake_case ): @require_torch def __a ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Optional[int] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network _lowercase : Any = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _lowercase : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Dict = '1' _lowercase : str = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : str = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network _lowercase : int = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _lowercase : Optional[Any] = self.get_env() _lowercase : List[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : List[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _lowercase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _lowercase : str = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _lowercase : List[str] = self.get_env() _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network _lowercase : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[int] = '1' _lowercase : List[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): _lowercase : Optional[int] = '\nfrom transformers import pipeline\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _lowercase : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _lowercase : Optional[Any] = self.get_env() _lowercase : List[str] = '1' _lowercase : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def __a ( self ): _lowercase : int = '\nfrom transformers import AutoModel\n ' _lowercase : Tuple = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _lowercase : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _lowercase : Optional[int] = self.get_env() _lowercase : List[str] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[Any] = '1' _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase_ ( __snake_case ): @staticmethod def __a ( _lowerCAmelCase ): _lowercase : int = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=_lowerCAmelCase , help='Name of the model to download' ) download_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = model _lowercase : Any = cache _lowercase : str = force _lowercase : str = trust_remote_code def __a ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: def merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(SCREAMING_SNAKE_CASE ) <= 1: return collection _lowercase : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
import socket def __magic_name__ ( ) -> str: _lowercase : Union[str, Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowercase : str = socket.gethostname() _lowercase : List[Any] = 12_312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowercase : Dict = sock.recv(1_024 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "sew-d" def __init__( self , _lowerCAmelCase=3_2 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase=2 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=("p2c", "c2p") , _lowerCAmelCase="layer_norm" , _lowerCAmelCase="gelu_python" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-7 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="group" , _lowerCAmelCase="gelu" , _lowerCAmelCase=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowerCAmelCase=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowerCAmelCase=False , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=1_6 , _lowerCAmelCase=True , _lowerCAmelCase=0.05 , _lowerCAmelCase=1_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0 , _lowerCAmelCase="mean" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowercase : Tuple = hidden_size _lowercase : str = feat_extract_norm _lowercase : str = feat_extract_activation _lowercase : Optional[int] = list(_lowerCAmelCase ) _lowercase : Optional[int] = list(_lowerCAmelCase ) _lowercase : Optional[Any] = list(_lowerCAmelCase ) _lowercase : Tuple = conv_bias _lowercase : int = num_conv_pos_embeddings _lowercase : str = num_conv_pos_embedding_groups _lowercase : Optional[Any] = len(self.conv_dim ) _lowercase : Tuple = num_hidden_layers _lowercase : int = intermediate_size _lowercase : Dict = squeeze_factor _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = position_buckets _lowercase : Optional[int] = share_att_key _lowercase : Any = relative_attention _lowercase : Any = norm_rel_ebd _lowercase : Any = list(_lowerCAmelCase ) _lowercase : Optional[int] = hidden_act _lowercase : Optional[int] = num_attention_heads _lowercase : Optional[int] = hidden_dropout _lowercase : Optional[Any] = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : Dict = feat_proj_dropout _lowercase : Dict = final_dropout _lowercase : Union[str, Any] = layer_norm_eps _lowercase : Optional[int] = feature_layer_norm_eps _lowercase : Any = initializer_range _lowercase : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Tuple = apply_spec_augment _lowercase : Any = mask_time_prob _lowercase : List[str] = mask_time_length _lowercase : Union[str, Any] = mask_time_min_masks _lowercase : Union[str, Any] = mask_feature_prob _lowercase : List[str] = mask_feature_length _lowercase : str = mask_feature_min_masks # ctc loss _lowercase : Union[str, Any] = ctc_loss_reduction _lowercase : Tuple = ctc_zero_infinity # sequence classification _lowercase : Optional[Any] = use_weighted_layer_sum _lowercase : Optional[Any] = classifier_proj_size @property def __a ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["PerceiverFeatureExtractor"] UpperCamelCase = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowerCAmelCase_ ( __snake_case , __snake_case ): _UpperCamelCase : List[Any] = "resnet" _UpperCamelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self , _lowerCAmelCase=3 , _lowerCAmelCase=6_4 , _lowerCAmelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowerCAmelCase=[3, 4, 6, 3] , _lowerCAmelCase="bottleneck" , _lowerCAmelCase="relu" , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _lowercase : Optional[int] = num_channels _lowercase : Union[str, Any] = embedding_size _lowercase : Dict = hidden_sizes _lowercase : List[str] = depths _lowercase : List[str] = layer_type _lowercase : int = hidden_act _lowercase : int = downsample_in_first_stage _lowercase : int = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )] _lowercase , _lowercase : List[str] = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Union[str, Any] = version.parse("1.11" ) @property def __a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ): return 1E-3
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "timm_backbone" def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : int = backbone _lowercase : Optional[Any] = num_channels _lowercase : Union[str, Any] = features_only _lowercase : Any = use_pretrained_backbone _lowercase : Optional[int] = True _lowercase : Optional[Any] = out_indices if out_indices is not None else (-1,)
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCamelCase = get_logger(__name__) class lowerCAmelCase_ ( enum.Enum ): _UpperCamelCase : Dict = "all_checks" _UpperCamelCase : Tuple = "basic_checks" _UpperCamelCase : Optional[int] = "no_checks" class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> str: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) _lowercase : Union[str, Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _lowercase : Optional[Any] = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass class lowerCAmelCase_ ( __snake_case ): pass def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) _lowercase : Optional[int] = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> dict: if record_checksum: _lowercase : str = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = m.hexdigest() else: _lowercase : Tuple = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.array: _lowercase : str = F"""{sampling_rate}""" _lowercase : int = '1' _lowercase : str = 'f32le' _lowercase : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowercase : str = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error _lowercase : Tuple = output_stream[0] _lowercase : Tuple = np.frombuffer(SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "f32le" , ) -> List[Any]: _lowercase : Any = F"""{sampling_rate}""" _lowercase : Optional[int] = '1' if format_for_conversion == "s16le": _lowercase : Optional[Any] = 2 elif format_for_conversion == "f32le": _lowercase : Any = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _lowercase : List[Any] = platform.system() if system == "Linux": _lowercase : Tuple = 'alsa' _lowercase : int = 'default' elif system == "Darwin": _lowercase : Optional[Any] = 'avfoundation' _lowercase : int = ':0' elif system == "Windows": _lowercase : Union[str, Any] = 'dshow' _lowercase : Tuple = 'default' _lowercase : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] _lowercase : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowercase : int = _ffmpeg_stream(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in iterator: yield item def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "f32le" , ) -> Optional[Any]: if stream_chunk_s is not None: _lowercase : int = stream_chunk_s else: _lowercase : str = chunk_length_s _lowercase : Tuple = ffmpeg_microphone(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , format_for_conversion=SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": _lowercase : Union[str, Any] = np.intaa _lowercase : Any = 2 elif format_for_conversion == "f32le": _lowercase : Optional[int] = np.floataa _lowercase : Optional[int] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _lowercase : int = chunk_length_s / 6 _lowercase : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE , (int, float) ): _lowercase : int = [stride_length_s, stride_length_s] _lowercase : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowercase : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowercase : Union[str, Any] = datetime.datetime.now() _lowercase : List[Any] = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale _lowercase : Dict = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE ) _lowercase : List[str] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) _lowercase : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> str: _lowercase : Tuple = b'' _lowercase , _lowercase : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _lowercase : Tuple = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE ) < chunk_len: _lowercase : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator _lowercase : int = (_stride_left, stride_right) _lowercase : Optional[int] = {'raw': acc[:chunk_len], 'stride': stride} if stream: _lowercase : Tuple = False yield item _lowercase : str = stride_left _lowercase : Any = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE ) > stride_left: _lowercase : Any = {'raw': acc, 'stride': (_stride_left, 0)} if stream: _lowercase : List[str] = False yield item def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Dict = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: _lowercase : Optional[int] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCamelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def __magic_name__ ( ) -> Dict: _lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) _lowercase : Tuple = parser.parse_args() return args.f def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="eval" ) -> List[Any]: _lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , F"""{split}_results.json""" ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE ) raise ValueError(F"""can't find {path}""" ) UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_ ( __snake_case ): def __a ( self ): _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : Optional[int] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_flax_glue.main() _lowercase : str = get_results(_lowerCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def __a ( self ): _lowercase : Optional[int] = self.get_auto_remove_tmp_dir() _lowercase : Optional[int] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_clm_flax.main() _lowercase : int = get_results(_lowerCAmelCase ) self.assertLess(result['eval_perplexity'] , 1_0_0 ) @slow def __a ( self ): _lowercase : List[Any] = self.get_auto_remove_tmp_dir() _lowercase : str = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_summarization_flax.main() _lowercase : Optional[int] = get_results(_lowerCAmelCase , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 1_0 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def __a ( self ): _lowercase : str = self.get_auto_remove_tmp_dir() _lowercase : Optional[Any] = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_mlm_flax.main() _lowercase : int = get_results(_lowerCAmelCase ) self.assertLess(result['eval_perplexity'] , 4_2 ) @slow def __a ( self ): _lowercase : str = self.get_auto_remove_tmp_dir() _lowercase : Dict = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_ta_mlm_flax.main() _lowercase : List[str] = get_results(_lowerCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def __a ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _lowercase : List[str] = 7 if get_gpu_count() > 1 else 2 _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : str = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_flax_ner.main() _lowercase : List[Any] = get_results(_lowerCAmelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def __a ( self ): _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : List[str] = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_lowerCAmelCase , 'argv' , _lowerCAmelCase ): run_qa.main() _lowercase : Optional[Any] = get_results(_lowerCAmelCase ) self.assertGreaterEqual(result['eval_f1'] , 3_0 ) self.assertGreaterEqual(result['eval_exact'] , 3_0 )
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : int = len(SCREAMING_SNAKE_CASE ) _lowercase : Any = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 0 while arr[min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1] < x: _lowercase : List[str] = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowercase : Dict = prev + 1 if prev == min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] UpperCamelCase = int(input("Enter the number to be searched:\n")) UpperCamelCase = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCAmelCase_ : _UpperCamelCase : str = field( metadata={"help": "The output directory where the model will be written."} , ) _UpperCamelCase : str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) _UpperCamelCase : str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def __magic_name__ ( ) -> str: _lowercase : Optional[int] = HfArgumentParser((ModelArguments,) ) ((_lowercase) , ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _lowercase : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _lowercase : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _lowercase : Dict = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _lowercase : Tuple = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _lowercase : Union[str, Any] = True _lowercase : Dict = True _lowercase : List[Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=SCREAMING_SNAKE_CASE , decoder_config=SCREAMING_SNAKE_CASE , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _lowercase : int = decoder_config.decoder_start_token_id _lowercase : Union[str, Any] = decoder_config.pad_token_id if decoder_start_token_id is None: _lowercase : Union[str, Any] = decoder_config.bos_token_id if pad_token_id is None: _lowercase : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _lowercase : List[Any] = decoder_config.eos_token_id _lowercase : Any = decoder_start_token_id _lowercase : Optional[int] = pad_token_id _lowercase : int = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _lowercase : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _lowercase : List[str] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , _lowerCAmelCase=[2, 2, 3, 2] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=1_0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=["stage2", "stage3", "stage4"] , _lowerCAmelCase=[2, 3, 4] , _lowerCAmelCase=None , ): _lowercase : Any = parent _lowercase : Any = batch_size _lowercase : List[Any] = image_size _lowercase : List[Any] = num_channels _lowercase : Tuple = num_stages _lowercase : int = hidden_sizes _lowercase : str = depths _lowercase : Union[str, Any] = is_training _lowercase : Union[str, Any] = use_labels _lowercase : Union[str, Any] = intermediate_size _lowercase : str = hidden_act _lowercase : Dict = num_labels _lowercase : str = initializer_range _lowercase : Optional[Any] = out_features _lowercase : Dict = out_indices _lowercase : Union[str, Any] = scope def __a ( self ): _lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : List[Any] = None if self.use_labels: _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = ConvNextVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : str = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = ConvNextVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Optional[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = ConvNextVaBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : int = model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowercase : int = None _lowercase : List[Any] = ConvNextVaBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : List[str] = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self ): _lowercase : Optional[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Dict = config_and_inputs _lowercase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict def __a ( self ): _lowercase : Optional[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[int] = config_and_inputs _lowercase : Union[str, Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCamelCase : str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = False def __a ( self ): _lowercase : Any = ConvNextVaModelTester(self ) _lowercase : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __a ( self ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __a ( self ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __a ( self ): pass def __a ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() _lowercase : Dict = True if model_class.__name__ in [ *get_values(_lowerCAmelCase ), *get_values(_lowerCAmelCase ), ]: continue _lowercase : str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowercase : Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowercase : Optional[int] = model(**_lowerCAmelCase ).loss loss.backward() def __a ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_with_labels() _lowercase : Any = False _lowercase : Optional[int] = True if ( model_class.__name__ in [*get_values(_lowerCAmelCase ), *get_values(_lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _lowercase : str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() _lowercase : List[str] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowercase : Tuple = model(**_lowerCAmelCase ).loss loss.backward() def __a ( self ): _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(_lowerCAmelCase ) _lowercase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Tuple = [*signature.parameters.keys()] _lowercase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Optional[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = ConvNextVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Dict: _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __a ( self ): _lowercase : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_lowerCAmelCase ) _lowercase : List[str] = self.default_image_processor _lowercase : Tuple = prepare_img() _lowercase : Tuple = preprocessor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : int = model(**_lowerCAmelCase ) # verify the logits _lowercase : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : int = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
import math import unittest def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def __a ( self ): with self.assertRaises(_lowerCAmelCase ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import warnings from .generation import TFGenerationMixin class lowerCAmelCase_ ( __snake_case ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , __snake_case , )
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
from __future__ import annotations from collections.abc import Generator def __magic_name__ ( ) -> Generator[int, None, None]: _lowercase : dict[int, int] = {} _lowercase : Tuple = 2 while True: _lowercase : List[Any] = factor_map.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if factor: _lowercase : List[Any] = factor + prime while x in factor_map: x += factor _lowercase : Optional[Any] = factor else: _lowercase : List[Any] = prime yield prime prime += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE = 1E10 ) -> int: _lowercase : Optional[int] = sieve() _lowercase : Any = 1 while True: _lowercase : Tuple = next(SCREAMING_SNAKE_CASE ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE ) n += 2 if __name__ == "__main__": print(solution())
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]: _lowercase : Any = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]: _lowercase : List[Any] = [] for d in reversed(SCREAMING_SNAKE_CASE ): idx.append(flat_idx % d ) _lowercase : List[Any] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE ) ) @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE ) -> None: _lowercase : Tuple = True for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowercase : str = -1 * (i + 1) l[reversed_idx] &= tally _lowercase : Tuple = l[reversed_idx] if start_edges is None: _lowercase : str = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE ) if end_edges is None: _lowercase : Tuple = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] reduce_edge_list(SCREAMING_SNAKE_CASE ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowercase : List[Tuple[slice, ...]] = [] _lowercase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE , s + 1 ) ) else: break _lowercase : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE ) _lowercase : Any = len(SCREAMING_SNAKE_CASE ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowercase : Union[str, Any] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowercase : Tuple = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowercase : Union[str, Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> torch.Tensor: _lowercase : Optional[int] = t.shape[:no_batch_dims] _lowercase : List[Any] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # _get_minimal_slice_set is inclusive _lowercase : Optional[Any] = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE ) ) # Get an ordered list of slices to perform _lowercase : Optional[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _lowercase : str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> Any: if not (len(SCREAMING_SNAKE_CASE ) > 0): raise ValueError('Must provide at least one input' ) _lowercase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE )] _lowercase : List[str] = tuple([max(SCREAMING_SNAKE_CASE ) for s in zip(*SCREAMING_SNAKE_CASE )] ) def _prep_inputs(SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowercase : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowercase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowercase : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowercase : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE ) _lowercase : int = None if _out is not None: _lowercase : List[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowercase : List[str] = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowercase : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowercase : Any = 0 _lowercase : Union[str, Any] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE ): # Chunk the input if not low_mem: _lowercase : Optional[Any] = _select_chunk else: _lowercase : Tuple = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE , flat_end=min(SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE ) , ) _lowercase : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Run the layer on the chunk _lowercase : int = layer(**SCREAMING_SNAKE_CASE ) # Allocate space for the output if out is None: _lowercase : Any = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assign(SCREAMING_SNAKE_CASE , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowercase : Union[str, Any] = da[k] assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for xa, xa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowercase : str = xa elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowercase : Union[str, Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _lowercase : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) return out class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase = 5_1_2 , ): _lowercase : List[Any] = max_chunk_size _lowercase : Optional[int] = None _lowercase : Optional[tuple] = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowercase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _lowercase : Dict = [c for c in candidates if c > min_chunk_size] _lowercase : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*_lowerCAmelCase , chunk_size=_lowerCAmelCase ) return True except RuntimeError: return False _lowercase : Union[str, Any] = 0 _lowercase : Any = len(_lowerCAmelCase ) - 1 while i > min_viable_chunk_size_index: _lowercase : Optional[int] = test_chunk_size(candidates[i] ) if not viable: _lowercase : List[Any] = (min_viable_chunk_size_index + i) // 2 else: _lowercase : Optional[int] = i _lowercase : Optional[int] = (i + len(_lowerCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = True for aa, aa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert type(_lowerCAmelCase ) == type(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] _lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_lowerCAmelCase , _lowerCAmelCase ) else: consistent &= aa == aa return consistent def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowercase : Tuple = True _lowercase : tuple = tree_map(lambda _lowerCAmelCase : a.shape if isinstance(_lowerCAmelCase , torch.Tensor ) else a , _lowerCAmelCase , _lowerCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_lowerCAmelCase ) _lowercase : Tuple = self._compare_arg_caches(self.cached_arg_data , _lowerCAmelCase ) else: # Otherwise, we can reuse the precomputed value _lowercase : Union[str, Any] = False if not consistent: _lowercase : List[str] = self._determine_favorable_chunk_size( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) _lowercase : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_3 , _lowerCAmelCase=1_6 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=3_0 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=None , ): _lowercase : Union[str, Any] = parent _lowercase : int = batch_size _lowercase : List[str] = decoder_seq_length # For common tests _lowercase : Union[str, Any] = self.decoder_seq_length _lowercase : List[str] = is_training _lowercase : List[str] = use_attention_mask _lowercase : int = use_labels _lowercase : Tuple = vocab_size _lowercase : List[Any] = d_model _lowercase : Any = d_model _lowercase : Optional[int] = decoder_layers _lowercase : List[str] = decoder_layers _lowercase : Union[str, Any] = decoder_ffn_dim _lowercase : Union[str, Any] = decoder_attention_heads _lowercase : Optional[Any] = decoder_attention_heads _lowercase : int = eos_token_id _lowercase : List[Any] = bos_token_id _lowercase : Optional[Any] = pad_token_id _lowercase : int = decoder_start_token_id _lowercase : Any = use_cache _lowercase : Union[str, Any] = max_position_embeddings _lowercase : str = None _lowercase : Optional[Any] = decoder_seq_length _lowercase : Union[str, Any] = 2 _lowercase : Dict = 1 def __a ( self ): _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_attention_mask: _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowercase : Optional[int] = None if self.use_labels: _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : str = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowercase : Optional[int] = True _lowercase : List[Any] = TrOCRDecoder(config=_lowerCAmelCase ).to(_lowerCAmelCase ).eval() _lowercase : int = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowercase : List[Any] = model(_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowercase : Optional[Any] = model(_lowerCAmelCase ) _lowercase : Tuple = model(_lowerCAmelCase , use_cache=_lowerCAmelCase ) self.parent.assertTrue(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) ) self.parent.assertTrue(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) + 1 ) _lowercase : int = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowercase : Dict = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowercase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase : Dict = model(_lowerCAmelCase )['last_hidden_state'] _lowercase : Tuple = model(_lowerCAmelCase , past_key_values=_lowerCAmelCase )['last_hidden_state'] # select random slice _lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase : Any = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowercase : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Any = config_and_inputs _lowercase : str = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _UpperCamelCase : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () _UpperCamelCase : str = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False def __a ( self ): _lowercase : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=_lowerCAmelCase ) _lowercase : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowerCAmelCase ) def __a ( self ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __a ( self ): pass
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = TypeVar("DatasetType", Dataset, IterableDataset) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE ): if not isinstance(SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: _lowercase , _lowercase : int = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , info=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE , stopping_strategy=SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , info=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE , stopping_strategy=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE ): if not isinstance(SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: _lowercase , _lowercase : int = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(SCREAMING_SNAKE_CASE , info=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(SCREAMING_SNAKE_CASE , info=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE , axis=SCREAMING_SNAKE_CASE )
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : List[Any] = set() _lowercase : int = [] def parse_line(SCREAMING_SNAKE_CASE ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : str = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: _lowercase : Dict = '\n'.join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: _lowercase : Optional[int] = line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Any = set() _lowercase : Any = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: return values.split(',' ) UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCamelCase = extract_warnings(args.output_dir, args.targets) UpperCamelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> str: _lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: for i in range(config.num_hidden_layers ): _lowercase : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase : List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowercase : str = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowercase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _lowercase : int = in_proj_bias[: config.hidden_size] _lowercase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _lowercase : int = in_proj_bias[-config.hidden_size :] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : int = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : str = val @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Dict = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : List[Any] = False _lowercase : List[str] = False if "vqa" in checkpoint_url: _lowercase : Any = True _lowercase : int = 3_129 _lowercase : str = 'huggingface/label-files' _lowercase : int = 'vqa2-id2label.json' _lowercase : Optional[int] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Any = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : List[Any] = idalabel _lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} _lowercase : List[Any] = ViltForQuestionAnswering(SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: _lowercase : Optional[Any] = True _lowercase : int = 2 _lowercase : Union[str, Any] = {0: 'False', 1: 'True'} _lowercase : List[Any] = {v: k for k, v in config.idalabel.items()} _lowercase : int = 3 _lowercase : List[Any] = ViltForImagesAndTextClassification(SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: _lowercase : Tuple = True _lowercase : Dict = ViltForImageAndTextRetrieval(SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: _lowercase : List[Any] = True _lowercase : str = ViltForMaskedLM(SCREAMING_SNAKE_CASE ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowercase : Dict = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] _lowercase : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: _lowercase : Optional[Any] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowercase , _lowercase : Optional[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(SCREAMING_SNAKE_CASE ) # Define processor _lowercase : Dict = ViltImageProcessor(size=384 ) _lowercase : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowercase : Any = ViltProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: _lowercase : Tuple = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) _lowercase : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) _lowercase : int = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _lowercase : Dict = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : int = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : Dict = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowercase : Optional[int] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) if mlm_model: _lowercase : str = 'a bunch of [MASK] laying on a [MASK].' else: _lowercase : Optional[int] = 'How many cats are there?' _lowercase : Dict = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: _lowercase : Dict = torch.Size([1, 11, 30_522] ) _lowercase : List[Any] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify masked token prediction equals "cats" _lowercase : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowercase : Dict = torch.Size([1, 3_129] ) _lowercase : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify vqa prediction equals "2" _lowercase : Optional[int] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowercase : Optional[Any] = torch.Size([1, 2] ) _lowercase : str = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
import argparse from collections import defaultdict import yaml UpperCamelCase = "docs/source/en/_toctree.yml" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : List[Any] = defaultdict(SCREAMING_SNAKE_CASE ) _lowercase : str = [] _lowercase : int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = new_doc_list _lowercase : Dict = [key for key, value in counts.items() if value > 1] _lowercase : str = [] for duplicate_key in duplicates: _lowercase : int = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Union[str, Any] = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(SCREAMING_SNAKE_CASE ) # Sort return overview_doc def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: _lowercase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Tuple = api_doc[scheduler_idx]['sections'] _lowercase : Tuple = clean_doc_toc(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Union[str, Any] = True if overwrite: _lowercase : Dict = new_scheduler_doc if diff: if overwrite: _lowercase : Optional[int] = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> Dict: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: _lowercase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Dict = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Optional[Any] = api_doc[pipeline_idx]['sections'] _lowercase : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : int = pipeline_doc['section'] _lowercase : Optional[int] = clean_doc_toc(SCREAMING_SNAKE_CASE ) if overwrite: _lowercase : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(SCREAMING_SNAKE_CASE ) # sort overall pipeline doc _lowercase : Dict = clean_doc_toc(SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: _lowercase : Optional[Any] = True if overwrite: _lowercase : int = new_pipeline_docs if diff: if overwrite: _lowercase : Tuple = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
UpperCamelCase = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : List[str] = from_type.lower().strip('s' ) _lowercase : Optional[Any] = to_type.lower().strip('s' ) _lowercase : int = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: _lowercase : Any = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: _lowercase : Dict = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = METRIC_CONVERSION[from_sanitized] _lowercase : Any = METRIC_CONVERSION[to_sanitized] _lowercase : str = 1 if from_exponent > to_exponent: _lowercase : str = from_exponent - to_exponent else: _lowercase : str = -(to_exponent - from_exponent) return value * pow(10 , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=3_0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=0.6 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : Tuple = batch_size _lowercase : Optional[int] = image_size _lowercase : Any = patch_size _lowercase : Optional[int] = num_channels _lowercase : Tuple = is_training _lowercase : Optional[int] = use_labels _lowercase : Optional[int] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Any = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Optional[Any] = mask_ratio _lowercase : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowercase : List[Any] = (image_size // patch_size) ** 2 _lowercase : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __a ( self ): _lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = ViTMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Dict = model(_lowerCAmelCase ) _lowercase : List[Any] = (self.image_size // self.patch_size) ** 2 _lowercase : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowercase : List[Any] = 1 _lowercase : List[str] = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : Dict = model(_lowerCAmelCase ) _lowercase : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = config_and_inputs _lowercase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCamelCase : Tuple = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : List[str] = ViTMAEModelTester(self ) _lowercase : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __a ( self ): _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : str = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) _lowercase : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowercase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowercase : Tuple = torch.from_numpy(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowercase : List[str] = pt_noise super().check_pt_tf_models(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowercase : Union[str, Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Optional[int] = outputs[0].cpu().numpy() _lowercase : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowercase : Optional[int] = model_class.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) # Make sure we don't have nans _lowercase : Any = after_outputs[0].cpu().numpy() _lowercase : str = 0 _lowercase : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ): pass @slow def __a ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = ViTMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: _lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __a ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowercase : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(_lowerCAmelCase ) _lowercase : str = self.default_image_processor _lowercase : Optional[int] = prepare_img() _lowercase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowercase : List[str] = ViTMAEConfig() _lowercase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowercase : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowercase : Optional[Any] = model(**_lowerCAmelCase , noise=torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) ) # verify the logits _lowercase : Any = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : str = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCAmelCase ) , atol=1E-4 ) )
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): _lowercase : List[Any] = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : int = num_channels _lowercase : Dict = embeddings_size _lowercase : int = hidden_sizes _lowercase : Optional[Any] = depths _lowercase : int = is_training _lowercase : List[Any] = use_labels _lowercase : List[Any] = hidden_act _lowercase : Optional[int] = num_labels _lowercase : Union[str, Any] = scope _lowercase : Tuple = len(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = self.get_config() return config, pixel_values def __a ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = FlaxRegNetModel(config=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_labels _lowercase : List[Any] = FlaxRegNetForImageClassification(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : str = FlaxRegNetModelTester(self ) _lowercase : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ): return def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __a ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = model_class(_lowerCAmelCase ) _lowercase : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Dict = [*signature.parameters.keys()] _lowercase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = model_class(_lowerCAmelCase ) _lowercase : Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : int = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Dict = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = model_class(_lowerCAmelCase ) @jax.jit def model_jitted(_lowerCAmelCase , **_lowerCAmelCase ): return model(pixel_values=_lowerCAmelCase , **_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Any = model_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : int = model_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__ ( ) -> str: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def __a ( self ): _lowercase : Dict = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) _lowercase : Tuple = self.default_image_processor _lowercase : Any = prepare_img() _lowercase : List[Any] = image_processor(images=_lowerCAmelCase , return_tensors='np' ) _lowercase : Union[str, Any] = model(**_lowerCAmelCase ) # verify the logits _lowercase : Tuple = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : Tuple = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : int = 0 _UpperCamelCase : bool = False _UpperCamelCase : float = 3.0 class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=_lowerCAmelCase ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. _lowercase : Optional[Any] = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _lowercase : str = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowercase : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , _lowerCAmelCase ) @require_multi_gpu def __a ( self ): _lowercase : List[str] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase = torch.nn.Linear(100, 200) UpperCamelCase = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase = "" UpperCamelCase = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt"} UpperCamelCase = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } UpperCamelCase = { "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: _lowercase : Union[str, Any] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase="<eos>" , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : str = load_vocab_file(_lowerCAmelCase ) _lowercase : List[str] = dict(enumerate(self.all_tokens ) ) _lowercase : Dict = {tok: ind for ind, tok in enumerate(self.all_tokens )} _lowercase : List[Any] = unk_token _lowercase : Union[str, Any] = cls_token _lowercase : List[str] = pad_token _lowercase : Optional[Any] = mask_token _lowercase : Any = eos_token _lowercase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , _lowerCAmelCase ): return self._id_to_token.get(_lowerCAmelCase , self.unk_token ) def __a ( self , _lowerCAmelCase ): return self._token_to_id.get(_lowerCAmelCase , self._token_to_id.get(self.unk_token ) ) def __a ( self , _lowerCAmelCase , **_lowerCAmelCase ): return text.split() def __a ( self , _lowerCAmelCase=False ): return len(self._id_to_token ) def __a ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , _lowerCAmelCase ): return self._token_to_id.get(_lowerCAmelCase , self._token_to_id.get(self.unk_token ) ) def __a ( self , _lowerCAmelCase ): return self._id_to_token.get(_lowerCAmelCase , self.unk_token ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _lowercase : int = [1] + ([0] * len(_lowerCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_lowerCAmelCase ) + [1] return mask def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = os.path.join(_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_lowerCAmelCase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ): return self.get_vocab_size(with_added_tokens=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = False ): return super()._add_tokens(_lowerCAmelCase , special_tokens=_lowerCAmelCase )
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case , __snake_case ): _UpperCamelCase : int = "convnextv2" def __init__( self , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0.0 , _lowerCAmelCase=2_2_4 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : str = num_channels _lowercase : Any = patch_size _lowercase : Dict = num_stages _lowercase : List[str] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes _lowercase : Optional[int] = [3, 3, 9, 3] if depths is None else depths _lowercase : int = hidden_act _lowercase : Dict = initializer_range _lowercase : int = layer_norm_eps _lowercase : int = drop_path_rate _lowercase : int = image_size _lowercase : Optional[int] = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _lowercase , _lowercase : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _lowercase : str = model _lowercase : str = kwargs.get('model_save_dir' , _lowerCAmelCase ) _lowercase : int = kwargs.get('latest_model_name' , _lowerCAmelCase ) def __call__( self , **_lowerCAmelCase ): _lowercase : int = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def __a ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _lowercase : Dict = 'CPUExecutionProvider' return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): _lowercase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowercase : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _lowercase : Any = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowercase : Optional[int] = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): _lowercase : Optional[Any] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def __a ( self , _lowerCAmelCase , **_lowerCAmelCase , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): _lowercase : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) _lowercase : List[str] = Path(_lowerCAmelCase ) # load model from hub else: # download model _lowercase : List[Any] = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) _lowercase : List[Any] = Path(_lowerCAmelCase ).parent _lowercase : Tuple = Path(_lowerCAmelCase ).name _lowercase : Any = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Optional[int] = None if len(str(_lowerCAmelCase ).split('@' ) ) == 2: _lowercase , _lowercase : int = model_id.split('@' ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="attention" ) -> Optional[Any]: _lowercase : List[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _lowercase : Optional[int] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _lowercase : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _lowercase : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _lowercase : Union[str, Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: if split_mlp_wi: _lowercase : Dict = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _lowercase : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _lowercase : List[str] = (wi_a, wi_a) else: _lowercase : int = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _lowercase : str = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __magic_name__ ( SCREAMING_SNAKE_CASE , *, SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> str: _lowercase : List[Any] = traverse_util.flatten_dict(variables['target'] ) _lowercase : str = {'/'.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowercase : Dict = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = collections.OrderedDict() # Shared embeddings. _lowercase : Any = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowercase : Any = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'pre_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase : Tuple = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'attention' ) _lowercase : Tuple = layer_norm _lowercase : Any = k.T _lowercase : List[str] = o.T _lowercase : Dict = q.T _lowercase : List[Any] = v.T # Block i, layer 1 (MLP). _lowercase : List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'pre_mlp_layer_norm' ) _lowercase , _lowercase : Optional[Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , SCREAMING_SNAKE_CASE ) _lowercase : Dict = layer_norm if split_mlp_wi: _lowercase : Optional[Any] = wi[0].T _lowercase : Optional[int] = wi[1].T else: _lowercase : Any = wi.T _lowercase : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowercase : Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' ).T _lowercase : Dict = old['encoder/encoder_norm/scale'] if not scalable_attention: _lowercase : Union[str, Any] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , 'encoder' ).T _lowercase : Tuple = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowercase : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_self_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'self_attention' ) _lowercase : Union[str, Any] = layer_norm _lowercase : Union[str, Any] = k.T _lowercase : Union[str, Any] = o.T _lowercase : List[str] = q.T _lowercase : List[str] = v.T # Block i, layer 1 (Cross Attention). _lowercase : Any = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_cross_attention_layer_norm' ) _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'encoder_decoder_attention' ) _lowercase : Dict = layer_norm _lowercase : Tuple = k.T _lowercase : Optional[Any] = o.T _lowercase : List[Any] = q.T _lowercase : Any = v.T # Block i, layer 2 (MLP). _lowercase : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_mlp_layer_norm' ) _lowercase , _lowercase : Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , SCREAMING_SNAKE_CASE ) _lowercase : Dict = layer_norm if split_mlp_wi: _lowercase : Union[str, Any] = wi[0].T _lowercase : Optional[int] = wi[1].T else: _lowercase : Any = wi.T _lowercase : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowercase : List[Any] = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' ).T _lowercase : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowercase : str = old['decoder/logits_dense/kernel'].T return new def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowercase : Any = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowercase : str = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _lowercase : Dict = state_dict['shared.weight'] return state_dict def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : str = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE , scalable_attention=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: _lowercase : Optional[int] = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowercase : Optional[Any] = UMTaEncoderModel(SCREAMING_SNAKE_CASE ) else: _lowercase : Optional[int] = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('Done' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_lowerCAmelCase , speech_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def __a ( self , _lowerCAmelCase = "auto" ): if slice_size == "auto": _lowercase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def __a ( self ): self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase=1_6_0_0_0 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_0 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ): _lowercase : Tuple = self.speech_processor.feature_extractor( _lowerCAmelCase , return_tensors='pt' , sampling_rate=_lowerCAmelCase ).input_features.to(self.device ) _lowercase : List[str] = self.speech_model.generate(_lowerCAmelCase , max_length=4_8_0_0_0_0 ) _lowercase : str = self.speech_processor.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , normalize=_lowerCAmelCase )[ 0 ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = 1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = len(_lowerCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_lowerCAmelCase )}.""" ) # get prompt text embeddings _lowercase : Any = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowercase : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowercase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowercase : int = text_input_ids[:, : self.tokenizer.model_max_length] _lowercase : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowercase , _lowercase , _lowercase : List[Any] = text_embeddings.shape _lowercase : Union[str, Any] = text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) _lowercase : str = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : List[str] if negative_prompt is None: _lowercase : Any = [''] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=""" F""" {type(_lowerCAmelCase )}.""" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _lowercase : List[Any] = negative_prompt _lowercase : List[str] = text_input_ids.shape[-1] _lowercase : Any = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='pt' , ) _lowercase : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowercase : List[str] = uncond_embeddings.shape[1] _lowercase : List[Any] = uncond_embeddings.repeat(1 , _lowerCAmelCase , 1 ) _lowercase : Any = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowercase : int = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device='cpu' , dtype=_lowerCAmelCase ).to( self.device ) else: _lowercase : str = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowercase : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowercase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowercase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowercase : Optional[int] = {} if accepts_eta: _lowercase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowercase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowercase : Tuple = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual _lowercase : Optional[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _lowercase , _lowercase : int = noise_pred.chunk(2 ) _lowercase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Union[str, Any] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = 1 / 0.1_82_15 * latents _lowercase : int = self.vae.decode(_lowerCAmelCase ).sample _lowercase : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowercase : int = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "maskformer" _UpperCamelCase : str = {"hidden_size": "mask_feature_size"} _UpperCamelCase : int = ["resnet", "swin"] _UpperCamelCase : List[Any] = ["detr"] def __init__( self , _lowerCAmelCase = 2_5_6 , _lowerCAmelCase = 2_5_6 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 20.0 , _lowerCAmelCase = None , **_lowerCAmelCase , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowercase : Optional[Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = backbone_config.pop('model_type' ) _lowercase : Any = CONFIG_MAPPING[backbone_model_type] _lowercase : Any = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowercase : str = DetrConfig() else: # verify that the decoder is supported _lowercase : Dict = ( decoder_config.pop('model_type' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {','.join(self.decoders_supported )}""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = CONFIG_MAPPING[decoder_type] _lowercase : Union[str, Any] = config_class.from_dict(_lowerCAmelCase ) _lowercase : Optional[Any] = backbone_config _lowercase : str = decoder_config # main feature dimension for the model _lowercase : str = fpn_feature_size _lowercase : Optional[Any] = mask_feature_size # initializer _lowercase : str = init_std _lowercase : Optional[Any] = init_xavier_std # Hungarian matcher && loss _lowercase : Tuple = cross_entropy_weight _lowercase : Union[str, Any] = dice_weight _lowercase : Optional[Any] = mask_weight _lowercase : int = use_auxiliary_loss _lowercase : Optional[int] = no_object_weight _lowercase : Union[str, Any] = output_auxiliary_logits _lowercase : Optional[int] = self.decoder_config.encoder_attention_heads _lowercase : Optional[int] = self.decoder_config.num_hidden_layers super().__init__(**_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): return cls( backbone_config=_lowerCAmelCase , decoder_config=_lowerCAmelCase , **_lowerCAmelCase , ) def __a ( self ): _lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) _lowercase : str = self.backbone_config.to_dict() _lowercase : Union[str, Any] = self.decoder_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : List[Any] = tmp_path / 'cache' _lowercase : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Union[str, Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[int] = tmp_path / 'cache' _lowercase : List[Any] = {'text': 'string'} _lowercase : Any = features.copy() if features else default_expected_features _lowercase : Any = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : str = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : str = tmp_path / 'cache' _lowercase : Optional[Any] = {'text': 'string'} _lowercase : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Any = [text_path] _lowercase : Any = tmp_path / 'cache' _lowercase : Tuple = {'text': 'string'} _lowercase : List[str] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> str: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: _lowercase : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : List[str] = tmp_path / 'cache' _lowercase : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Union[str, Any] = TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Any = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowercase : str = {'text': 'string'} _lowercase : Optional[int] = features.copy() if features else default_expected_features _lowercase : Dict = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : str = TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if split: _lowercase : int = {split: text_path} else: _lowercase : Any = 'train' _lowercase : Optional[Any] = {'train': text_path, 'test': text_path} _lowercase : List[str] = tmp_path / 'cache' _lowercase : Any = {'text': 'string'} _lowercase : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
import os def __magic_name__ ( ) -> Any: _lowercase : Optional[int] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , 'num.txt' ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = "wav2vec2" def __init__( self , _lowerCAmelCase=3_2 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="group" , _lowerCAmelCase="gelu" , _lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=1_6 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0.05 , _lowerCAmelCase=1_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0 , _lowerCAmelCase=3_2_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0_0 , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0.1 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowercase : Union[str, Any] = hidden_size _lowercase : str = feat_extract_norm _lowercase : Tuple = feat_extract_activation _lowercase : Optional[Any] = list(_lowerCAmelCase ) _lowercase : Union[str, Any] = list(_lowerCAmelCase ) _lowercase : Union[str, Any] = list(_lowerCAmelCase ) _lowercase : Tuple = conv_bias _lowercase : Dict = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : Union[str, Any] = len(self.conv_dim ) _lowercase : Tuple = num_hidden_layers _lowercase : List[Any] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = num_attention_heads _lowercase : Union[str, Any] = hidden_dropout _lowercase : List[Any] = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : List[str] = feat_proj_dropout _lowercase : Any = final_dropout _lowercase : Optional[int] = layerdrop _lowercase : Optional[int] = layer_norm_eps _lowercase : Tuple = initializer_range _lowercase : Tuple = vocab_size _lowercase : Dict = do_stable_layer_norm _lowercase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : List[str] = apply_spec_augment _lowercase : Union[str, Any] = mask_time_prob _lowercase : List[str] = mask_time_length _lowercase : int = mask_time_min_masks _lowercase : List[Any] = mask_feature_prob _lowercase : Optional[int] = mask_feature_length _lowercase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : Dict = num_codevectors_per_group _lowercase : List[str] = num_codevector_groups _lowercase : Optional[int] = contrastive_logits_temperature _lowercase : int = feat_quantizer_dropout _lowercase : List[Any] = num_negatives _lowercase : Any = codevector_dim _lowercase : str = proj_codevector_dim _lowercase : List[str] = diversity_loss_weight # ctc loss _lowercase : Optional[Any] = ctc_loss_reduction _lowercase : Any = ctc_zero_infinity # adapter _lowercase : Optional[int] = add_adapter _lowercase : int = adapter_kernel_size _lowercase : Tuple = adapter_stride _lowercase : Optional[int] = num_adapter_layers _lowercase : str = output_hidden_size or hidden_size _lowercase : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase : Dict = list(_lowerCAmelCase ) _lowercase : Any = list(_lowerCAmelCase ) _lowercase : Optional[int] = list(_lowerCAmelCase ) _lowercase : List[str] = xvector_output_dim @property def __a ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: _lowercase : List[Any] = np.nan for i in range(SCREAMING_SNAKE_CASE ): _lowercase : Union[str, Any] = features[:, labels == i] _lowercase : Any = data.mean(1 ) # Centralize the data of class i _lowercase : Tuple = data - column_reshape(SCREAMING_SNAKE_CASE ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowercase : int = np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) return covariance_sum / features.shape[1] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: _lowercase : List[str] = features.mean(1 ) _lowercase : Tuple = np.nan for i in range(SCREAMING_SNAKE_CASE ): _lowercase : Dict = features[:, labels == i] _lowercase : Union[str, Any] = data.shape[1] _lowercase : Any = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) , (column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowercase : str = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) , (column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T , ) return covariance_sum / features.shape[1] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: # Check if the features have been loaded if features.any(): _lowercase : int = features.mean(1 ) # Center the dataset _lowercase : str = features - np.reshape(SCREAMING_SNAKE_CASE , (data_mean.size, 1) ) _lowercase : Optional[Any] = np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) / features.shape[1] _lowercase , _lowercase : int = np.linalg.eigh(SCREAMING_SNAKE_CASE ) # Take all the columns in the reverse order (-1), and then takes only the first _lowercase : Tuple = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowercase : Optional[int] = np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: _lowercase , _lowercase : Any = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , covariance_within_classes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) _lowercase : Union[str, Any] = eigenvectors[:, ::-1][:, :dimensions] _lowercase , _lowercase , _lowercase : int = np.linalg.svd(SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowercase : List[str] = np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def __magic_name__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features _lowercase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowercase : Union[str, Any] = np.array([0, 0, 0, 1, 1] ) _lowercase : Tuple = 2 _lowercase : List[Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: _lowercase : str = linear_discriminant_analysis( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def __magic_name__ ( ) -> None: _lowercase : int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowercase : List[str] = 2 _lowercase : List[str] = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: _lowercase : str = principal_component_analysis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
import unittest from knapsack import knapsack as k class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : Tuple = 0 _lowercase : Optional[Any] = [0] _lowercase : List[str] = [0] _lowercase : Optional[Any] = len(_lowerCAmelCase ) self.assertEqual(k.knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 0 ) _lowercase : str = [6_0] _lowercase : List[Any] = [1_0] _lowercase : List[Any] = len(_lowerCAmelCase ) self.assertEqual(k.knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 0 ) def __a ( self ): _lowercase : Tuple = 3 _lowercase : Union[str, Any] = [1, 2, 3] _lowercase : List[str] = [3, 2, 1] _lowercase : Dict = len(_lowerCAmelCase ) self.assertEqual(k.knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 5 ) def __a ( self ): _lowercase : Tuple = 5_0 _lowercase : List[Any] = [6_0, 1_0_0, 1_2_0] _lowercase : Optional[int] = [1_0, 2_0, 3_0] _lowercase : Any = len(_lowerCAmelCase ) self.assertEqual(k.knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCamelCase = { "junnyu/roformer_chinese_small": 1_536, "junnyu/roformer_chinese_base": 1_536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCamelCase = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = RoFormerTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents ): _lowercase : Any = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) _lowercase : Union[str, Any] = do_lower_case _lowercase : Optional[int] = strip_accents _lowercase : int = pre_tok_class(**_lowerCAmelCase ) _lowercase : Tuple = do_lower_case def __getstate__( self ): _lowercase : Tuple = self.__dict__.copy() _lowercase : str = BertPreTokenizer() return state def __setstate__( self , _lowerCAmelCase ): _lowercase : int = d _lowercase : Any = self.__dict__['_tokenizer'].get_vocab() _lowercase : int = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowercase : str = BertPreTokenizer() return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ): super().__init__(features=_lowerCAmelCase ) _lowercase : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def __a ( self , _lowerCAmelCase ): import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def __a ( self , _lowerCAmelCase ): import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase : int = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase : str = {'dtype': torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase : Optional[Any] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowercase : Tuple = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __a ( self , _lowerCAmelCase ): import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , '__array__' ) and not isinstance(_lowerCAmelCase , torch.Tensor ): _lowercase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) _lowercase : Tuple = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) _lowercase : List[str] = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) _lowercase : Any = self.recursive_tensorize(_lowerCAmelCase ) _lowercase : List[Any] = self._consolidate(_lowerCAmelCase ) return column def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) _lowercase : Optional[Any] = self.python_features_decoder.decode_batch(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: _lowercase : List[Any] = self._consolidate(batch[column_name] ) return batch
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: _lowercase : str = len(SCREAMING_SNAKE_CASE ) print('The following activities are selected:' ) # The first activity is always selected _lowercase : Optional[int] = 0 print(SCREAMING_SNAKE_CASE , end=',' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE , end=',' ) _lowercase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = [1, 3, 0, 5, 8, 5] UpperCamelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from graphs.minimum_spanning_tree_kruskal import kruskal def __magic_name__ ( ) -> List[str]: _lowercase : Optional[Any] = 9 _lowercase : Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowercase : int = kruskal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE )
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _lowercase : str = str(SCREAMING_SNAKE_CASE ) _lowercase : str = ''.join(sorted(SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __magic_name__ ( SCREAMING_SNAKE_CASE = 99 ) -> int: if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _lowercase : Any = 0 _lowercase : str = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } UpperCamelCase = {"allegro/herbert-base-cased": 514} UpperCamelCase = {} class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = HerbertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase="</s>" , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , **_lowerCAmelCase , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Dict = [self.cls_token_id] _lowercase : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : int = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Dict = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): # we need a list not a string, so do something to change the type _lowercase : Any = arr.split(',' ) def __a ( self ): _lowercase : Dict = [int(self.array[0] )] * len(self.array ) _lowercase : List[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowercase : Tuple = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowercase : Dict = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase = input("please input some numbers:") UpperCamelCase = SubArray(whole_array) UpperCamelCase = array.solve_sub_array() print(("the results is:", re))
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="resnet50" , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , ): _lowercase : int = parent _lowercase : Any = out_indices if out_indices is not None else [4] _lowercase : Dict = stage_names _lowercase : List[str] = out_features _lowercase : Optional[Any] = backbone _lowercase : Union[str, Any] = batch_size _lowercase : str = image_size _lowercase : List[str] = num_channels _lowercase : str = use_pretrained_backbone _lowercase : Union[str, Any] = is_training def __a ( self ): _lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Any = self.get_config() return config, pixel_values def __a ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = TimmBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def __a ( self ): _lowercase : Any = self.prepare_config_and_inputs() _lowercase , _lowercase : Optional[int] = config_and_inputs _lowercase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Tuple = (TimmBackbone,) if is_torch_available() else () _UpperCamelCase : List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[str] = False _UpperCamelCase : Optional[int] = False def __a ( self ): _lowercase : Optional[Any] = TimmBackboneModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __a ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ): _lowercase : str = 'resnet18' _lowercase : Tuple = 'microsoft/resnet-18' _lowercase : Tuple = AutoBackbone.from_pretrained(_lowerCAmelCase , use_timm_backbone=_lowerCAmelCase ) _lowercase : Optional[Any] = AutoBackbone.from_pretrained(_lowerCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowercase : str = AutoBackbone.from_pretrained(_lowerCAmelCase , use_timm_backbone=_lowerCAmelCase , out_indices=[1, 2, 3] ) _lowercase : int = AutoBackbone.from_pretrained(_lowerCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __a ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __a ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __a ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __a ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def __a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[int] = [*signature.parameters.keys()] _lowercase : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Tuple = True _lowercase : int = self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase : Dict = self.all_model_classes[0] _lowercase : Optional[int] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) _lowercase : int = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[str] = model(**_lowerCAmelCase ) _lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models _lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __a ( self ): _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : str = model(**_lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase : Dict = copy.deepcopy(_lowerCAmelCase ) _lowercase : Union[str, Any] = None _lowercase : List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : int = model(**_lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowercase : Any = copy.deepcopy(_lowerCAmelCase ) _lowercase : Union[str, Any] = False _lowercase : str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = model(**_lowerCAmelCase )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "fnet" def __init__( self , _lowerCAmelCase=3_2_0_0_0 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=4 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=False , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = vocab_size _lowercase : Tuple = max_position_embeddings _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : Dict = intermediate_size _lowercase : Tuple = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : int = initializer_range _lowercase : Any = type_vocab_size _lowercase : Dict = layer_norm_eps _lowercase : Union[str, Any] = use_tpu_fourier_optimizations _lowercase : Optional[Any] = tpu_short_seq_length
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Any = JukeboxTokenizer _UpperCamelCase : Optional[Any] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def __a ( self ): import torch _lowercase : Tuple = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _lowercase : Optional[Any] = tokenizer(**self.metas )['input_ids'] # fmt: off _lowercase : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __a ( self ): import torch _lowercase : Union[str, Any] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _lowercase : int = tokenizer(**self.metas )['input_ids'] # fmt: off _lowercase : List[Any] = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase_ : _UpperCamelCase : int = BlenderbotSmallConfig _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : List[str] = "gelu" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=2_0 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : Dict = seq_length _lowercase : Union[str, Any] = is_training _lowercase : Any = use_labels _lowercase : Any = vocab_size _lowercase : Dict = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : int = eos_token_id _lowercase : Any = pad_token_id _lowercase : Tuple = bos_token_id def __a ( self ): _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase : Tuple = prepare_blenderbot_small_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFBlenderbotSmallModel(config=_lowerCAmelCase ).get_decoder() _lowercase : List[Any] = inputs_dict['input_ids'] _lowercase : Optional[int] = input_ids[:1, :] _lowercase : int = inputs_dict['attention_mask'][:1, :] _lowercase : Dict = inputs_dict['head_mask'] _lowercase : List[Any] = 1 # first forward pass _lowercase : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowercase , _lowercase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowercase : int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _lowercase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: if attention_mask is None: _lowercase : Dict = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowercase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowercase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : int = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _UpperCamelCase : str = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _UpperCamelCase : Union[str, Any] = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _UpperCamelCase : Dict = True _UpperCamelCase : str = False _UpperCamelCase : Tuple = False def __a ( self ): _lowercase : Optional[int] = TFBlenderbotSmallModelTester(self ) _lowercase : List[str] = ConfigTester(self , config_class=_lowerCAmelCase ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : str = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] _UpperCamelCase : Tuple = "facebook/blenderbot_small-90M" @cached_property def __a ( self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def __a ( self ): _lowercase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __a ( self ): _lowercase : int = self.tokenizer(self.src_text , return_tensors='tf' ) _lowercase : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Tuple = n _lowercase : str = [None] * self.n _lowercase : Union[str, Any] = 0 # index of the first element _lowercase : List[Any] = 0 _lowercase : Any = 0 def __len__( self ): return self.size def __a ( self ): return self.size == 0 def __a ( self ): return False if self.is_empty() else self.array[self.front] def __a ( self , _lowerCAmelCase ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _lowercase : List[str] = data _lowercase : Dict = (self.rear + 1) % self.n self.size += 1 return self def __a ( self ): if self.size == 0: raise Exception('UNDERFLOW' ) _lowercase : Union[str, Any] = self.array[self.front] _lowercase : Dict = None _lowercase : List[Any] = (self.front + 1) % self.n self.size -= 1 return temp
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = BertTokenizer _UpperCamelCase : str = BertTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = filter_non_english def __a ( self ): super().setUp() _lowercase : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = 'UNwant\u00E9d,running' _lowercase : str = 'unwanted, running' return input_text, output_text def __a ( self ): _lowercase : Dict = self.tokenizer_class(self.vocab_file ) _lowercase : Any = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __a ( self ): if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = 'UNwant\u00E9d,running' _lowercase : Optional[Any] = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : str = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Any = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : str = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = self.get_rust_tokenizer() _lowercase : List[Any] = tokenizer.encode(_lowerCAmelCase ) _lowercase : Optional[int] = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # With lower casing _lowercase : Union[str, Any] = self.get_tokenizer(do_lower_case=_lowerCAmelCase ) _lowercase : List[Any] = self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase ) _lowercase : str = 'UNwant\u00E9d,running' _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : int = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : int = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = self.get_rust_tokenizer() _lowercase : int = tokenizer.encode(_lowerCAmelCase ) _lowercase : Dict = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __a ( self ): _lowercase : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Optional[int] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Dict = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Any = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : Optional[int] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer() _lowercase : Optional[int] = 'a\n\'ll !!to?\'d of, can\'t.' _lowercase : str = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : int = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowercase : int = {} for i, token in enumerate(_lowerCAmelCase ): _lowercase : str = i _lowercase : int = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __a ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __a ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __a ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __a ( self ): _lowercase : Tuple = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def __a ( self ): _lowercase : List[str] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _lowercase : Any = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase ) _lowercase : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Dict = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowercase : Optional[int] = tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) _lowercase : Optional[Any] = tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , 'do_lower_case' ) else False _lowercase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __a ( self ): _lowercase : int = ['的', '人', '有'] _lowercase : List[str] = ''.join(_lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : List[str] = True _lowercase : str = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Any = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Tuple = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) _lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = False _lowercase : int = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : int = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Dict = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : int = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". _lowercase : Dict = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase ) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCamelCase = HUGGINGFACE_HUB_CACHE UpperCamelCase = "config.json" UpperCamelCase = "diffusion_pytorch_model.bin" UpperCamelCase = "diffusion_flax_model.msgpack" UpperCamelCase = "model.onnx" UpperCamelCase = "diffusion_pytorch_model.safetensors" UpperCamelCase = "weights.pb" UpperCamelCase = "https://huggingface.co" UpperCamelCase = default_cache_path UpperCamelCase = "diffusers_modules" UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) UpperCamelCase = ["fp16", "non-ema"] UpperCamelCase = ".self_attn"
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = 0 while number > 0: _lowercase : List[Any] = number % 10 sum_of_digits += last_digit _lowercase : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def __magic_name__ ( SCREAMING_SNAKE_CASE = 100 ) -> int: _lowercase : Optional[Any] = factorial(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = split_and_add(SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "transfo-xl" _UpperCamelCase : Any = ["mems"] _UpperCamelCase : Tuple = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=2_6_7_7_3_5 , _lowerCAmelCase=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=1_6 , _lowerCAmelCase=6_4 , _lowerCAmelCase=4_0_9_6 , _lowerCAmelCase=4 , _lowerCAmelCase=False , _lowerCAmelCase=1_8 , _lowerCAmelCase=1_6_0_0 , _lowerCAmelCase=1_0_0_0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=-1 , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="normal" , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , **_lowerCAmelCase , ): _lowercase : List[str] = vocab_size _lowercase : Any = [] self.cutoffs.extend(_lowerCAmelCase ) if proj_share_all_but_first: _lowercase : Any = [False] + [True] * len(self.cutoffs ) else: _lowercase : List[str] = [False] + [False] * len(self.cutoffs ) _lowercase : List[str] = d_model _lowercase : List[str] = d_embed _lowercase : List[str] = d_head _lowercase : List[str] = d_inner _lowercase : Optional[Any] = div_val _lowercase : str = pre_lnorm _lowercase : List[Any] = n_layer _lowercase : List[str] = n_head _lowercase : Union[str, Any] = mem_len _lowercase : List[str] = same_length _lowercase : str = attn_type _lowercase : List[Any] = clamp_len _lowercase : List[str] = sample_softmax _lowercase : Union[str, Any] = adaptive _lowercase : List[Any] = dropout _lowercase : List[Any] = dropatt _lowercase : str = untie_r _lowercase : Optional[int] = init _lowercase : List[Any] = init_range _lowercase : str = proj_init_std _lowercase : int = init_std _lowercase : Any = layer_norm_epsilon super().__init__(eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __a ( self , _lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
import requests def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: _lowercase : Union[str, Any] = {'Content-Type': 'application/json'} _lowercase : Dict = requests.post(SCREAMING_SNAKE_CASE , json={'text': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: _lowercase : Union[str, Any] = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
677
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
1
import logging from transformers import PretrainedConfig UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "bertabs" def __init__( self , _lowerCAmelCase=3_0_5_2_2 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=6 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=8 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=0.2 , _lowerCAmelCase=6 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=8 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=0.2 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : Any = vocab_size _lowercase : int = max_pos _lowercase : Dict = enc_layers _lowercase : int = enc_hidden_size _lowercase : List[Any] = enc_heads _lowercase : Optional[int] = enc_ff_size _lowercase : Union[str, Any] = enc_dropout _lowercase : List[str] = dec_layers _lowercase : List[str] = dec_hidden_size _lowercase : Tuple = dec_heads _lowercase : int = dec_ff_size _lowercase : Union[str, Any] = dec_dropout
677
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCamelCase = getLogger(__name__) UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="summarization" , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Dict: _lowercase : Union[str, Any] = Path(SCREAMING_SNAKE_CASE ).open('w' , encoding='utf-8' ) _lowercase : Tuple = str(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) if fpaa: _lowercase : Tuple = model.half() _lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowercase : int = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if prefix is None: _lowercase : int = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ): _lowercase : Dict = [prefix + text for text in examples_chunk] _lowercase : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE , padding='longest' ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowercase : Any = int(time.time() - start_time ) # seconds _lowercase : str = len(SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __magic_name__ ( ) -> str: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __magic_name__ ( SCREAMING_SNAKE_CASE=True ) -> str: _lowercase : Any = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE , default=8 , required=SCREAMING_SNAKE_CASE , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE , default=-1 , required=SCREAMING_SNAKE_CASE , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowercase , _lowercase : Dict = parser.parse_known_args() _lowercase : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) _lowercase : Tuple = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowercase : Dict = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowercase : Optional[Any] = generate_summaries_or_translations( SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores _lowercase : Any = calculate_bleu if 'translation' in args.task else calculate_rouge _lowercase : int = [x.rstrip() for x in open(args.save_path ).readlines()] _lowercase : Union[str, Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE )] _lowercase : dict = score_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) scores.update(SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE ) if args.info: _lowercase : str = args.info if verbose: print(SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
677
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_ : def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return None class lowerCAmelCase_ : def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return None class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : str = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCAmelCase , 'tf' , 1_2 , **_lowerCAmelCase ) @require_torch @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCAmelCase , 'pt' , 1_2 , **_lowerCAmelCase ) @require_torch @slow def __a ( self ): from transformers import BertModel _lowercase : str = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_lowerCAmelCase ) ) vocab_file.flush() _lowercase : Optional[int] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowercase : str = BertModel(BertConfig(vocab_size=len(_lowerCAmelCase ) ) ) model.save_pretrained(_lowerCAmelCase ) self._test_export(_lowerCAmelCase , 'pt' , 1_2 , _lowerCAmelCase ) @require_tf @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowercase : Union[str, Any] = self._test_export(_lowerCAmelCase , 'tf' , 1_2 , **_lowerCAmelCase ) _lowercase : Union[str, Any] = quantize(Path(_lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowercase : str = self._test_export(_lowerCAmelCase , 'pt' , 1_2 , **_lowerCAmelCase ) _lowercase : List[Any] = quantize(_lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): try: # Compute path with TemporaryDirectory() as tempdir: _lowercase : Tuple = Path(_lowerCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) return path except Exception as e: self.fail(_lowerCAmelCase ) @require_torch @require_tokenizers @slow def __a ( self ): from transformers import BertModel _lowercase : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowercase : Dict = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCAmelCase , _lowerCAmelCase , 'pt' ) @require_tf @require_tokenizers @slow def __a ( self ): from transformers import TFBertModel _lowercase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowercase : str = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCAmelCase , _lowerCAmelCase , 'tf' ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = FeatureExtractionPipeline(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Any = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _lowercase , _lowercase , _lowercase , _lowercase : Any = infer_shapes(_lowerCAmelCase , _lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __a ( self ): _lowercase : Tuple = ['input_ids', 'attention_mask', 'token_type_ids'] _lowercase : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _lowercase , _lowercase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , _lowerCAmelCase , _lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_lowerCAmelCase ) , set(_lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_lowerCAmelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowercase , _lowercase : List[str] = ensure_valid_input(FuncNonContiguousArgs() , _lowerCAmelCase , _lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __a ( self ): _lowercase : Any = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
677
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( __snake_case ): # to overwrite at feature extractactor specific tests _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : str = None @property def __a ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def __a ( self ): _lowercase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'sampling_rate' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'padding_value' ) ) def __a ( self ): _lowercase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Union[str, Any] = feat_extract.model_input_names[0] _lowercase : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) _lowercase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) _lowercase : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _lowercase : Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowercase : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __a ( self ): _lowercase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) _lowercase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : List[Any] = feat_extract.model_input_names[0] _lowercase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _lowercase : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowercase : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __a ( self ): _lowercase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCAmelCase ) _lowercase : str = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Optional[int] = feat_extract.model_input_names[0] _lowercase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) _lowercase : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowercase : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __a ( self , _lowerCAmelCase=False ): def _inputs_have_equal_length(_lowerCAmelCase ): _lowercase : str = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1E-3 ): return False return True _lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) _lowercase : Any = feat_extract.model_input_names[0] _lowercase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _lowercase : str = self.feat_extract_tester.seq_length_diff _lowercase : Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff _lowercase : int = self.feat_extract_tester.min_seq_length _lowercase : Optional[int] = self.feat_extract_tester.batch_size _lowercase : Optional[int] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowercase : int = feat_extract.pad(_lowerCAmelCase , padding=_lowerCAmelCase ) _lowercase : int = input_a[input_name] _lowercase : Union[str, Any] = feat_extract.pad(_lowerCAmelCase , padding='longest' ) _lowercase : Dict = input_a[input_name] _lowercase : Any = feat_extract.pad(_lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1] ) ) _lowercase : Optional[int] = input_a[input_name] _lowercase : int = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) _lowercase : Tuple = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding='max_length' )[input_name] _lowercase : List[str] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , return_tensors='np' ) _lowercase : int = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowercase : Any = feat_extract.pad(_lowerCAmelCase , pad_to_multiple_of=1_0 ) _lowercase : List[str] = input_a[input_name] _lowercase : int = feat_extract.pad(_lowerCAmelCase , padding='longest' , pad_to_multiple_of=1_0 ) _lowercase : Optional[Any] = input_a[input_name] _lowercase : int = feat_extract.pad( _lowerCAmelCase , padding='max_length' , pad_to_multiple_of=1_0 , max_length=_lowerCAmelCase ) _lowercase : int = input_a[input_name] _lowercase : List[str] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , pad_to_multiple_of=1_0 , max_length=_lowerCAmelCase , return_tensors='np' , ) _lowercase : Optional[int] = input_a[input_name] self.assertTrue(all(len(_lowerCAmelCase ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : str = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(_lowerCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowercase : int = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __a ( self , _lowerCAmelCase=False ): def _inputs_have_equal_length(_lowerCAmelCase ): _lowercase : Optional[Any] = len(input[0] ) for input_slice in input[1:]: if len(_lowerCAmelCase ) != length: return False return True def _inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ): if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCAmelCase , _lowerCAmelCase ): if not np.allclose(np.asarray(_lowerCAmelCase ) , np.asarray(_lowerCAmelCase ) , atol=1E-3 ): return False return True _lowercase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCAmelCase ) _lowercase : List[str] = feat_extract.model_input_names[0] _lowercase : Any = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowercase : str = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=_lowerCAmelCase ) _lowercase : Optional[Any] = input_a[input_name] _lowercase : Optional[Any] = feat_extract.pad(_lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) ) _lowercase : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to smallest with np _lowercase : List[str] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=_lowerCAmelCase , ) _lowercase : Dict = input_a[input_name] _lowercase : Any = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) _lowercase : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) # truncate to middle _lowercase : Union[str, Any] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase , return_tensors='np' , ) _lowercase : Union[str, Any] = input_a[input_name] _lowercase : Any = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_lowerCAmelCase ) _lowercase : Optional[int] = input_a[input_name] _lowercase : Dict = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) _lowercase : Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCAmelCase , _lowerCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding='longest' , truncation=_lowerCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding='longest' , truncation=_lowerCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCAmelCase ): feat_extract.pad(_lowerCAmelCase , padding='max_length' , truncation=_lowerCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowercase : int = 1_2 _lowercase : List[Any] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) _lowercase : Optional[int] = input_a[input_name] _lowercase : Tuple = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCAmelCase , ) _lowercase : Dict = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowercase : Tuple = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowercase : int = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCAmelCase ) ) def __a ( self ): self._check_padding(numpify=_lowerCAmelCase ) def __a ( self ): self._check_padding(numpify=_lowerCAmelCase ) def __a ( self ): self._check_truncation(numpify=_lowerCAmelCase ) def __a ( self ): self._check_truncation(numpify=_lowerCAmelCase ) @require_torch def __a ( self ): _lowercase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() _lowercase : Dict = feat_extract.model_input_names[0] _lowercase : Optional[int] = BatchFeature({input_name: speech_inputs} ) _lowercase : str = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] _lowercase : Tuple = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __a ( self ): _lowercase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _lowercase : str = feat_extract.model_input_names[0] _lowercase : Tuple = BatchFeature({input_name: speech_inputs} ) _lowercase : Optional[Any] = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] _lowercase : Tuple = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ): _lowercase : Union[str, Any] = self.feat_extract_dict _lowercase : Optional[Any] = True _lowercase : int = self.feature_extraction_class(**_lowerCAmelCase ) _lowercase : str = self.feat_extract_tester.prepare_inputs_for_common() _lowercase : List[Any] = [len(_lowerCAmelCase ) for x in speech_inputs] _lowercase : Dict = feat_extract.model_input_names[0] _lowercase : Tuple = BatchFeature({input_name: speech_inputs} ) _lowercase : Tuple = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = self.feat_extract_dict _lowercase : int = True _lowercase : Tuple = self.feature_extraction_class(**_lowerCAmelCase ) _lowercase : Tuple = self.feat_extract_tester.prepare_inputs_for_common() _lowercase : Optional[Any] = [len(_lowerCAmelCase ) for x in speech_inputs] _lowercase : int = feat_extract.model_input_names[0] _lowercase : Tuple = BatchFeature({input_name: speech_inputs} ) _lowercase : Optional[Any] = min(_lowerCAmelCase ) _lowercase : Tuple = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
677
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
1
from sklearn.metrics import mean_squared_error import datasets UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCamelCase = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCamelCase = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def __a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def __a ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ): _lowercase : Union[str, Any] = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
UpperCamelCase = [0, 2, 4, 6, 8] UpperCamelCase = [1, 3, 5, 7, 9] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowercase : str = 0 for digit in range(10 ): _lowercase : Optional[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result _lowercase : Optional[int] = 0 for digita in range(10 ): _lowercase : Optional[int] = digita if (remainder + digita) % 2 == 0: _lowercase : int = ODD_DIGITS else: _lowercase : Tuple = EVEN_DIGITS for digita in other_parity_digits: _lowercase : List[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def __magic_name__ ( SCREAMING_SNAKE_CASE = 9 ) -> int: _lowercase : Dict = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(f'''{solution() = }''')
677
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate UpperCamelCase = trt.Logger(trt.Logger.WARNING) UpperCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) UpperCamelCase = parser.parse_args() if args.tokenizer_name: UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) UpperCamelCase = args.per_device_eval_batch_size UpperCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties UpperCamelCase = True UpperCamelCase = "temp_engine/bert-fp32.engine" if args.fpaa: UpperCamelCase = "temp_engine/bert-fp16.engine" if args.inta: UpperCamelCase = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") UpperCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network UpperCamelCase = [network.get_input(i) for i in range(network.num_inputs)] UpperCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: UpperCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) UpperCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) UpperCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : List[Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) _lowercase : List[str] = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) _lowercase : Union[str, Any] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time _lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time _lowercase : Union[str, Any] = time.time() _lowercase : Union[str, Any] = end_time - start_time _lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. UpperCamelCase = raw_datasets["validation"].column_names UpperCamelCase = "question" if "question" in column_names else column_names[0] UpperCamelCase = "context" if "context" in column_names else column_names[1] UpperCamelCase = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). UpperCamelCase = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _lowercase : Tuple = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowercase : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowercase : int = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowercase : Optional[Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowercase : str = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowercase : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples UpperCamelCase = raw_datasets["validation"] # Validation Feature Creation UpperCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) UpperCamelCase = default_data_collator UpperCamelCase = eval_dataset.remove_columns(["example_id", "offset_mapping"]) UpperCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="eval" ) -> str: # Post-processing: we match the start logits and end logits to answers in the original context. _lowercase : Tuple = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowercase : str = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: _lowercase : List[str] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] _lowercase : int = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) UpperCamelCase = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. UpperCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. UpperCamelCase = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') UpperCamelCase = 0.0 UpperCamelCase = 0 UpperCamelCase = timeit.default_timer() UpperCamelCase = None for step, batch in enumerate(eval_dataloader): UpperCamelCase , UpperCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 UpperCamelCase , UpperCamelCase = outputs UpperCamelCase = torch.tensor(start_logits) UpperCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered UpperCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) UpperCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) UpperCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) UpperCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: UpperCamelCase = nested_truncate(all_preds, len(eval_dataset)) UpperCamelCase = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_000)) logger.info("Total Number of Inference = %d", niter) UpperCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) UpperCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
677
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __magic_name__ ( SCREAMING_SNAKE_CASE = "isbn/0140328726" ) -> dict: _lowercase : List[str] = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _lowercase : Optional[Any] = F"""{olid} is not a valid Open Library olid""" raise ValueError(SCREAMING_SNAKE_CASE ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> dict: _lowercase : int = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _lowercase : str = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowercase : str = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _lowercase : List[Any] = data['First sentence']['value'] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = ', '.join(SCREAMING_SNAKE_CASE ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCamelCase = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: UpperCamelCase = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("\n".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : List[str] = ["image_processor", "tokenizer"] _UpperCamelCase : Dict = "BlipImageProcessor" _UpperCamelCase : List[str] = "AutoTokenizer" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _lowercase : str = self.tokenizer _lowercase : Optional[Any] = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values _lowercase : List[Any] = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: _lowercase : Optional[Any] = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: _lowercase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __a ( self ): _lowercase : List[str] = self.tokenizer.model_input_names _lowercase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
677
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__snake_case ): _UpperCamelCase : Optional[Any] = ["torch", "torchsde"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['torch', 'torchsde'] ) @classmethod def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['torch', 'torchsde'] )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase = None UpperCamelCase = { "7B": 11_008, "13B": 13_824, "30B": 17_920, "65B": 22_016, "70B": 28_672, } UpperCamelCase = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=256 ) -> Union[str, Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> int: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , 'tmp' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Dict = read_json(os.path.join(SCREAMING_SNAKE_CASE , 'params.json' ) ) _lowercase : List[Any] = NUM_SHARDS[model_size] _lowercase : Optional[int] = params['n_layers'] _lowercase : Optional[int] = params['n_heads'] _lowercase : List[Any] = n_heads // num_shards _lowercase : Any = params['dim'] _lowercase : Union[str, Any] = dim // n_heads _lowercase : Optional[int] = 1_0000.0 _lowercase : int = 1.0 / (base ** (torch.arange(0 , SCREAMING_SNAKE_CASE , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowercase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowercase : Any = n_heads_per_shard // num_key_value_heads _lowercase : str = dim // num_key_value_heads else: # compatibility with other checkpoints _lowercase : Optional[int] = n_heads _lowercase : Tuple = n_heads_per_shard _lowercase : Tuple = dim # permute for sliced rotary def permute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=n_heads , SCREAMING_SNAKE_CASE=dim , SCREAMING_SNAKE_CASE=dim ): return w.view(SCREAMING_SNAKE_CASE , dima // n_heads // 2 , 2 , SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowercase : Optional[int] = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowercase : Union[str, Any] = [ torch.load(os.path.join(SCREAMING_SNAKE_CASE , F"""consolidated.{i:02d}.pth""" ) , map_location='cpu' ) for i in range(SCREAMING_SNAKE_CASE ) ] _lowercase : int = 0 _lowercase : Optional[int] = {'weight_map': {}} for layer_i in range(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : List[str] = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowercase : Tuple = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _lowercase : List[Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Any = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _lowercase : Dict = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : str = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : int = inv_freq for k, v in state_dict.items(): _lowercase : Optional[int] = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : Optional[Any] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowercase : Optional[Any] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ), } for k, v in state_dict.items(): _lowercase : Any = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Write configs _lowercase : List[Any] = {'total_size': param_count * 2} write_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin.index.json' ) ) _lowercase : Dict = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowercase : Dict = params['multiple_of'] if 'multiple_of' in params else 256 _lowercase : int = LlamaConfig( hidden_size=SCREAMING_SNAKE_CASE , intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=SCREAMING_SNAKE_CASE , ) config.save_pretrained(SCREAMING_SNAKE_CASE ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowercase : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , low_cpu_mem_usage=SCREAMING_SNAKE_CASE ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(SCREAMING_SNAKE_CASE , safe_serialization=SCREAMING_SNAKE_CASE ) shutil.rmtree(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: # Initialize the tokenizer based on the `spm` model _lowercase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _lowercase : List[str] = tokenizer_class(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=SCREAMING_SNAKE_CASE , help='Whether or not to save using `safetensors`.' ) _lowercase : List[str] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowercase : Optional[int] = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
1
import re def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: if len(re.findall('[ATCG]' , SCREAMING_SNAKE_CASE ) ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
677
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self , _lowerCAmelCase=3_2 ): set_seed(0 ) _lowercase : Dict = UNetaDModel(sample_size=_lowerCAmelCase , in_channels=3 , out_channels=3 ) _lowercase : List[Any] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def __a ( self ): _lowercase : Union[str, Any] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_lowerCAmelCase , ) _lowercase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _lowercase : Optional[Any] = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(_lowerCAmelCase ) for _ in range(4 )] _lowercase : Any = [torch.randn((4, 3, 3_2, 3_2) ).to(_lowerCAmelCase ) for _ in range(4 )] _lowercase : Optional[Any] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(_lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler _lowercase , _lowercase : Optional[int] = self.get_model_optimizer(resolution=3_2 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : Any = model(_lowerCAmelCase , timesteps[i] ).sample _lowercase : Union[str, Any] = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _lowercase , _lowercase : int = self.get_model_optimizer(resolution=3_2 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : Dict = model(_lowerCAmelCase , timesteps[i] ).sample _lowercase : Optional[Any] = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
677
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = "owlvit_text_model" def __init__( self , _lowerCAmelCase=4_9_4_0_8 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=8 , _lowerCAmelCase=1_6 , _lowerCAmelCase="quick_gelu" , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , _lowerCAmelCase=0 , _lowerCAmelCase=4_9_4_0_6 , _lowerCAmelCase=4_9_4_0_7 , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : str = vocab_size _lowercase : int = hidden_size _lowercase : Dict = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = max_position_embeddings _lowercase : str = hidden_act _lowercase : Union[str, Any] = layer_norm_eps _lowercase : Union[str, Any] = attention_dropout _lowercase : str = initializer_range _lowercase : Optional[int] = initializer_factor @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : Dict = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _lowercase : Optional[Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "owlvit_vision_model" def __init__( self , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=3_2 , _lowerCAmelCase="quick_gelu" , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1.0 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : str = hidden_size _lowercase : str = intermediate_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Union[str, Any] = num_channels _lowercase : Tuple = image_size _lowercase : List[Any] = patch_size _lowercase : Union[str, Any] = hidden_act _lowercase : Dict = layer_norm_eps _lowercase : Optional[Any] = attention_dropout _lowercase : Optional[int] = initializer_range _lowercase : Union[str, Any] = initializer_factor @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : Dict = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": _lowercase : int = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "owlvit" _UpperCamelCase : Tuple = True def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=2.65_92 , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) if text_config is None: _lowercase : Tuple = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: _lowercase : str = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) _lowercase : int = OwlViTTextConfig(**_lowerCAmelCase ) _lowercase : Tuple = OwlViTVisionConfig(**_lowerCAmelCase ) _lowercase : Optional[int] = projection_dim _lowercase : List[Any] = logit_scale_init_value _lowercase : int = return_dict _lowercase : Optional[Any] = 1.0 @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : Optional[int] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): _lowercase : str = {} _lowercase : Optional[int] = text_config _lowercase : Any = vision_config return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Any = self.text_config.to_dict() _lowercase : List[str] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output class lowerCAmelCase_ ( __snake_case ): @property def __a ( self ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def __a ( self ): return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def __a ( self ): return 1E-4 def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = None , ): _lowercase : Any = super().generate_dummy_inputs( processor.tokenizer , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , framework=_lowerCAmelCase ) _lowercase : Optional[int] = super().generate_dummy_inputs( processor.image_processor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase ) return {**text_input_dict, **image_input_dict} @property def __a ( self ): return 1_4
677
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Tuple = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __a ( self ): super().setUp() _lowercase : Optional[int] = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] _lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __a ( self ): _lowercase : Tuple = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) _lowercase : Optional[Any] = '今天天气真好!' _lowercase : str = ['今天', '天气', '真', '好', '!'] _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Tuple = '今天天气真好!' _lowercase : int = [tokenizer.bos_token] + tokens _lowercase : Union[str, Any] = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) _lowercase : Tuple = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy""" def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __a ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 4, 6_4, 6_4) , _lowerCAmelCase=False ): _lowercase : List[str] = jnp.bfloataa if fpaa else jnp.floataa _lowercase : Dict = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def __a ( self , _lowerCAmelCase=False , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): _lowercase : List[Any] = jnp.bfloataa if fpaa else jnp.floataa _lowercase : int = 'bf16' if fpaa else None _lowercase , _lowercase : List[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def __a ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 7_7, 7_6_8) , _lowerCAmelCase=False ): _lowercase : str = jnp.bfloataa if fpaa else jnp.floataa _lowercase : List[str] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase : Optional[int] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase ) _lowercase : Tuple = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowercase : List[Any] = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowercase : str = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape _lowercase : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowercase : Any = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase : Optional[Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase ) _lowercase : str = self.get_latents(_lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_lowerCAmelCase ) _lowercase : Tuple = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_lowerCAmelCase ) _lowercase : Dict = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape _lowercase : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowercase : Optional[int] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
677
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
1