code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowerCAmelCase_ ( _snake_case ):
_UpperCamelCase : Tuple = 'char'
_UpperCamelCase : Optional[Any] = 'bpe'
_UpperCamelCase : Tuple = 'wp'
UpperCamelCase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowerCAmelCase_ ( _snake_case ):
_UpperCamelCase : int = ['image_processor', 'char_tokenizer']
_UpperCamelCase : int = 'ViTImageProcessor'
_UpperCamelCase : Optional[Any] = 'MgpstrTokenizer'
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : int = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _lowerCAmelCase , )
_lowercase : Any = kwargs.pop('feature_extractor' )
_lowercase : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
_lowercase : Any = tokenizer
_lowercase : Any = AutoTokenizer.from_pretrained('gpt2' )
_lowercase : int = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
_lowercase : Dict = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None:
_lowercase : Any = self.char_tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowercase : Optional[Any] = encodings['input_ids']
return inputs
def __a ( self , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : Any = sequences
_lowercase : List[Any] = char_preds.size(0 )
_lowercase , _lowercase : Union[str, Any] = self._decode_helper(_lowerCAmelCase , 'char' )
_lowercase , _lowercase : Tuple = self._decode_helper(_lowerCAmelCase , 'bpe' )
_lowercase , _lowercase : int = self._decode_helper(_lowerCAmelCase , 'wp' )
_lowercase : str = []
_lowercase : Optional[Any] = []
for i in range(_lowerCAmelCase ):
_lowercase : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowercase : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowercase : Union[str, Any] = scores.index(max(_lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowercase : Optional[int] = {}
_lowercase : Tuple = final_strs
_lowercase : int = final_scores
_lowercase : int = char_strs
_lowercase : int = bpe_strs
_lowercase : Optional[int] = wp_strs
return out
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
if format == DecodeType.CHARACTER:
_lowercase : Union[str, Any] = self.char_decode
_lowercase : Tuple = 1
_lowercase : Tuple = '[s]'
elif format == DecodeType.BPE:
_lowercase : Tuple = self.bpe_decode
_lowercase : int = 2
_lowercase : Dict = '#'
elif format == DecodeType.WORDPIECE:
_lowercase : Dict = self.wp_decode
_lowercase : List[Any] = 1_0_2
_lowercase : Union[str, Any] = '[SEP]'
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowercase , _lowercase : str = [], []
_lowercase : Dict = pred_logits.size(0 )
_lowercase : Any = pred_logits.size(1 )
_lowercase , _lowercase : Any = pred_logits.topk(1 , dim=-1 , largest=_lowerCAmelCase , sorted=_lowerCAmelCase )
_lowercase : Union[str, Any] = preds_index.view(-1 , _lowerCAmelCase )[:, 1:]
_lowercase : Optional[Any] = decoder(_lowerCAmelCase )
_lowercase , _lowercase : Tuple = torch.nn.functional.softmax(_lowerCAmelCase , dim=2 ).max(dim=2 )
_lowercase : str = preds_max_prob[:, 1:]
for index in range(_lowerCAmelCase ):
_lowercase : int = preds_str[index].find(_lowerCAmelCase )
_lowercase : int = preds_str[index][:pred_eos]
_lowercase : str = preds_index[index].cpu().tolist()
_lowercase : List[str] = pred_index.index(_lowerCAmelCase ) if eos_token in pred_index else -1
_lowercase : str = preds_max_prob[index][: pred_eos_index + 1]
_lowercase : List[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_lowerCAmelCase )
conf_scores.append(_lowerCAmelCase )
return dec_strs, conf_scores
def __a ( self , _lowerCAmelCase ):
_lowercase : Any = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(_lowerCAmelCase )]
return decode_strs
def __a ( self , _lowerCAmelCase ):
return self.bpe_tokenizer.batch_decode(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase ):
_lowercase : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(_lowerCAmelCase )]
return decode_strs
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class lowerCAmelCase_ :
def __init__( self ):
_lowercase : int = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ):
if self.graph.get(_UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_lowercase : Optional[int] = [[w, v]]
if not self.graph.get(_UpperCAmelCase ):
_lowercase : List[str] = []
def __a ( self ):
return list(self.graph )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
if self.graph.get(_UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_UpperCAmelCase )
def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ):
if s == d:
return []
_lowercase : Tuple = []
_lowercase : str = []
if s == -2:
_lowercase : Union[str, Any] = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : List[str] = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : Dict = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(_UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : int = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(_UpperCAmelCase ) != 0:
_lowercase : List[Any] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : List[Any] = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return visited
def __a ( self , _lowerCAmelCase=-1 ):
if c == -1:
_lowercase : Optional[Any] = floor(random() * 1_0_0_0_0 ) + 1_0
for i in range(_UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_0_2 ) + 1 ):
_lowercase : Optional[int] = floor(random() * c ) + 1
if n != i:
self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 )
def __a ( self , _lowerCAmelCase=-2 ):
_lowercase : Dict = deque()
_lowercase : Union[str, Any] = []
if s == -2:
_lowercase : List[Any] = list(self.graph )[0]
d.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
while d:
_lowercase : Dict = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __a ( self , _lowerCAmelCase ):
_lowercase : Optional[int] = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def __a ( self , _lowerCAmelCase ):
return len(self.graph[u] )
def __a ( self , _lowerCAmelCase=-2 ):
_lowercase : Union[str, Any] = []
_lowercase : List[str] = []
if s == -2:
_lowercase : int = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : List[str] = s
_lowercase : Optional[int] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : List[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(_UpperCAmelCase ) != 0:
_lowercase : List[Any] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : Tuple = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return sorted_nodes
def __a ( self ):
_lowercase : List[Any] = []
_lowercase : Optional[Any] = []
_lowercase : Tuple = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : Optional[int] = -2
_lowercase : Dict = []
_lowercase : str = s
_lowercase : Optional[int] = False
_lowercase : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowercase : Any = len(_UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : List[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowercase : Optional[Any] = True
if len(_UpperCAmelCase ) != 0:
_lowercase : List[str] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : Optional[Any] = False
indirect_parents.append(_UpperCAmelCase )
_lowercase : Dict = s
_lowercase : Union[str, Any] = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return list(_UpperCAmelCase )
def __a ( self ):
_lowercase : str = []
_lowercase : Any = []
_lowercase : List[str] = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : List[str] = -2
_lowercase : Optional[Any] = []
_lowercase : List[Any] = s
_lowercase : Optional[Any] = False
_lowercase : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : Dict = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowercase : int = len(_UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : int = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowercase : List[str] = True
if len(_UpperCAmelCase ) != 0:
_lowercase : Optional[Any] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : Dict = False
indirect_parents.append(_UpperCAmelCase )
_lowercase : Optional[int] = s
_lowercase : Union[str, Any] = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return False
def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ):
_lowercase : str = time()
self.dfs(_UpperCAmelCase , _UpperCAmelCase )
_lowercase : Any = time()
return end - begin
def __a ( self , _lowerCAmelCase=-2 ):
_lowercase : Dict = time()
self.bfs(_UpperCAmelCase )
_lowercase : str = time()
return end - begin
class lowerCAmelCase_ :
def __init__( self ):
_lowercase : str = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ):
if self.graph.get(_UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_lowercase : Union[str, Any] = [[w, v]]
# add the other way
if self.graph.get(_UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_lowercase : Dict = [[w, u]]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
if self.graph.get(_UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(_UpperCAmelCase )
# the other way round
if self.graph.get(_UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(_UpperCAmelCase )
def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ):
if s == d:
return []
_lowercase : Dict = []
_lowercase : List[Any] = []
if s == -2:
_lowercase : Tuple = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : List[str] = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(_UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : Union[str, Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(_UpperCAmelCase ) != 0:
_lowercase : Optional[Any] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : Union[str, Any] = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return visited
def __a ( self , _lowerCAmelCase=-1 ):
if c == -1:
_lowercase : str = floor(random() * 1_0_0_0_0 ) + 1_0
for i in range(_UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_0_2 ) + 1 ):
_lowercase : List[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 )
def __a ( self , _lowerCAmelCase=-2 ):
_lowercase : Dict = deque()
_lowercase : Union[str, Any] = []
if s == -2:
_lowercase : int = list(self.graph )[0]
d.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
while d:
_lowercase : Optional[Any] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __a ( self , _lowerCAmelCase ):
return len(self.graph[u] )
def __a ( self ):
_lowercase : Dict = []
_lowercase : List[Any] = []
_lowercase : str = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : Optional[int] = -2
_lowercase : List[str] = []
_lowercase : Optional[Any] = s
_lowercase : List[str] = False
_lowercase : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : Union[str, Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowercase : Dict = len(_UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : Any = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowercase : Tuple = True
if len(_UpperCAmelCase ) != 0:
_lowercase : str = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : List[Any] = False
indirect_parents.append(_UpperCAmelCase )
_lowercase : int = s
_lowercase : str = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return list(_UpperCAmelCase )
def __a ( self ):
_lowercase : int = []
_lowercase : str = []
_lowercase : str = list(self.graph )[0]
stack.append(_UpperCAmelCase )
visited.append(_UpperCAmelCase )
_lowercase : List[str] = -2
_lowercase : Optional[Any] = []
_lowercase : Optional[int] = s
_lowercase : int = False
_lowercase : Dict = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowercase : Any = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowercase : Dict = len(_UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowercase : Dict = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowercase : List[str] = True
if len(_UpperCAmelCase ) != 0:
_lowercase : List[Any] = stack[len(_UpperCAmelCase ) - 1]
else:
_lowercase : Dict = False
indirect_parents.append(_UpperCAmelCase )
_lowercase : Dict = s
_lowercase : Any = ss
# check if se have reached the starting point
if len(_UpperCAmelCase ) == 0:
return False
def __a ( self ):
return list(self.graph )
def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ):
_lowercase : Any = time()
self.dfs(_UpperCAmelCase , _UpperCAmelCase )
_lowercase : List[Any] = time()
return end - begin
def __a ( self , _lowerCAmelCase=-2 ):
_lowercase : Tuple = time()
self.bfs(_UpperCAmelCase )
_lowercase : int = time()
return end - begin
| 714 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Any = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Tuple = normalizer_class(**_lowerCAmelCase )
_lowercase : Union[str, Any] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = [self.sep_token_id]
_lowercase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 677 | 0 |
import itertools
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __magic_name__ ( ) -> int:
_lowercase : Tuple = 2
while True:
if is_prime(__A ):
yield num
num += 1
def __magic_name__ ( SCREAMING_SNAKE_CASE = 10_001 ) -> str:
return next(itertools.islice(prime_generator() , nth - 1 , __A ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
return [ord(_lowerCamelCase ) - 96 for elem in plain]
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
return "".join(chr(elem + 96 ) for elem in encoded )
def __magic_name__ ( ) -> List[Any]:
_lowercase : List[Any] = encode(input('-> ' ).strip().lower() )
print('Encoded: ' , _lowerCamelCase )
print('Decoded:' , decode(_lowerCamelCase ) )
if __name__ == "__main__":
main()
| 716 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
for attribute in key.split('.' ):
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
_lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
_lowercase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_lowercase : List[str] = value
elif weight_type == "weight_g":
_lowercase : Any = value
elif weight_type == "weight_v":
_lowercase : Tuple = value
elif weight_type == "bias":
_lowercase : List[str] = value
else:
_lowercase : Dict = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = []
_lowercase : Optional[int] = fairseq_model.state_dict()
_lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowercase : Dict = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
_lowercase : int = True
else:
for key, mapped_key in MAPPING.items():
_lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
_lowercase : Union[str, Any] = True
if "*" in mapped_key:
_lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
_lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_lowercase : Optional[int] = 'weight_g'
elif "weight_v" in name:
_lowercase : Optional[Any] = 'weight_v'
elif "weight" in name:
_lowercase : str = 'weight'
elif "bias" in name:
_lowercase : Any = 'bias'
else:
_lowercase : str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = full_name.split('conv_layers.' )[-1]
_lowercase : Any = name.split('.' )
_lowercase : Optional[Any] = int(items[0] )
_lowercase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_lowercase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_lowercase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_lowercase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_lowercase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
if config_path is not None:
_lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertConfig()
if is_finetuned:
if dict_path:
_lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowercase : Dict = target_dict.pad_index
_lowercase : Dict = target_dict.bos_index
_lowercase : Tuple = target_dict.eos_index
_lowercase : List[Any] = len(target_dict.symbols )
_lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE )
_lowercase : int = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , )
_lowercase : str = True if config.feat_extract_norm == 'layer' else False
_lowercase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
_lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE )
if is_finetuned:
_lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
_lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_lowercase : int = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 677 | 0 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=[8, 1_6, 3_2, 6_4] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=["stage2", "stage3", "stage4"] , _lowerCAmelCase=[2, 3, 4] , _lowerCAmelCase=1 , ):
_lowercase : Optional[int] = parent
_lowercase : List[str] = batch_size
_lowercase : Tuple = image_size
_lowercase : List[str] = num_channels
_lowercase : List[str] = embeddings_size
_lowercase : List[str] = hidden_sizes
_lowercase : str = depths
_lowercase : Optional[Any] = is_training
_lowercase : int = use_labels
_lowercase : Optional[int] = hidden_act
_lowercase : List[Any] = num_labels
_lowercase : List[str] = scope
_lowercase : str = len(__lowerCamelCase )
_lowercase : Optional[int] = out_features
_lowercase : str = out_indices
_lowercase : Optional[int] = num_groups
def __a ( self ):
_lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : Optional[int] = None
if self.use_labels:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
_lowercase : Tuple = self.get_config()
return config, pixel_values, labels
def __a ( self ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = BitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowercase : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = self.num_labels
_lowercase : List[str] = BitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowercase : str = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowercase : Optional[Any] = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_lowercase : Optional[Any] = None
_lowercase : Optional[int] = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
_lowercase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
_lowercase : Tuple = config_and_inputs
_lowercase : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( _A , _A , unittest.TestCase ):
_UpperCamelCase : Tuple = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
_UpperCamelCase : int = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
_UpperCamelCase : Union[str, Any] = False
_UpperCamelCase : Optional[int] = False
_UpperCamelCase : int = False
_UpperCamelCase : Dict = False
_UpperCamelCase : Optional[int] = False
def __a ( self ):
_lowercase : Any = BitModelTester(self )
_lowercase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def __a ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __a ( self ):
return
@unittest.skip(reason='Bit does not output attentions' )
def __a ( self ):
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def __a ( self ):
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def __a ( self ):
pass
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Dict = model_class(__lowerCamelCase )
_lowercase : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : Optional[Any] = [*signature.parameters.keys()]
_lowercase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Optional[int] = model_class(config=__lowerCamelCase )
for name, module in model.named_modules():
if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def __a ( self ):
def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
_lowercase : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
_lowercase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowercase : List[Any] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_lowercase : Dict = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowercase : Dict = layer_type
_lowercase : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def __a ( self ):
pass
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def __a ( self ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : Optional[Any] = BitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __magic_name__ ( ) -> Tuple:
_lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def __a ( self ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def __a ( self ):
_lowercase : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase )
_lowercase : List[Any] = self.default_image_processor
_lowercase : List[Any] = prepare_img()
_lowercase : Tuple = image_processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
_lowercase : Union[str, Any] = model(**__lowerCamelCase )
# verify the logits
_lowercase : str = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
_lowercase : Optional[Any] = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
@require_torch
class lowerCAmelCase_ ( _A , unittest.TestCase ):
_UpperCamelCase : List[Any] = (BitBackbone,) if is_torch_available() else ()
_UpperCamelCase : Optional[Any] = BitConfig
_UpperCamelCase : Dict = False
def __a ( self ):
_lowercase : Union[str, Any] = BitModelTester(self )
| 717 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ):
_lowercase : List[str] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : str = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_input_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Optional[Any] = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : str = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = num_labels
_lowercase : List[str] = num_choices
_lowercase : Dict = scope
_lowercase : List[Any] = range_bbox
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowercase : List[str] = bbox[i, j, 3]
_lowercase : Optional[int] = bbox[i, j, 1]
_lowercase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowercase : Dict = bbox[i, j, 2]
_lowercase : Dict = bbox[i, j, 0]
_lowercase : int = t
_lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Union[str, Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : str = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Any = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase )
_lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = self.num_labels
_lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_labels
_lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[Any] = config_and_inputs
_lowercase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Union[str, Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = 10
def __a ( self ):
_lowercase : Optional[int] = TFLayoutLMModelTester(self )
_lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def __a ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
_lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
_lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
_lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
_lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
_lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the sequence output on [0, :3, :3]
_lowercase : Optional[Any] = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) )
# test the pooled output on [1, :3]
_lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
_lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Any = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
_lowercase : List[Any] = outputs.loss
_lowercase : Any = (2,)
self.assertEqual(loss.shape , _lowerCAmelCase )
# test the shape of the logits
_lowercase : str = outputs.logits
_lowercase : Dict = (2, 2)
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Dict = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Dict = outputs.logits
_lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Any = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
| 677 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCAmelCase )
class lowerCAmelCase_ ( _UpperCAmelCase ):
_UpperCamelCase : Optional[Any] = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} )
_UpperCamelCase : List[str] = Features({"text": Value("string" )} )
_UpperCamelCase : Optional[int] = Features({} )
_UpperCamelCase : Tuple = "text"
@property
def __a ( self ):
return {self.text_column: "text"}
| 718 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : List[str] = logging.get_logger()
# the current default level is logging.WARNING
_lowercase : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = logging.get_verbosity()
_lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : Tuple = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase )
_lowercase : Optional[Any] = logging.log_levels[env_level_str]
_lowercase : Dict = logging.get_verbosity()
self.assertEqual(
_lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_lowercase : Any = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
_lowercase : Tuple = logging.logging.getLogger()
with CaptureLogger(_lowerCAmelCase ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def __a ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
_lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : List[str] = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
def __magic_name__ ( ) -> List[str]:
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 677 | 0 |
from collections.abc import Callable
import numpy as np
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.array:
_lowercase : Tuple = int(np.ceil((x_end - xa) / step_size ) )
_lowercase : List[Any] = np.zeros((n + 1,) )
_lowercase : int = ya
_lowercase : Optional[int] = xa
for k in range(_A ):
_lowercase : Tuple = y[k] + step_size * ode_func(_A , y[k] )
_lowercase : str = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase = "pt"
elif is_tf_available():
UpperCamelCase = "tf"
else:
UpperCamelCase = "jax"
class lowerCAmelCase_ ( __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = PerceiverTokenizer
_UpperCamelCase : str = False
def __a ( self ):
super().setUp()
_lowercase : List[Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def __a ( self , **_lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_lowercase : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
_lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) )
_lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowercase : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowercase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowercase : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowercase : List[Any] = ' ' + output_txt
_lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __a ( self ):
_lowercase : Dict = self.perceiver_tokenizer
_lowercase : Optional[Any] = 'Unicode €.'
_lowercase : str = tokenizer(_lowerCAmelCase )
_lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' )
_lowercase : Union[str, Any] = tokenizer('e è é ê ë' )
_lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : int = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def __a ( self ):
_lowercase : List[str] = self.perceiver_tokenizer
_lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
_lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
_lowercase : int = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def __a ( self ):
_lowercase : List[Any] = self.perceiver_tokenizer
_lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _lowerCAmelCase )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertNotIn('decoder_input_ids' , _lowerCAmelCase )
self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.perceiver_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : Optional[int] = tokenizer(
text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
def __a ( self ):
# safety check on max_len default value so we are sure the test works
_lowercase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_lowercase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
_lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[str] = tempfile.mkdtemp()
_lowercase : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Any = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : List[str] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(_lowerCAmelCase )
_lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
_lowercase : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : Optional[int] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __a ( self ):
_lowercase : str = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '�' )
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
_lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
UpperCamelCase = False
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __a ( self ):
return 1_2
@property
def __a ( self ):
return 1_2
@property
def __a ( self ):
return 3_2
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : List[Any] = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def __a ( self ):
_lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(_lowercase )
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : Union[str, Any] = 1_2
_lowercase : Tuple = 1_2
_lowercase : Tuple = {
"""attention_bias""": True,
"""cross_attention_dim""": 3_2,
"""attention_head_dim""": height * width,
"""num_attention_heads""": 1,
"""num_vector_embeds""": self.num_embed,
"""num_embeds_ada_norm""": self.num_embeds_ada_norm,
"""norm_num_groups""": 3_2,
"""sample_size""": width,
"""activation_fn""": """geglu-approximate""",
}
_lowercase : Optional[Any] = TransformeraDModel(**_lowercase )
return model
def __a ( self ):
_lowercase : str = """cpu"""
_lowercase : List[str] = self.dummy_vqvae
_lowercase : Any = self.dummy_text_encoder
_lowercase : Tuple = self.dummy_tokenizer
_lowercase : int = self.dummy_transformer
_lowercase : int = VQDiffusionScheduler(self.num_embed )
_lowercase : Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase )
_lowercase : Optional[Any] = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
_lowercase : int = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
_lowercase : List[Any] = """teddy bear playing in the pool"""
_lowercase : Dict = torch.Generator(device=_lowercase ).manual_seed(0 )
_lowercase : List[Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='np' )
_lowercase : Optional[int] = output.images
_lowercase : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 )
_lowercase : Dict = pipe(
[prompt] , generator=_lowercase , output_type='np' , return_dict=_lowercase , num_inference_steps=2 )[0]
_lowercase : List[Any] = image[0, -3:, -3:, -1]
_lowercase : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
_lowercase : Dict = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ):
_lowercase : int = """cpu"""
_lowercase : List[Any] = self.dummy_vqvae
_lowercase : Optional[int] = self.dummy_text_encoder
_lowercase : List[Any] = self.dummy_tokenizer
_lowercase : Union[str, Any] = self.dummy_transformer
_lowercase : str = VQDiffusionScheduler(self.num_embed )
_lowercase : List[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
_lowercase : Union[str, Any] = VQDiffusionPipeline(
vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , )
_lowercase : Any = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
_lowercase : Tuple = """teddy bear playing in the pool"""
_lowercase : str = torch.Generator(device=_lowercase ).manual_seed(0 )
_lowercase : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='np' )
_lowercase : Dict = output.images
_lowercase : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 )
_lowercase : Any = pipe(
[prompt] , generator=_lowercase , output_type='np' , return_dict=_lowercase , num_inference_steps=2 )[0]
_lowercase : Optional[Any] = image[0, -3:, -3:, -1]
_lowercase : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
_lowercase : int = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ):
_lowercase : List[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
_lowercase : str = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
_lowercase : Optional[Any] = pipeline.to(_lowercase )
pipeline.set_progress_bar_config(disable=_lowercase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
_lowercase : Any = torch.Generator(device=_lowercase ).manual_seed(0 )
_lowercase : Optional[int] = pipeline(
'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_lowercase , output_type='np' , )
_lowercase : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 721 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Tuple = "ClapFeatureExtractor"
_UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowercase : Any = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowercase : Union[str, Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __a ( self ):
_lowercase : Dict = self.tokenizer.model_input_names
_lowercase : Any = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 677 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 700 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = num_of_nodes
_lowercase : list[list[int]] = []
_lowercase : dict[int, int] = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
self.m_edges.append([u_node, v_node, weight] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowercase : Optional[int] = self.find_component(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if component_size[u_node] <= component_size[v_node]:
_lowercase : str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
_lowercase : Any = self.find_component(_lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = []
_lowercase : Optional[Any] = 0
_lowercase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowercase : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowercase , _lowercase , _lowercase : List[str] = edge
_lowercase : Union[str, Any] = self.m_component[u]
_lowercase : Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowercase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : int = edge
_lowercase : Optional[int] = self.m_component[u]
_lowercase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
_lowercase : str = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = SwinConfig(image_size=192 )
if "base" in model_name:
_lowercase : str = 6
_lowercase : List[str] = 128
_lowercase : Optional[int] = (2, 2, 18, 2)
_lowercase : List[str] = (4, 8, 16, 32)
elif "large" in model_name:
_lowercase : Dict = 12
_lowercase : List[str] = 192
_lowercase : Any = (2, 2, 18, 2)
_lowercase : int = (6, 12, 24, 48)
else:
raise ValueError('Model not supported, only supports base and large variants' )
_lowercase : str = window_size
_lowercase : List[str] = embed_dim
_lowercase : List[str] = depths
_lowercase : Optional[int] = num_heads
return config
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if "encoder.mask_token" in name:
_lowercase : Any = name.replace('encoder.mask_token' , 'embeddings.mask_token' )
if "encoder.patch_embed.proj" in name:
_lowercase : Optional[int] = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "encoder.patch_embed.norm" in name:
_lowercase : str = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' )
if "attn.proj" in name:
_lowercase : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_lowercase : Optional[Any] = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_lowercase : Optional[int] = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[Any] = name.replace('mlp.fc2' , 'output.dense' )
if name == "encoder.norm.weight":
_lowercase : Optional[int] = 'layernorm.weight'
if name == "encoder.norm.bias":
_lowercase : Tuple = 'layernorm.bias'
if "decoder" in name:
pass
else:
_lowercase : Optional[Any] = 'swin.' + name
return name
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : str = orig_state_dict.pop(__SCREAMING_SNAKE_CASE )
if "attn_mask" in key:
pass
elif "qkv" in key:
_lowercase : List[Any] = key.split('.' )
_lowercase : Tuple = int(key_split[2] )
_lowercase : List[str] = int(key_split[4] )
_lowercase : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : List[Any] = val[
dim : dim * 2, :
]
_lowercase : Any = val[-dim:, :]
else:
_lowercase : Optional[int] = val[
:dim
]
_lowercase : Tuple = val[
dim : dim * 2
]
_lowercase : Any = val[
-dim:
]
else:
_lowercase : Any = val
return orig_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
_lowercase : str = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
_lowercase : str = get_swin_config(__SCREAMING_SNAKE_CASE )
_lowercase : Tuple = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE )
model.eval()
_lowercase : Optional[int] = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_lowercase : Optional[Any] = ViTImageProcessor(size={'height': 192, 'width': 192} )
_lowercase : Tuple = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
_lowercase : Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
with torch.no_grad():
_lowercase : List[Any] = model(**__SCREAMING_SNAKE_CASE ).logits
print(outputs.keys() )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and image processor for {model_name} to hub""" )
model.push_to_hub(F"""microsoft/{model_name}""" )
image_processor.push_to_hub(F"""microsoft/{model_name}""" )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="swin-base-simmim-window6-192",
type=str,
choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"],
help="Name of the Swin SimMIM model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth",
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCamelCase = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 701 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = {}
_lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids']
_lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
UpperCamelCase = HfArgumentParser(PretokenizationArguments)
UpperCamelCase = parser.parse_args()
if args.num_workers is None:
UpperCamelCase = multiprocessing.cpu_count()
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCamelCase = time.time()
UpperCamelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
UpperCamelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 677 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 702 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration}
UpperCamelCase = {"facebook/bart-base": BartTokenizer}
def __magic_name__ ( ) -> str:
_lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , )
parser.add_argument(
'--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' )
_lowercase : Optional[Any] = parser.parse_args()
return args
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]:
_lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE )
if model_name in ["facebook/bart-base"]:
_lowercase : Dict = 0
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = 0
return huggingface_model, tokenizer
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
model.eval()
_lowercase : List[Any] = None
_lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) )
with torch.no_grad():
_lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.'
_lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device )
_lowercase : str = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=SCREAMING_SNAKE_CASE , )
logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) )
logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = ort_sess.run(
SCREAMING_SNAKE_CASE , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(SCREAMING_SNAKE_CASE ),
'max_length': np.array(SCREAMING_SNAKE_CASE ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def __magic_name__ ( ) -> Any:
_lowercase : Dict = parse_args()
_lowercase : Union[str, Any] = 5
_lowercase : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_lowercase : Optional[Any] = torch.device(args.device )
_lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(SCREAMING_SNAKE_CASE )
if args.max_length:
_lowercase : Any = args.max_length
if args.num_beams:
_lowercase : List[str] = args.num_beams
if args.output_file_path:
_lowercase : Union[str, Any] = args.output_file_path
else:
_lowercase : Tuple = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
'''simple docstring'''
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
_lowercase : Tuple = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
_lowercase : Any = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' )
_lowercase : str = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' )
_lowercase : Optional[int] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' )
_lowercase : Dict = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' )
_lowercase : Optional[int] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' )
_lowercase : Optional[int] = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' )
_lowercase : Tuple = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' )
_lowercase : Any = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' )
_lowercase : Optional[Any] = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' )
_lowercase : Any = key.replace('image_encoder.module' , 'flava.image_model' )
_lowercase : Dict = key.replace('text_encoder.module' , 'flava.text_model' )
_lowercase : Union[str, Any] = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' )
_lowercase : Dict = key.replace('mm_encoder.module' , 'flava.multimodal_model' )
_lowercase : Dict = key.replace('text_projection' , 'flava.text_projection' )
_lowercase : Optional[int] = key.replace('image_projection' , 'flava.image_projection' )
_lowercase : Optional[Any] = value.float()
for key, value in codebook_state_dict.items():
_lowercase : List[Any] = value
return upgrade
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Tuple:
'''simple docstring'''
if config_path is not None:
_lowercase : List[str] = FlavaConfig.from_pretrained(snake_case_ )
else:
_lowercase : List[str] = FlavaConfig()
_lowercase : Dict = FlavaForPreTraining(snake_case_ ).eval()
_lowercase : Optional[int] = convert_dalle_checkpoint(snake_case_ , snake_case_ , save_checkpoint=snake_case_ )
if os.path.exists(snake_case_ ):
_lowercase : Any = torch.load(snake_case_ , map_location='cpu' )
else:
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(snake_case_ , map_location='cpu' )
_lowercase : Union[str, Any] = upgrade_state_dict(snake_case_ , snake_case_ )
hf_model.load_state_dict(snake_case_ )
_lowercase : Dict = hf_model.state_dict()
_lowercase : Union[str, Any] = count_parameters(snake_case_ )
_lowercase : str = count_parameters(snake_case_ ) + count_parameters(snake_case_ )
assert torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCamelCase = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 703 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_UpperCamelCase : List[Any] = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = False
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ):
_lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
_lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : Optional[Any] = parent
_lowercase : str = batch_size
_lowercase : Optional[int] = seq_length
_lowercase : Tuple = is_training
_lowercase : List[Any] = use_input_mask
_lowercase : Optional[Any] = use_token_type_ids
_lowercase : Any = use_labels
_lowercase : str = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Tuple = hidden_act
_lowercase : Dict = hidden_dropout_prob
_lowercase : Optional[int] = attention_probs_dropout_prob
_lowercase : Tuple = max_position_embeddings
_lowercase : List[str] = type_vocab_size
_lowercase : Optional[Any] = type_sequence_label_size
_lowercase : List[Any] = initializer_range
_lowercase : List[str] = num_labels
_lowercase : Union[str, Any] = num_choices
_lowercase : List[str] = scope
_lowercase : Union[str, Any] = embedding_size
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Optional[int] = None
if self.use_input_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Dict = None
_lowercase : Any = None
_lowercase : int = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase )
_lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
_lowercase : Tuple = [input_ids, input_mask]
_lowercase : str = model(_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Optional[int] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase )
_lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = self.num_labels
_lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase )
_lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_choices
_lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : str = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.num_labels
_lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : int = config_and_inputs
_lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def __a ( self ):
_lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self )
_lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase )
@slow
def __a ( self ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' )
_lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_lowercase : List[str] = model(_lowerCAmelCase )[0]
_lowercase : str = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , _lowerCAmelCase )
_lowercase : List[Any] = tf.constant(
[
[
[-4.5_91_95_47, -9.24_82_95, -9.64_52_56],
[-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37],
[-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
| 677 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowercase__ ):
_UpperCamelCase : List[str] = ["input_features", "attention_mask"]
def __init__( self , _lowerCAmelCase=8_0 , _lowerCAmelCase=1_6_0_0_0 , _lowerCAmelCase=8_0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ):
super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : List[Any] = num_mel_bins
_lowercase : Dict = do_ceptral_normalize
_lowercase : List[str] = normalize_means
_lowercase : List[str] = normalize_vars
_lowercase : Any = True
def __a ( self , _lowerCAmelCase , ):
_lowercase : Optional[int] = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers
_lowercase : List[Any] = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 )
_lowercase : int = ta_kaldi.fbank(_lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def __a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0.0 , ):
# make sure we normalize float32 arrays
if normalize_means:
_lowercase : List[str] = x[:input_length].mean(axis=0 )
_lowercase : Tuple = np.subtract(_lowerCAmelCase , _lowerCAmelCase )
if normalize_vars:
_lowercase : Dict = x[:input_length].std(axis=0 )
_lowercase : List[str] = np.divide(_lowerCAmelCase , _lowerCAmelCase )
if input_length < x.shape[0]:
_lowercase : Optional[Any] = padding_value
# make sure array is in float32
_lowercase : Optional[Any] = x.astype(np.floataa )
return x
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(_lowerCAmelCase , _lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(_lowerCAmelCase , _lowerCAmelCase )
]
def __call__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : List[str] = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
_lowercase : Any = is_batched_numpy or (
isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Any = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ):
_lowercase : Dict = np.asarray(_lowerCAmelCase , dtype=np.floataa )
elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : List[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : Any = [raw_speech]
# extract fbank features
_lowercase : List[Any] = [self._extract_fbank_features(_lowerCAmelCase ) for waveform in raw_speech]
# convert into correct format for padding
_lowercase : Union[str, Any] = BatchFeature({'input_features': features} )
_lowercase : Any = self.pad(
_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , )
# make sure list is in array format
_lowercase : List[Any] = padded_inputs.get('input_features' )
if isinstance(input_features[0] , _lowerCAmelCase ):
_lowercase : Union[str, Any] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features]
_lowercase : List[Any] = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_lowercase : List[Any] = [np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
_lowercase : Optional[Any] = (
np.array(_lowerCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_lowercase : Any = self.normalize(
padded_inputs['input_features'] , attention_mask=_lowerCAmelCase )
if return_tensors is not None:
_lowercase : List[str] = padded_inputs.convert_to_tensors(_lowerCAmelCase )
return padded_inputs
| 704 |
import qiskit
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts:
_lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
_lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
_lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = single_qubit_measure(2, 2)
print(f'''Total count for various states are: {counts}''')
| 677 | 0 |
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ):
@staticmethod
def __a ( _lowerCAmelCase ):
_lowercase : Any = parser.add_parser('download' )
download_parser.add_argument(
'--cache-dir' , type=_a , default=_a , help='Path to location to store the models' )
download_parser.add_argument(
'--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' )
download_parser.add_argument(
'--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , )
download_parser.add_argument('model' , type=_a , help='Name of the model to download' )
download_parser.set_defaults(func=_a )
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : int = model
_lowercase : Tuple = cache
_lowercase : Tuple = force
_lowercase : str = trust_remote_code
def __a ( self ):
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
| 705 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCamelCase = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict:
if attention_mask is None:
_lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ):
_lowercase : List[str] = parent
_lowercase : List[Any] = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : Optional[Any] = is_training
_lowercase : Tuple = use_labels
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : Tuple = intermediate_size
_lowercase : Any = hidden_act
_lowercase : Optional[Any] = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = eos_token_id
_lowercase : int = pad_token_id
_lowercase : Tuple = bos_token_id
_lowercase : List[Any] = initializer_range
def __a ( self ):
_lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Tuple = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , )
_lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = 2_0
_lowercase : List[Any] = model_class_name(_lowerCAmelCase )
_lowercase : List[Any] = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : int = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
_lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = 2_0
_lowercase : Any = model_class_name(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : Optional[int] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
_lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Tuple = 99
def __a ( self ):
_lowercase : Dict = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
_lowercase : Union[str, Any] = input_ids.shape[0]
_lowercase : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __a ( self ):
_lowercase , _lowercase , _lowercase : int = self._get_config_and_data()
_lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase )
_lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
_lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
_lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
_lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase )
_lowercase : Tuple = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
_lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowerCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __a ( self ):
_lowercase : List[str] = FlaxBlenderbotSmallModelTester(self )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ):
_lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : int = model_class(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
_lowercase : List[Any] = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ):
for model_class_name in self.all_model_classes:
_lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id
_lowercase : int = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 677 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class lowerCAmelCase_ ( __a ):
_UpperCamelCase : List[Any] = 42
class lowerCAmelCase_ ( __a , __a ):
@register_to_config
def __init__( self , _lowerCAmelCase = 1_6 , _lowerCAmelCase = 8_8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 3_2 , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = "geglu" , _lowerCAmelCase = True , _lowerCAmelCase = True , ):
super().__init__()
_lowercase : List[str] = num_attention_heads
_lowercase : int = attention_head_dim
_lowercase : Optional[int] = num_attention_heads * attention_head_dim
_lowercase : Any = in_channels
_lowercase : List[str] = torch.nn.GroupNorm(num_groups=a_ , num_channels=a_ , eps=1E-6 , affine=a_ )
_lowercase : Dict = nn.Linear(a_ , a_ )
# 3. Define transformers blocks
_lowercase : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
a_ , a_ , a_ , dropout=a_ , cross_attention_dim=a_ , activation_fn=a_ , attention_bias=a_ , double_self_attention=a_ , norm_elementwise_affine=a_ , )
for d in range(a_ )
] )
_lowercase : Tuple = nn.Linear(a_ , a_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase=None , _lowerCAmelCase = True , ):
_lowercase : Any = hidden_states.shape
_lowercase : List[str] = batch_frames // num_frames
_lowercase : Tuple = hidden_states
_lowercase : List[str] = hidden_states[None, :].reshape(a_ , a_ , a_ , a_ , a_ )
_lowercase : Dict = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
_lowercase : Tuple = self.norm(a_ )
_lowercase : Optional[int] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , a_ , a_ )
_lowercase : Any = self.proj_in(a_ )
# 2. Blocks
for block in self.transformer_blocks:
_lowercase : List[str] = block(
a_ , encoder_hidden_states=a_ , timestep=a_ , cross_attention_kwargs=a_ , class_labels=a_ , )
# 3. Output
_lowercase : Tuple = self.proj_out(a_ )
_lowercase : List[str] = (
hidden_states[None, None, :]
.reshape(a_ , a_ , a_ , a_ , a_ )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
_lowercase : List[Any] = hidden_states.reshape(a_ , a_ , a_ , a_ )
_lowercase : List[str] = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=a_ )
| 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Dict = "longformer"
def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : Optional[int] = attention_window
_lowercase : str = sep_token_id
_lowercase : Optional[Any] = bos_token_id
_lowercase : List[Any] = eos_token_id
_lowercase : Optional[Any] = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Optional[int] = num_attention_heads
_lowercase : List[str] = hidden_act
_lowercase : List[str] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : str = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = layer_norm_eps
_lowercase : List[str] = onnx_export
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = True
@property
def __a ( self ):
if self.task == "multiple-choice":
_lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def __a ( self ):
_lowercase : Optional[int] = super().outputs
if self.task == "default":
_lowercase : List[str] = {0: 'batch'}
return outputs
@property
def __a ( self ):
return 1E-4
@property
def __a ( self ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 1_4 )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : int = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
_lowercase : str = torch.zeros_like(inputs['input_ids'] )
# make every second token global
_lowercase : Any = 1
return inputs
| 677 | 0 |
'''simple docstring'''
import os
def __magic_name__ ( ) -> List[Any]:
with open(os.path.dirname(__snake_case ) + '/grid.txt' ) as f:
_lowercase : List[str] = [] # noqa: E741
for _ in range(20 ):
l.append([int(__snake_case ) for x in f.readline().split()] )
_lowercase : Tuple = 0
# right
for i in range(20 ):
for j in range(17 ):
_lowercase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
_lowercase : str = temp
# down
for i in range(17 ):
for j in range(20 ):
_lowercase : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
_lowercase : Dict = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
_lowercase : Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
_lowercase : List[str] = temp
# diagonal 2
for i in range(17 ):
for j in range(3 , 20 ):
_lowercase : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
_lowercase : str = temp
return maximum
if __name__ == "__main__":
print(solution())
| 707 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : List[str] = ViTImageProcessor if is_vision_available() else None
@property
def __a ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self ):
_lowercase : Tuple = (3, 3_2, 1_2_8)
_lowercase : Any = tempfile.mkdtemp()
# fmt: off
_lowercase : str = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowercase : Dict = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
_lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase_ ) + '\n' )
_lowercase : Optional[Any] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 3_2, """width""": 1_2_8},
}
_lowercase : Union[str, Any] = os.path.join(self.tmpdirname , lowercase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(lowercase_ , lowercase_ )
def __a ( self , **_lowerCAmelCase ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def __a ( self , **_lowerCAmelCase ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ )
def __a ( self ):
shutil.rmtree(self.tmpdirname )
def __a ( self ):
_lowercase : int = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )
_lowercase : Dict = Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) )
return image_input
def __a ( self ):
_lowercase : Optional[int] = self.get_tokenizer()
_lowercase : Optional[int] = self.get_image_processor()
_lowercase : Dict = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
_lowercase : Optional[int] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __a ( self ):
_lowercase : Any = self.get_tokenizer()
_lowercase : Optional[int] = self.get_image_processor()
_lowercase : int = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
_lowercase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowercase : Optional[int] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
_lowercase : int = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __a ( self ):
_lowercase : Optional[Any] = self.get_image_processor()
_lowercase : Tuple = self.get_tokenizer()
_lowercase : Dict = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : Tuple = self.prepare_image_inputs()
_lowercase : List[str] = image_processor(lowercase_ , return_tensors='np' )
_lowercase : Optional[int] = processor(images=lowercase_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __a ( self ):
_lowercase : Optional[Any] = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : Tuple = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : Any = """test"""
_lowercase : str = processor(text=lowercase_ )
_lowercase : Union[str, Any] = tokenizer(lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __a ( self ):
_lowercase : Union[str, Any] = self.get_image_processor()
_lowercase : List[Any] = self.get_tokenizer()
_lowercase : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : Optional[Any] = """test"""
_lowercase : int = self.prepare_image_inputs()
_lowercase : Dict = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def __a ( self ):
_lowercase : Tuple = self.get_image_processor()
_lowercase : Tuple = self.get_tokenizer()
_lowercase : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowercase : List[str] = processor.char_decode(lowercase_ )
_lowercase : Optional[int] = tokenizer.batch_decode(lowercase_ )
_lowercase : List[str] = [seq.replace(' ' , '' ) for seq in decoded_tok]
self.assertListEqual(lowercase_ , lowercase_ )
def __a ( self ):
_lowercase : Optional[Any] = self.get_image_processor()
_lowercase : Any = self.get_tokenizer()
_lowercase : Dict = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : int = None
_lowercase : Optional[int] = self.prepare_image_inputs()
_lowercase : Any = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __a ( self ):
_lowercase : Optional[Any] = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : Any = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
_lowercase : Optional[int] = torch.randn(1 , 2_7 , 3_8 )
_lowercase : List[str] = torch.randn(1 , 2_7 , 5_0_2_5_7 )
_lowercase : List[Any] = torch.randn(1 , 2_7 , 3_0_5_2_2 )
_lowercase : Dict = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
| 708 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list:
_lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : Dict = i
_lowercase : str = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_lowercase : Optional[Any] = array[temp_index - 1]
temp_index -= 1
_lowercase : Optional[Any] = temp_index_value
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap
_lowercase : List[str] = index
_lowercase : List[str] = 2 * index + 1 # Left Node
_lowercase : Union[str, Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_lowercase : Any = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_lowercase : str = right_index
if largest != index:
_lowercase , _lowercase : List[str] = array[largest], array[index]
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
_lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_lowercase , _lowercase : List[Any] = array[0], array[i]
heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE )
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[Any] = low
_lowercase : Tuple = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_lowercase , _lowercase : Tuple = array[j], array[i]
i += 1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
if len(SCREAMING_SNAKE_CASE ) == 0:
return array
_lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) )
_lowercase : str = 16
return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(SCREAMING_SNAKE_CASE )
max_depth -= 1
_lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = p
return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input("Enter numbers separated by a comma : ").strip()
UpperCamelCase = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 677 | 0 |
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase_ ( a__ ):
def __a ( self ):
_lowercase : Tuple = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , 'embed_dim' ) )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , 'num_heads' ) )
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=6_4 , _lowerCAmelCase=3 , _lowerCAmelCase=[1_6, 4_8, 9_6] , _lowerCAmelCase=[1, 3, 6] , _lowerCAmelCase=[1, 2, 1_0] , _lowerCAmelCase=[7, 3, 3] , _lowerCAmelCase=[4, 2, 2] , _lowerCAmelCase=[2, 1, 1] , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=[False, False, True] , _lowerCAmelCase=[0.0, 0.0, 0.0] , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=2 , ):
_lowercase : List[str] = parent
_lowercase : Tuple = batch_size
_lowercase : str = image_size
_lowercase : List[Any] = patch_sizes
_lowercase : List[Any] = patch_stride
_lowercase : int = patch_padding
_lowercase : int = is_training
_lowercase : str = use_labels
_lowercase : List[str] = num_labels
_lowercase : str = num_channels
_lowercase : Optional[int] = embed_dim
_lowercase : Optional[Any] = num_heads
_lowercase : Tuple = stride_kv
_lowercase : Union[str, Any] = depth
_lowercase : Optional[Any] = cls_token
_lowercase : List[Any] = attention_drop_rate
_lowercase : List[str] = initializer_range
_lowercase : str = layer_norm_eps
def __a ( self ):
_lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : Any = None
if self.use_labels:
# create a random int32 tensor of given shape
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_labels )
_lowercase : int = self.get_config()
return config, pixel_values, labels
def __a ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = TFCvtModel(config=lowerCAmelCase__ )
_lowercase : Optional[Any] = model(lowerCAmelCase__ , training=lowerCAmelCase__ )
_lowercase : List[str] = (self.image_size, self.image_size)
_lowercase : List[str] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
_lowercase : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
_lowercase : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = self.num_labels
_lowercase : Any = TFCvtForImageClassification(lowerCAmelCase__ )
_lowercase : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
_lowercase : Optional[int] = config_and_inputs
_lowercase : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
_UpperCamelCase : List[str] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
_UpperCamelCase : List[Any] = (
{"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification}
if is_tf_available()
else {}
)
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : List[str] = False
_UpperCamelCase : Optional[Any] = False
_UpperCamelCase : int = False
_UpperCamelCase : Dict = False
def __a ( self ):
_lowercase : Dict = TFCvtModelTester(self )
_lowercase : List[Any] = TFCvtConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 )
def __a ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason='Cvt does not output attentions' )
def __a ( self ):
pass
@unittest.skip(reason='Cvt does not use inputs_embeds' )
def __a ( self ):
pass
@unittest.skip(reason='Cvt does not support input and output embeddings' )
def __a ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
def __a ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def __a ( self ):
super().test_keras_fit()
@unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' )
def __a ( self ):
_lowercase : Optional[int] = tf.keras.mixed_precision.Policy('mixed_float16' )
tf.keras.mixed_precision.set_global_policy(lowerCAmelCase__ )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy('float32' )
def __a ( self ):
_lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : List[str] = model_class(lowerCAmelCase__ )
_lowercase : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : Dict = [*signature.parameters.keys()]
_lowercase : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __a ( self ):
def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = model_class(lowerCAmelCase__ )
_lowercase : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
_lowercase : Dict = outputs.hidden_states
_lowercase : Any = len(self.model_tester.depth )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Dict = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : Optional[int] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ):
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __a ( self ):
_lowercase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def __a ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : Tuple = TFCvtModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( ) -> int:
_lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def __a ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __a ( self ):
_lowercase : Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowercase : Any = self.default_image_processor
_lowercase : Any = prepare_img()
_lowercase : str = image_processor(images=lowerCAmelCase__ , return_tensors='tf' )
# forward pass
_lowercase : List[str] = model(**lowerCAmelCase__ )
# verify the logits
_lowercase : Dict = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
_lowercase : str = tf.constant([0.92_85, 0.90_15, -0.31_50] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1E-4 ) )
| 709 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPFeatureExtractor"]
UpperCamelCase = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = parent
def __a ( self ):
return {}
def __magic_name__ ( ) -> Any:
_lowercase : List[Any] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>'
_lowercase : int = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n '
return [html_string_a, html_string_a]
@require_bsa
class lowerCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
_UpperCamelCase : int = MarkupLMFeatureExtractor if is_bsa_available() else None
def __a ( self ):
_lowercase : Optional[int] = MarkupLMFeatureExtractionTester(self )
@property
def __a ( self ):
return self.feature_extract_tester.prepare_feat_extract_dict()
def __a ( self ):
_lowercase : Optional[int] = self.feature_extraction_class()
# Test not batched input
_lowercase : List[Any] = get_html_strings()[0]
_lowercase : int = feature_extractor(__lowerCAmelCase )
# fmt: off
_lowercase : List[Any] = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']]
_lowercase : Optional[int] = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']]
# fmt: on
self.assertEqual(encoding.nodes , __lowerCAmelCase )
self.assertEqual(encoding.xpaths , __lowerCAmelCase )
# Test batched
_lowercase : List[str] = get_html_strings()
_lowercase : Dict = feature_extractor(__lowerCAmelCase )
# fmt: off
_lowercase : str = expected_nodes + [['My First Heading', 'My first paragraph.']]
_lowercase : Tuple = expected_xpaths + [['/html/body/h1', '/html/body/p']]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , __lowerCAmelCase )
self.assertEqual(encoding.xpaths , __lowerCAmelCase )
| 710 |
from collections.abc import Sequence
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
_lowercase : Optional[Any] = 0.0
for coeff in reversed(SCREAMING_SNAKE_CASE ):
_lowercase : Optional[int] = result * x + coeff
return result
if __name__ == "__main__":
UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCamelCase = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 677 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json",
}
class lowerCAmelCase_ ( __UpperCAmelCase ):
_UpperCamelCase : Any = """switch_transformers"""
_UpperCamelCase : Union[str, Any] = ["""past_key_values"""]
_UpperCamelCase : Dict = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _lowerCAmelCase=3_2_1_2_8 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_2 , _lowerCAmelCase=8 , _lowerCAmelCase=False , _lowerCAmelCase=0.01 , _lowerCAmelCase="float32" , _lowerCAmelCase=False , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.0_01 , _lowerCAmelCase=0.0_01 , _lowerCAmelCase=1.0 , _lowerCAmelCase="relu" , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ):
_lowercase : List[Any] = vocab_size
_lowercase : Any = d_model
_lowercase : Any = d_kv
_lowercase : Dict = d_ff
_lowercase : List[Any] = num_sparse_encoder_layers
_lowercase : Optional[int] = num_layers
_lowercase : Dict = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
_lowercase : Union[str, Any] = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
_lowercase : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers
else:
_lowercase : Tuple = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
_lowercase : List[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
_lowercase : Tuple = self.num_decoder_layers # HACK: this will create 0 sparse layers
_lowercase : List[Any] = num_heads
_lowercase : Optional[Any] = num_experts
_lowercase : Dict = expert_capacity
_lowercase : Optional[int] = router_bias
_lowercase : Optional[int] = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
_lowercase : Optional[Any] = router_dtype
_lowercase : Optional[int] = router_ignore_padding_tokens
_lowercase : Any = relative_attention_num_buckets
_lowercase : str = relative_attention_max_distance
_lowercase : str = dropout_rate
_lowercase : List[str] = layer_norm_epsilon
_lowercase : Union[str, Any] = initializer_factor
_lowercase : Optional[Any] = feed_forward_proj
_lowercase : str = use_cache
_lowercase : int = add_router_probs
_lowercase : Tuple = router_z_loss_coef
_lowercase : Dict = router_aux_loss_coef
_lowercase : Optional[Any] = self.feed_forward_proj.split('-' )
_lowercase : List[Any] = act_info[-1]
_lowercase : int = act_info[0] == 'gated'
if len(UpperCAmelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase_ ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
_lowercase : Dict = 'gelu_new'
super().__init__(
pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , )
| 711 |
from __future__ import annotations
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase=None ):
_lowercase : int = data
_lowercase : Union[str, Any] = None
def __repr__( self ):
_lowercase : Dict = []
_lowercase : Tuple = self
while temp:
string_rep.append(F"""{temp.data}""" )
_lowercase : Optional[Any] = temp.next
return "->".join(_lowerCAmelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
if not elements_list:
raise Exception('The Elements List is empty' )
_lowercase : Union[str, Any] = Node(elements_list[0] )
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
_lowercase : Optional[int] = Node(elements_list[i] )
_lowercase : List[Any] = current.next
return head
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None:
if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __magic_name__ ( ) -> List[str]:
from doctest import testmod
testmod()
_lowercase : int = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
if n == 1 or not isinstance(_lowercase , _lowercase ):
return 0
elif n == 2:
return 1
else:
_lowercase : Tuple = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : List[str] = 0
_lowercase : Optional[int] = 2
while digits < n:
index += 1
_lowercase : Optional[Any] = len(str(fibonacci(_lowercase ) ) )
return index
def __magic_name__ ( SCREAMING_SNAKE_CASE = 1_000 ) -> Optional[Any]:
return fibonacci_digits_index(_lowercase )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 712 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2)
if __name__ == "__main__":
def __magic_name__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
benchmark()
| 677 | 0 |
import random
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
_lowercase : Tuple = num - 1
_lowercase : Tuple = 0
while s % 2 == 0:
_lowercase : Tuple = s // 2
t += 1
for _ in range(5 ):
_lowercase : Dict = random.randrange(2 , num - 1 )
_lowercase : List[Any] = pow(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if v != 1:
_lowercase : List[str] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
_lowercase : Tuple = i + 1
_lowercase : Any = (v**2) % num
return True
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
if num < 2:
return False
_lowercase : Union[str, Any] = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__UpperCamelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE = 1_024 ) -> int:
while True:
_lowercase : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__UpperCamelCase ):
return num
if __name__ == "__main__":
UpperCamelCase = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import gcd
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 3 , ) -> Union[str, Any]:
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError('The input value cannot be less than 2' )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
return (pow(SCREAMING_SNAKE_CASE , 2 ) + step) % modulus
for _ in range(SCREAMING_SNAKE_CASE ):
# These track the position within the cycle detection logic.
_lowercase : Any = seed
_lowercase : Dict = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
_lowercase : Optional[Any] = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : Any = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
_lowercase : Optional[Any] = gcd(hare - tortoise , SCREAMING_SNAKE_CASE )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
_lowercase : Dict = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
UpperCamelCase = parser.parse_args()
UpperCamelCase = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f'''{args.num} is probably prime''')
else:
UpperCamelCase = args.num // divisor
print(f'''{args.num} = {divisor} * {quotient}''')
| 714 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Any = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Tuple = normalizer_class(**_lowerCAmelCase )
_lowercase : Union[str, Any] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = [self.sep_token_id]
_lowercase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 677 | 0 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowercase__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , __lowercase , )
super().__init__(*__lowercase , **__lowercase )
| 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : Tuple = tempfile.mkdtemp()
# fmt: off
_lowercase : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
_lowercase : List[Any] = dict(zip(A_ , range(len(A_ ) ) ) )
_lowercase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
_lowercase : Any = {"unk_token": "<unk>"}
_lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(A_ ) )
_lowercase : Dict = {
"do_resize": True,
"size": 2_0,
"do_center_crop": True,
"crop_size": 1_8,
"do_normalize": True,
"image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
_lowercase : str = os.path.join(self.tmpdirname , A_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(A_ , A_ )
def __a ( self , **_lowerCAmelCase ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **A_ )
def __a ( self , **_lowerCAmelCase ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A_ )
def __a ( self , **_lowerCAmelCase ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ )
def __a ( self ):
shutil.rmtree(self.tmpdirname )
def __a ( self ):
_lowercase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_lowercase : str = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __a ( self ):
_lowercase : Dict = self.get_tokenizer()
_lowercase : Dict = self.get_rust_tokenizer()
_lowercase : List[Any] = self.get_image_processor()
_lowercase : Any = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
processor_slow.save_pretrained(self.tmpdirname )
_lowercase : int = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A_ )
_lowercase : str = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
processor_fast.save_pretrained(self.tmpdirname )
_lowercase : int = CLIPSegProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A_ )
self.assertIsInstance(processor_fast.tokenizer , A_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A_ )
self.assertIsInstance(processor_fast.image_processor , A_ )
def __a ( self ):
_lowercase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowercase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowercase : Tuple = self.get_image_processor(do_normalize=A_ , padding_value=1.0 )
_lowercase : List[str] = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A_ )
def __a ( self ):
_lowercase : Any = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : List[Any] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
_lowercase : Union[str, Any] = self.prepare_image_inputs()
_lowercase : Optional[int] = image_processor(A_ , return_tensors='np' )
_lowercase : str = processor(images=A_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __a ( self ):
_lowercase : Union[str, Any] = self.get_image_processor()
_lowercase : List[str] = self.get_tokenizer()
_lowercase : Tuple = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
_lowercase : Tuple = "lower newer"
_lowercase : List[str] = processor(text=A_ )
_lowercase : Optional[Any] = tokenizer(A_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __a ( self ):
_lowercase : str = self.get_image_processor()
_lowercase : Tuple = self.get_tokenizer()
_lowercase : Union[str, Any] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
_lowercase : int = "lower newer"
_lowercase : Any = self.prepare_image_inputs()
_lowercase : Optional[int] = processor(text=A_ , images=A_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(A_ ):
processor()
def __a ( self ):
_lowercase : List[str] = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : List[Any] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
_lowercase : Optional[Any] = self.prepare_image_inputs()
_lowercase : Optional[Any] = self.prepare_image_inputs()
_lowercase : Optional[int] = processor(images=A_ , visual_prompt=A_ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(A_ ):
processor()
def __a ( self ):
_lowercase : str = self.get_image_processor()
_lowercase : List[Any] = self.get_tokenizer()
_lowercase : List[Any] = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ )
_lowercase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowercase : Optional[int] = processor.batch_decode(A_ )
_lowercase : Optional[int] = tokenizer.batch_decode(A_ )
self.assertListEqual(A_ , A_ )
| 716 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
for attribute in key.split('.' ):
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
_lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
_lowercase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_lowercase : List[str] = value
elif weight_type == "weight_g":
_lowercase : Any = value
elif weight_type == "weight_v":
_lowercase : Tuple = value
elif weight_type == "bias":
_lowercase : List[str] = value
else:
_lowercase : Dict = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = []
_lowercase : Optional[int] = fairseq_model.state_dict()
_lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowercase : Dict = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
_lowercase : int = True
else:
for key, mapped_key in MAPPING.items():
_lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
_lowercase : Union[str, Any] = True
if "*" in mapped_key:
_lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
_lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_lowercase : Optional[int] = 'weight_g'
elif "weight_v" in name:
_lowercase : Optional[Any] = 'weight_v'
elif "weight" in name:
_lowercase : str = 'weight'
elif "bias" in name:
_lowercase : Any = 'bias'
else:
_lowercase : str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = full_name.split('conv_layers.' )[-1]
_lowercase : Any = name.split('.' )
_lowercase : Optional[Any] = int(items[0] )
_lowercase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_lowercase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_lowercase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_lowercase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_lowercase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
if config_path is not None:
_lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertConfig()
if is_finetuned:
if dict_path:
_lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowercase : Dict = target_dict.pad_index
_lowercase : Dict = target_dict.bos_index
_lowercase : Tuple = target_dict.eos_index
_lowercase : List[Any] = len(target_dict.symbols )
_lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE )
_lowercase : int = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , )
_lowercase : str = True if config.feat_extract_norm == 'layer' else False
_lowercase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
_lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE )
if is_finetuned:
_lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
_lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_lowercase : int = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 677 | 0 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
UpperCamelCase = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 48_000,
'''sample_size''': 65_536,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 48_000,
'''sample_size''': 65_536,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 48_000,
'''sample_size''': 131_072,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 16_000,
'''sample_size''': 65_536,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 16_000,
'''sample_size''': 65_536,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 16_000,
'''sample_size''': 65_536,
},
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Dict = torch.sin(t * math.pi / 2 ) ** 2
_lowercase : Union[str, Any] = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
class lowerCAmelCase_ ( UpperCamelCase__ ):
pass
class lowerCAmelCase_ ( nn.Module ):
def __init__( self , _lowerCAmelCase ):
super().__init__()
_lowercase : Union[str, Any] = DiffusionAttnUnetaD(_lowerCAmelCase , n_attn_layers=4 )
_lowercase : Union[str, Any] = deepcopy(self.diffusion )
_lowercase : Optional[Any] = torch.quasirandom.SobolEngine(1 , scramble=_lowerCAmelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = MODELS_MAP[model_name]['url']
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
UpperCamelCase = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
UpperCamelCase = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
UpperCamelCase = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
UpperCamelCase = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
UpperCamelCase = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
UpperCamelCase = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
if name.startswith('skip' ):
return name.replace('skip' , RES_CONV_MAP['skip'] )
# name has to be of format main.{digit}
if not name.startswith('main.' ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif name.startswith(SCREAMING_SNAKE_CASE ):
return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 ) -> Optional[Any]:
_lowercase : List[str] = input_string
if string.split('.' )[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj' )
_lowercase : Any = 0
if string.startswith('net.3.' ):
depth += 1
_lowercase : str = string[6:]
elif string.startswith('net.' ):
_lowercase : Optional[Any] = string[4:]
while string.startswith('main.7.' ):
depth += 1
_lowercase : Any = string[7:]
if string.startswith('main.' ):
_lowercase : Optional[int] = string[5:]
# mid block
if string[:2].isdigit():
_lowercase : Any = string[:2]
_lowercase : Dict = string[2:]
else:
_lowercase : Union[str, Any] = string[0]
_lowercase : Tuple = string[1:]
if depth == max_depth:
_lowercase : Any = MID_NUM_TO_LAYER[layer_num]
_lowercase : List[str] = 'mid_block'
elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7:
_lowercase : str = DOWN_NUM_TO_LAYER[layer_num]
_lowercase : Dict = F"""down_blocks.{depth}"""
elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7:
_lowercase : str = UP_NUM_TO_LAYER[layer_num]
_lowercase : str = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
_lowercase : Optional[Any] = DEPTH_0_TO_LAYER[layer_num]
_lowercase : str = F"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0'
if not string_left.startswith('.' ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
_lowercase : str = string_left[1:]
if "resnets" in new_layer:
_lowercase : Optional[int] = convert_resconv_naming(SCREAMING_SNAKE_CASE )
elif "attentions" in new_layer:
_lowercase : List[str] = convert_attn_naming(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : int = prefix + '.' + new_layer + '.' + string_left
else:
_lowercase : Optional[int] = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : Union[str, Any] = {}
for k, v in state_dict.items():
if k.endswith('kernel' ):
# up- and downsample layers, don't have trainable weights
continue
_lowercase : List[Any] = rename(SCREAMING_SNAKE_CASE )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : List[Any] = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
_lowercase : int = v
return new_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if len(SCREAMING_SNAKE_CASE ) == 1:
if len(v.shape ) == 3:
# weight
_lowercase : int = v[:, :, 0]
else:
# bias
_lowercase : Tuple = v
else:
# qkv matrices
_lowercase : str = v.shape[0]
_lowercase : Dict = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
_lowercase : List[str] = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
_lowercase : List[Any] = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
_lowercase : Optional[Any] = args.model_path.split('/' )[-1].split('.' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
_lowercase : List[str] = download(SCREAMING_SNAKE_CASE )
_lowercase : str = MODELS_MAP[model_name]['sample_rate']
_lowercase : Union[str, Any] = MODELS_MAP[model_name]['sample_size']
_lowercase : Optional[Any] = Object()
_lowercase : List[str] = sample_size
_lowercase : List[Any] = sample_rate
_lowercase : List[Any] = 0
_lowercase : Tuple = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE )
_lowercase : Dict = diffusers_model.state_dict()
_lowercase : str = DiffusionUncond(SCREAMING_SNAKE_CASE )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] )
_lowercase : Union[str, Any] = orig_model.diffusion_ema.eval()
_lowercase : List[Any] = orig_model.state_dict()
_lowercase : Optional[int] = rename_orig_weights(SCREAMING_SNAKE_CASE )
_lowercase : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
_lowercase : List[Any] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
_lowercase : str = value.squeeze()
_lowercase : str = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE )
_lowercase : Optional[int] = 100
_lowercase : str = 33
_lowercase : Union[str, Any] = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE )
_lowercase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1]
_lowercase : int = get_crash_schedule(SCREAMING_SNAKE_CASE )
_lowercase : List[str] = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = torch.manual_seed(33 )
_lowercase : Optional[Any] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios
_lowercase : List[str] = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} )
_lowercase : Optional[int] = generated.clamp(-1 , 1 )
_lowercase : Optional[Any] = (generated - audio).abs().sum()
_lowercase : Optional[int] = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('Diff sum' , SCREAMING_SNAKE_CASE )
print('Diff max' , SCREAMING_SNAKE_CASE )
assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
UpperCamelCase = parser.parse_args()
main(args)
| 717 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ):
_lowercase : List[str] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : str = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_input_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Optional[Any] = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : str = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = num_labels
_lowercase : List[str] = num_choices
_lowercase : Dict = scope
_lowercase : List[Any] = range_bbox
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowercase : List[str] = bbox[i, j, 3]
_lowercase : Optional[int] = bbox[i, j, 1]
_lowercase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowercase : Dict = bbox[i, j, 2]
_lowercase : Dict = bbox[i, j, 0]
_lowercase : int = t
_lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Union[str, Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : str = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Any = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase )
_lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = self.num_labels
_lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_labels
_lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[Any] = config_and_inputs
_lowercase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Union[str, Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = 10
def __a ( self ):
_lowercase : Optional[int] = TFLayoutLMModelTester(self )
_lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def __a ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
_lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
_lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
_lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
_lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
_lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the sequence output on [0, :3, :3]
_lowercase : Optional[Any] = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) )
# test the pooled output on [1, :3]
_lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
_lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Any = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
_lowercase : List[Any] = outputs.loss
_lowercase : Any = (2,)
self.assertEqual(loss.shape , _lowerCAmelCase )
# test the shape of the logits
_lowercase : str = outputs.logits
_lowercase : Dict = (2, 2)
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Dict = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Dict = outputs.logits
_lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Any = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
| 677 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self , _lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
_lowercase : List[str] = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(lowerCamelCase__ )
def __a ( self ):
_lowercase : Union[str, Any] = "sshleifer/tiny-gpt2"
_lowercase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Union[str, Any] = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : List[str] = "sgugger/tiny-distilbert-classification"
_lowercase : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , only_pretrain_model=lowerCamelCase__ , )
_lowercase : str = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : Dict = "sshleifer/tiny-gpt2"
_lowercase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , torchscript=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def __a ( self ):
_lowercase : str = "sshleifer/tiny-gpt2"
_lowercase : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , fpaa=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : str = "sshleifer/tiny-gpt2"
_lowercase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ )
# set architectures equal to `None`
_lowercase : List[Any] = None
_lowercase : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : str = PyTorchBenchmark(lowerCamelCase__ , configs=[config] )
_lowercase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : Union[str, Any] = "sshleifer/tiny-gpt2"
_lowercase : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : List[str] = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' )
def __a ( self ):
_lowercase : Optional[int] = "sshleifer/tiny-gpt2"
_lowercase : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
_lowercase : str = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __a ( self ):
_lowercase : Union[str, Any] = "sshleifer/tiny-gpt2"
_lowercase : Any = AutoConfig.from_pretrained(lowerCamelCase__ )
_lowercase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Tuple = PyTorchBenchmark(lowerCamelCase__ , configs=[config] )
_lowercase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : Union[str, Any] = "sshleifer/tinier_bart"
_lowercase : List[str] = AutoConfig.from_pretrained(lowerCamelCase__ )
_lowercase : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase__ , configs=[config] )
_lowercase : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __a ( self ):
_lowercase : Any = "sshleifer/tiny-gpt2"
_lowercase : Dict = AutoConfig.from_pretrained(lowerCamelCase__ )
_lowercase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : Dict = PyTorchBenchmark(lowerCamelCase__ , configs=[config] )
_lowercase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __a ( self ):
_lowercase : List[str] = "sshleifer/tinier_bart"
_lowercase : List[str] = AutoConfig.from_pretrained(lowerCamelCase__ )
_lowercase : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , )
_lowercase : List[Any] = PyTorchBenchmark(lowerCamelCase__ , configs=[config] )
_lowercase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __a ( self ):
_lowercase : List[str] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
_lowercase : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , save_to_csv=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowerCamelCase__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowerCamelCase__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowerCamelCase__ , 'env.csv' ) , multi_process=lowerCamelCase__ , )
_lowercase : List[str] = PyTorchBenchmark(lowerCamelCase__ )
benchmark.run()
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'train_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'train_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'env.csv' ) ).exists() )
def __a ( self ):
_lowercase : Tuple = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(lowerCamelCase__ , 'sequential' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'cumulative' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'current' ) )
self.assertTrue(hasattr(lowerCamelCase__ , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_lowercase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase__ , 'log.txt' ) , log_print=lowerCamelCase__ , trace_memory_line_by_line=lowerCamelCase__ , multi_process=lowerCamelCase__ , )
_lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase__ )
_lowercase : Union[str, Any] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(lowerCamelCase__ , 'log.txt' ) ).exists() )
| 718 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : List[str] = logging.get_logger()
# the current default level is logging.WARNING
_lowercase : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = logging.get_verbosity()
_lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : Tuple = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase )
_lowercase : Optional[Any] = logging.log_levels[env_level_str]
_lowercase : Dict = logging.get_verbosity()
self.assertEqual(
_lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_lowercase : Any = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
_lowercase : Tuple = logging.logging.getLogger()
with CaptureLogger(_lowerCAmelCase ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def __a ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
_lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : List[str] = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
def __magic_name__ ( ) -> List[str]:
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
if discount_rate < 0:
raise ValueError('Discount rate cannot be negative' )
if not cash_flows:
raise ValueError('Cash flows list cannot be empty' )
_lowercase : Tuple = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowercase__ ) )
return round(lowercase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase = "pt"
elif is_tf_available():
UpperCamelCase = "tf"
else:
UpperCamelCase = "jax"
class lowerCAmelCase_ ( __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = PerceiverTokenizer
_UpperCamelCase : str = False
def __a ( self ):
super().setUp()
_lowercase : List[Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def __a ( self , **_lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_lowercase : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
_lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) )
_lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowercase : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowercase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowercase : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowercase : List[Any] = ' ' + output_txt
_lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __a ( self ):
_lowercase : Dict = self.perceiver_tokenizer
_lowercase : Optional[Any] = 'Unicode €.'
_lowercase : str = tokenizer(_lowerCAmelCase )
_lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' )
_lowercase : Union[str, Any] = tokenizer('e è é ê ë' )
_lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : int = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def __a ( self ):
_lowercase : List[str] = self.perceiver_tokenizer
_lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
_lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
_lowercase : int = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def __a ( self ):
_lowercase : List[Any] = self.perceiver_tokenizer
_lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _lowerCAmelCase )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertNotIn('decoder_input_ids' , _lowerCAmelCase )
self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.perceiver_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : Optional[int] = tokenizer(
text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
def __a ( self ):
# safety check on max_len default value so we are sure the test works
_lowercase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_lowercase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
_lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[str] = tempfile.mkdtemp()
_lowercase : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Any = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : List[str] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(_lowerCAmelCase )
_lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
_lowercase : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : Optional[int] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __a ( self ):
_lowercase : str = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '�' )
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
_lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
_lowercase : Union[str, Any] = """"""
for i in table:
res += inp[i - 1]
return res
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return data[1:] + data[0]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Union[str, Any] = """"""
for i in range(len(UpperCamelCase__ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
_lowercase : Union[str, Any] = int('0b' + data[0] + data[-1] , 2 )
_lowercase : Optional[int] = int('0b' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
_lowercase : int = message[:4]
_lowercase : int = message[4:]
_lowercase : List[str] = apply_table(UpperCamelCase__ , UpperCamelCase__ )
_lowercase : Tuple = xor(UpperCamelCase__ , UpperCamelCase__ )
_lowercase : int = apply_sbox(UpperCamelCase__ , temp[:4] ) # noqa: E741
_lowercase : List[str] = apply_sbox(UpperCamelCase__ , temp[4:] )
_lowercase : str = """0""" * (2 - len(UpperCamelCase__ )) + l # noqa: E741
_lowercase : List[Any] = """0""" * (2 - len(UpperCamelCase__ )) + r
_lowercase : Optional[Any] = apply_table(l + r , UpperCamelCase__ )
_lowercase : Dict = xor(UpperCamelCase__ , UpperCamelCase__ )
return temp + right
if __name__ == "__main__":
UpperCamelCase = input("Enter 10 bit key: ")
UpperCamelCase = input("Enter 8 bit message: ")
UpperCamelCase = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase = [2, 4, 3, 1]
UpperCamelCase = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase = apply_table(key, paa_table)
UpperCamelCase = temp[:5]
UpperCamelCase = temp[5:]
UpperCamelCase = left_shift(left)
UpperCamelCase = left_shift(right)
UpperCamelCase = apply_table(left + right, pa_table)
UpperCamelCase = left_shift(left)
UpperCamelCase = left_shift(right)
UpperCamelCase = left_shift(left)
UpperCamelCase = left_shift(right)
UpperCamelCase = apply_table(left + right, pa_table)
# encryption
UpperCamelCase = apply_table(message, IP)
UpperCamelCase = function(expansion, sa, sa, keya, temp)
UpperCamelCase = temp[4:] + temp[:4]
UpperCamelCase = function(expansion, sa, sa, keya, temp)
UpperCamelCase = apply_table(temp, IP_inv)
print("Cipher text is:", CT)
# decryption
UpperCamelCase = apply_table(CT, IP)
UpperCamelCase = function(expansion, sa, sa, keya, temp)
UpperCamelCase = temp[4:] + temp[:4]
UpperCamelCase = function(expansion, sa, sa, keya, temp)
UpperCamelCase = apply_table(temp, IP_inv)
print("Plain text after decypting is:", PT)
| 720 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 721 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Tuple = "ClapFeatureExtractor"
_UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowercase : Any = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowercase : Union[str, Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __a ( self ):
_lowercase : Dict = self.tokenizer.model_input_names
_lowercase : Any = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 677 | 0 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Any:
try:
_lowercase : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_lowercase : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
_lowercase : Union[str, Any] = strtobool(SCREAMING_SNAKE_CASE )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
UpperCamelCase = parse_flag_from_env("RUN_SLOW", default=False)
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skip('Test was skipped' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
return unittest.skipUnless(_run_slow_tests , 'test is slow' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
if test_case is None:
return partial(SCREAMING_SNAKE_CASE , version=SCREAMING_SNAKE_CASE )
return unittest.skipUnless(is_torch_version('>=' , SCREAMING_SNAKE_CASE ) , F"""test requires torch version >= {version}""" )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(SCREAMING_SNAKE_CASE )
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return unittest.skipUnless(
_atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(SCREAMING_SNAKE_CASE )
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = True
@classmethod
def __a ( cls ):
_lowercase : int = tempfile.mkdtemp()
@classmethod
def __a ( cls ):
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __a ( self ):
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob('**/*' ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(A__ )
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self , _lowerCAmelCase ):
_lowercase : Any = mocks if isinstance(A__ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
_lowercase : List[str] = AcceleratorState()
_lowercase : Optional[Any] = tensor[None].clone().to(state.device )
_lowercase : Optional[Any] = gather(SCREAMING_SNAKE_CASE ).cpu()
_lowercase : Tuple = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , SCREAMING_SNAKE_CASE ):
return False
return True
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = returncode
_lowercase : Optional[Any] = stdout
_lowercase : int = stderr
async def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
while True:
_lowercase : List[str] = await stream.readline()
if line:
callback(SCREAMING_SNAKE_CASE )
else:
break
async def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> _RunOutput:
if echo:
print('\nRunning: ' , ' '.join(SCREAMING_SNAKE_CASE ) )
_lowercase : List[str] = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_lowercase : Tuple = []
_lowercase : Any = []
def tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" ):
_lowercase : Dict = line.decode('utf-8' ).rstrip()
sink.append(SCREAMING_SNAKE_CASE )
if not quiet:
print(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , file=SCREAMING_SNAKE_CASE )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stdout , label='stdout:' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stderr , label='stderr:' ) ) ),
] , timeout=SCREAMING_SNAKE_CASE , )
return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=180 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True ) -> _RunOutput:
_lowercase : Dict = asyncio.get_event_loop()
_lowercase : int = loop.run_until_complete(
_stream_subprocess(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , stdin=SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , quiet=SCREAMING_SNAKE_CASE , echo=SCREAMING_SNAKE_CASE ) )
_lowercase : List[str] = ' '.join(SCREAMING_SNAKE_CASE )
if result.returncode > 0:
_lowercase : int = '\n'.join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
return result
class lowerCAmelCase_ ( __a ):
pass
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
try:
_lowercase : Dict = subprocess.check_output(SCREAMING_SNAKE_CASE , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(SCREAMING_SNAKE_CASE , 'decode' ):
_lowercase : Optional[Any] = output.decode('utf-8' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F"""Command `{' '.join(SCREAMING_SNAKE_CASE )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
| 700 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = num_of_nodes
_lowercase : list[list[int]] = []
_lowercase : dict[int, int] = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
self.m_edges.append([u_node, v_node, weight] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowercase : Optional[int] = self.find_component(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if component_size[u_node] <= component_size[v_node]:
_lowercase : str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
_lowercase : Any = self.find_component(_lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = []
_lowercase : Optional[Any] = 0
_lowercase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowercase : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowercase , _lowercase , _lowercase : List[str] = edge
_lowercase : Union[str, Any] = self.m_component[u]
_lowercase : Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowercase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : int = edge
_lowercase : Optional[int] = self.m_component[u]
_lowercase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
_lowercase : str = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : List[Any] = 'longformer'
def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : int = attention_window
_lowercase : List[str] = sep_token_id
_lowercase : Tuple = bos_token_id
_lowercase : Dict = eos_token_id
_lowercase : List[str] = vocab_size
_lowercase : str = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Union[str, Any] = hidden_act
_lowercase : Any = intermediate_size
_lowercase : Optional[Any] = hidden_dropout_prob
_lowercase : Any = attention_probs_dropout_prob
_lowercase : List[Any] = max_position_embeddings
_lowercase : Union[str, Any] = type_vocab_size
_lowercase : List[Any] = initializer_range
_lowercase : List[Any] = layer_norm_eps
_lowercase : Optional[Any] = onnx_export
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[Any] = True
@property
def __a ( self ):
if self.task == "multiple-choice":
_lowercase : int = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase : List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def __a ( self ):
_lowercase : Union[str, Any] = super().outputs
if self.task == "default":
_lowercase : Optional[Any] = {0: 'batch'}
return outputs
@property
def __a ( self ):
return 1E-4
@property
def __a ( self ):
return max(super().default_onnx_opset , 1_4 )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : Union[str, Any] = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
_lowercase : Any = torch.zeros_like(inputs['input_ids'] )
# make every second token global
_lowercase : Any = 1
return inputs
| 701 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = {}
_lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids']
_lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
UpperCamelCase = HfArgumentParser(PretokenizationArguments)
UpperCamelCase = parser.parse_args()
if args.num_workers is None:
UpperCamelCase = multiprocessing.cpu_count()
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCamelCase = time.time()
UpperCamelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
UpperCamelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 677 | 0 |
import os
def __magic_name__ ( ) -> Tuple:
with open(os.path.dirname(lowercase__ ) + '/p022_names.txt' ) as file:
_lowercase : List[Any] = str(file.readlines()[0] )
_lowercase : List[Any] = names.replace('"' , '' ).split(',' )
names.sort()
_lowercase : Any = 0
_lowercase : int = 0
for i, name in enumerate(lowercase__ ):
for letter in name:
name_score += ord(lowercase__ ) - 64
total_score += (i + 1) * name_score
_lowercase : Any = 0
return total_score
if __name__ == "__main__":
print(solution())
| 702 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration}
UpperCamelCase = {"facebook/bart-base": BartTokenizer}
def __magic_name__ ( ) -> str:
_lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , )
parser.add_argument(
'--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' )
_lowercase : Optional[Any] = parser.parse_args()
return args
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]:
_lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE )
if model_name in ["facebook/bart-base"]:
_lowercase : Dict = 0
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = 0
return huggingface_model, tokenizer
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
model.eval()
_lowercase : List[Any] = None
_lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) )
with torch.no_grad():
_lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.'
_lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device )
_lowercase : str = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=SCREAMING_SNAKE_CASE , )
logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) )
logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = ort_sess.run(
SCREAMING_SNAKE_CASE , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(SCREAMING_SNAKE_CASE ),
'max_length': np.array(SCREAMING_SNAKE_CASE ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def __magic_name__ ( ) -> Any:
_lowercase : Dict = parse_args()
_lowercase : Union[str, Any] = 5
_lowercase : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_lowercase : Optional[Any] = torch.device(args.device )
_lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(SCREAMING_SNAKE_CASE )
if args.max_length:
_lowercase : Any = args.max_length
if args.num_beams:
_lowercase : List[str] = args.num_beams
if args.output_file_path:
_lowercase : Union[str, Any] = args.output_file_path
else:
_lowercase : Tuple = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
from __future__ import annotations
from fractions import Fraction
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
_lowercase : int = []
_lowercase : Tuple = 11
_lowercase : Optional[int] = int('1' + '0' * digit_len )
for num in range(lowerCAmelCase_ , lowerCAmelCase_ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCAmelCase_ , lowerCAmelCase_ ):
solutions.append(F"""{num}/{den}""" )
den += 1
num += 1
_lowercase : int = 10
return solutions
def __magic_name__ ( SCREAMING_SNAKE_CASE = 2 ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = 1.0
for fraction in fraction_list(lowerCAmelCase_ ):
_lowercase : Optional[Any] = Fraction(lowerCAmelCase_ )
result *= frac.denominator / frac.numerator
return int(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution())
| 703 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_UpperCamelCase : List[Any] = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = False
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ):
_lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
_lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : Optional[Any] = parent
_lowercase : str = batch_size
_lowercase : Optional[int] = seq_length
_lowercase : Tuple = is_training
_lowercase : List[Any] = use_input_mask
_lowercase : Optional[Any] = use_token_type_ids
_lowercase : Any = use_labels
_lowercase : str = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Tuple = hidden_act
_lowercase : Dict = hidden_dropout_prob
_lowercase : Optional[int] = attention_probs_dropout_prob
_lowercase : Tuple = max_position_embeddings
_lowercase : List[str] = type_vocab_size
_lowercase : Optional[Any] = type_sequence_label_size
_lowercase : List[Any] = initializer_range
_lowercase : List[str] = num_labels
_lowercase : Union[str, Any] = num_choices
_lowercase : List[str] = scope
_lowercase : Union[str, Any] = embedding_size
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Optional[int] = None
if self.use_input_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Dict = None
_lowercase : Any = None
_lowercase : int = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase )
_lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
_lowercase : Tuple = [input_ids, input_mask]
_lowercase : str = model(_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Optional[int] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase )
_lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = self.num_labels
_lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase )
_lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_choices
_lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : str = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.num_labels
_lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : int = config_and_inputs
_lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def __a ( self ):
_lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self )
_lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase )
@slow
def __a ( self ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' )
_lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_lowercase : List[str] = model(_lowerCAmelCase )[0]
_lowercase : str = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , _lowerCAmelCase )
_lowercase : List[Any] = tf.constant(
[
[
[-4.5_91_95_47, -9.24_82_95, -9.64_52_56],
[-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37],
[-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
| 677 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
UpperCamelCase = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class lowerCAmelCase_ ( _UpperCAmelCase ):
_UpperCamelCase : Tuple = VOCAB_FILES_NAMES
_UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""]
_UpperCamelCase : Optional[int] = NllbTokenizer
_UpperCamelCase : List[int] = []
_UpperCamelCase : List[int] = []
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ):
# Mask token behave like a normal word, i.e. include the space before it
_lowercase : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
_lowercase : str = legacy_behaviour
super().__init__(
vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , )
_lowercase : str = vocab_file
_lowercase : str = False if not self.vocab_file else True
_lowercase : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_lowercase : List[Any] = {
lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowercase : Optional[Any] = src_lang if src_lang is not None else """eng_Latn"""
_lowercase : Dict = self.convert_tokens_to_ids(self._src_lang )
_lowercase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __a ( self ):
return self._src_lang
@src_lang.setter
def __a ( self , _lowerCAmelCase ):
_lowercase : Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : int = [self.sep_token_id]
_lowercase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowercase : List[Any] = src_lang
_lowercase : str = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ )
_lowercase : str = self.convert_tokens_to_ids(lowercase__ )
_lowercase : List[str] = tgt_lang_id
return inputs
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = "eng_Latn" , _lowerCAmelCase = None , _lowerCAmelCase = "fra_Latn" , **_lowerCAmelCase , ):
_lowercase : List[Any] = src_lang
_lowercase : int = tgt_lang
return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ )
def __a ( self ):
return self.set_src_lang_special_tokens(self.src_lang )
def __a ( self ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __a ( self , _lowerCAmelCase ):
_lowercase : int = self.convert_tokens_to_ids(lowercase__ )
if self.legacy_behaviour:
_lowercase : Dict = []
_lowercase : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
else:
_lowercase : Optional[int] = [self.cur_lang_code]
_lowercase : List[str] = [self.eos_token_id]
_lowercase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowercase : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowercase : Optional[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __a ( self , _lowerCAmelCase ):
_lowercase : str = self.convert_tokens_to_ids(lowercase__ )
if self.legacy_behaviour:
_lowercase : Tuple = []
_lowercase : List[Any] = [self.eos_token_id, self.cur_lang_code]
else:
_lowercase : Any = [self.cur_lang_code]
_lowercase : Union[str, Any] = [self.eos_token_id]
_lowercase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowercase : Any = self.convert_ids_to_tokens(self.suffix_tokens )
_lowercase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowercase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
_lowercase : str = os.path.join(
lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ):
copyfile(self.vocab_file , lowercase__ )
return (out_vocab_file,)
| 704 |
import qiskit
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts:
_lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
_lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
_lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = single_qubit_measure(2, 2)
print(f'''Total count for various states are: {counts}''')
| 677 | 0 |
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : Any = parent
_lowercase : List[str] = config_class
_lowercase : Optional[int] = has_text_modality
_lowercase : List[str] = kwargs
_lowercase : Tuple = common_properties
def __a ( self ):
_lowercase : Optional[Any] = self.config_class(**self.inputs_dict )
_lowercase : List[Any] = (
['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers''']
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(['vocab_size'] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(__snake_case , __snake_case ) , msg=F"""`{prop}` does not exist""" )
# Test that config has the common properties as setter
for idx, name in enumerate(__snake_case ):
try:
setattr(__snake_case , __snake_case , __snake_case )
self.parent.assertEqual(
getattr(__snake_case , __snake_case ) , __snake_case , msg=F"""`{name} value {idx} expected, but was {getattr(__snake_case , __snake_case )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(__snake_case ):
try:
_lowercase : List[str] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(__snake_case , __snake_case ) , __snake_case , msg=F"""`{name} value {idx} expected, but was {getattr(__snake_case , __snake_case )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def __a ( self ):
_lowercase : Tuple = self.config_class(**self.inputs_dict )
_lowercase : List[str] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , __snake_case )
def __a ( self ):
_lowercase : List[Any] = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowercase : Tuple = os.path.join(__snake_case , 'config.json' )
config_first.to_json_file(__snake_case )
_lowercase : int = self.config_class.from_json_file(__snake_case )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __a ( self ):
_lowercase : Dict = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(__snake_case )
_lowercase : Union[str, Any] = self.config_class.from_pretrained(__snake_case )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __a ( self ):
_lowercase : List[str] = self.config_class(**self.inputs_dict )
_lowercase : Dict = '''test'''
with tempfile.TemporaryDirectory() as tmpdirname:
_lowercase : List[Any] = os.path.join(__snake_case , __snake_case )
config_first.save_pretrained(__snake_case )
_lowercase : Union[str, Any] = self.config_class.from_pretrained(__snake_case , subfolder=__snake_case )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def __a ( self ):
_lowercase : Optional[int] = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
_lowercase : Dict = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def __a ( self ):
if self.config_class.is_composition:
return
_lowercase : Any = self.config_class()
self.parent.assertIsNotNone(__snake_case )
def __a ( self ):
_lowercase : Dict = copy.deepcopy(__snake_case )
_lowercase : Optional[Any] = self.config_class(**__snake_case )
_lowercase : Any = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) )
elif getattr(__snake_case , __snake_case ) != value:
wrong_values.append((key, getattr(__snake_case , __snake_case ), value) )
if len(__snake_case ) > 0:
_lowercase : Tuple = '''\n'''.join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] )
raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" )
def __a ( self ):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 705 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCamelCase = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict:
if attention_mask is None:
_lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ):
_lowercase : List[str] = parent
_lowercase : List[Any] = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : Optional[Any] = is_training
_lowercase : Tuple = use_labels
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : Tuple = intermediate_size
_lowercase : Any = hidden_act
_lowercase : Optional[Any] = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = eos_token_id
_lowercase : int = pad_token_id
_lowercase : Tuple = bos_token_id
_lowercase : List[Any] = initializer_range
def __a ( self ):
_lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Tuple = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , )
_lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = 2_0
_lowercase : List[Any] = model_class_name(_lowerCAmelCase )
_lowercase : List[Any] = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : int = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
_lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = 2_0
_lowercase : Any = model_class_name(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : Optional[int] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
_lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Tuple = 99
def __a ( self ):
_lowercase : Dict = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
_lowercase : Union[str, Any] = input_ids.shape[0]
_lowercase : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __a ( self ):
_lowercase , _lowercase , _lowercase : int = self._get_config_and_data()
_lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase )
_lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
_lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
_lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
_lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase )
_lowercase : Tuple = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
_lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowerCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __a ( self ):
_lowercase : List[str] = FlaxBlenderbotSmallModelTester(self )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ):
_lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : int = model_class(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
_lowercase : List[Any] = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ):
for model_class_name in self.all_model_classes:
_lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id
_lowercase : int = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 677 | 0 |
'''simple docstring'''
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Optional[Any] = "philschmid/bart-large-cnn-samsum"
_UpperCamelCase : Any = (
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, "
"and returns a summary of the text."
)
_UpperCamelCase : Optional[int] = "summarizer"
_UpperCamelCase : Optional[Any] = AutoTokenizer
_UpperCamelCase : Dict = AutoModelForSeqaSeqLM
_UpperCamelCase : Any = ["text"]
_UpperCamelCase : str = ["text"]
def __a ( self , _lowerCAmelCase ):
return self.pre_processor(_lowerCAmelCase , return_tensors='pt' , truncation=_lowerCAmelCase )
def __a ( self , _lowerCAmelCase ):
return self.model.generate(**_lowerCAmelCase )[0]
def __a ( self , _lowerCAmelCase ):
return self.pre_processor.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
| 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Dict = "longformer"
def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : Optional[int] = attention_window
_lowercase : str = sep_token_id
_lowercase : Optional[Any] = bos_token_id
_lowercase : List[Any] = eos_token_id
_lowercase : Optional[Any] = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Optional[int] = num_attention_heads
_lowercase : List[str] = hidden_act
_lowercase : List[str] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : str = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = layer_norm_eps
_lowercase : List[str] = onnx_export
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = True
@property
def __a ( self ):
if self.task == "multiple-choice":
_lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def __a ( self ):
_lowercase : Optional[int] = super().outputs
if self.task == "default":
_lowercase : List[str] = {0: 'batch'}
return outputs
@property
def __a ( self ):
return 1E-4
@property
def __a ( self ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 1_4 )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : int = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
_lowercase : str = torch.zeros_like(inputs['input_ids'] )
# make every second token global
_lowercase : Any = 1
return inputs
| 677 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : Dict = UNetaDModel(
sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return model
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : int = UNetaDConditionModel(
sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=1_0 , )
return model
@property
def __a ( self ):
torch.manual_seed(0 )
_lowercase : Any = AutoencoderKL(
sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , )
_lowercase : List[Any] = UNetaDModel(
sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return vqvae, unet
@slow
def __a ( self ):
_lowercase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_lowercase : Union[str, Any] = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
_lowercase : Union[str, Any] = DDPMScheduler()
_lowercase : int = AudioDiffusionPipeline(vqvae=__a , unet=self.dummy_unet , mel=__a , scheduler=__a )
_lowercase : Optional[int] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
_lowercase : List[str] = torch.Generator(device=__a ).manual_seed(4_2 )
_lowercase : List[str] = pipe(generator=__a , steps=4 )
_lowercase : int = output.audios[0]
_lowercase : Tuple = output.images[0]
_lowercase : str = torch.Generator(device=__a ).manual_seed(4_2 )
_lowercase : str = pipe(generator=__a , steps=4 , return_dict=__a )
_lowercase : Optional[int] = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
_lowercase : Tuple = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0]
_lowercase : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:1_0]
_lowercase : List[Any] = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
_lowercase : Optional[Any] = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
_lowercase : Tuple = DDIMScheduler()
_lowercase : Any = self.dummy_vqvae_and_unet
_lowercase : str = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__a , scheduler=__a )
_lowercase : Union[str, Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
np.random.seed(0 )
_lowercase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
_lowercase : Dict = torch.Generator(device=__a ).manual_seed(4_2 )
_lowercase : Dict = pipe(raw_audio=__a , generator=__a , start_step=5 , steps=1_0 )
_lowercase : Optional[int] = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
_lowercase : int = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0]
_lowercase : int = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
_lowercase : int = self.dummy_unet_condition
_lowercase : Optional[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__a , mel=__a , scheduler=__a )
_lowercase : str = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
np.random.seed(0 )
_lowercase : Optional[int] = torch.rand((1, 1, 1_0) )
_lowercase : Any = pipe(generator=__a , encoding=__a )
_lowercase : int = output.images[0]
_lowercase : str = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0]
_lowercase : Dict = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ):
_lowercase : Any = torch_device
_lowercase : Optional[Any] = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' )
_lowercase : Any = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
_lowercase : Any = torch.Generator(device=__a ).manual_seed(4_2 )
_lowercase : List[str] = pipe(generator=__a )
_lowercase : Any = output.audios[0]
_lowercase : Optional[int] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
_lowercase : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0]
_lowercase : int = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 707 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
from __future__ import annotations
import numpy as np
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> tuple[np.ndarray, np.ndarray]:
_lowercase , _lowercase : Tuple = np.shape(__UpperCamelCase )
if rows != columns:
_lowercase : Dict = (
'\'table\' has to be of square shaped array but got a '
F"""{rows}x{columns} array:\n{table}"""
)
raise ValueError(__UpperCamelCase )
_lowercase : int = np.zeros((rows, columns) )
_lowercase : List[Any] = np.zeros((rows, columns) )
for i in range(__UpperCamelCase ):
for j in range(__UpperCamelCase ):
_lowercase : int = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) )
if upper[j][j] == 0:
raise ArithmeticError('No LU decomposition exists' )
_lowercase : Dict = (table[i][j] - total) / upper[j][j]
_lowercase : Tuple = 1
for j in range(__UpperCamelCase , __UpperCamelCase ):
_lowercase : str = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) )
_lowercase : Tuple = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 708 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list:
_lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : Dict = i
_lowercase : str = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_lowercase : Optional[Any] = array[temp_index - 1]
temp_index -= 1
_lowercase : Optional[Any] = temp_index_value
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap
_lowercase : List[str] = index
_lowercase : List[str] = 2 * index + 1 # Left Node
_lowercase : Union[str, Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_lowercase : Any = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_lowercase : str = right_index
if largest != index:
_lowercase , _lowercase : List[str] = array[largest], array[index]
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
_lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_lowercase , _lowercase : List[Any] = array[0], array[i]
heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE )
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[Any] = low
_lowercase : Tuple = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_lowercase , _lowercase : Tuple = array[j], array[i]
i += 1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
if len(SCREAMING_SNAKE_CASE ) == 0:
return array
_lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) )
_lowercase : str = 16
return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(SCREAMING_SNAKE_CASE )
max_depth -= 1
_lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = p
return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input("Enter numbers separated by a comma : ").strip()
UpperCamelCase = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 677 | 0 |
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase_ ( _lowerCAmelCase ):
def __a ( self ):
_lowercase : Any = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCAmelCase , 'embed_dim' ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase , 'num_heads' ) )
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=6_4 , _lowerCAmelCase=3 , _lowerCAmelCase=[1_6, 4_8, 9_6] , _lowerCAmelCase=[1, 3, 6] , _lowerCAmelCase=[1, 2, 1_0] , _lowerCAmelCase=[7, 3, 3] , _lowerCAmelCase=[4, 2, 2] , _lowerCAmelCase=[2, 1, 1] , _lowerCAmelCase=[2, 2, 2] , _lowerCAmelCase=[False, False, True] , _lowerCAmelCase=[0.0, 0.0, 0.0] , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=2 , ):
_lowercase : str = parent
_lowercase : Optional[Any] = batch_size
_lowercase : Any = image_size
_lowercase : Any = patch_sizes
_lowercase : Tuple = patch_stride
_lowercase : Optional[int] = patch_padding
_lowercase : Optional[int] = is_training
_lowercase : str = use_labels
_lowercase : List[str] = num_labels
_lowercase : List[str] = num_channels
_lowercase : Dict = embed_dim
_lowercase : Any = num_heads
_lowercase : Union[str, Any] = stride_kv
_lowercase : List[str] = depth
_lowercase : List[str] = cls_token
_lowercase : Tuple = attention_drop_rate
_lowercase : Dict = initializer_range
_lowercase : Tuple = layer_norm_eps
def __a ( self ):
_lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : List[Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
_lowercase : List[str] = ids_tensor([self.batch_size] , self.num_labels )
_lowercase : Dict = self.get_config()
return config, pixel_values, labels
def __a ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = TFCvtModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , training=_lowerCAmelCase )
_lowercase : Tuple = (self.image_size, self.image_size)
_lowercase , _lowercase : List[Any] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
_lowercase : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
_lowercase : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = self.num_labels
_lowercase : Any = TFCvtForImageClassification(_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self ):
_lowercase : Tuple = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase : Tuple = config_and_inputs
_lowercase : Dict = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
_UpperCamelCase : Optional[Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
_UpperCamelCase : Optional[Any] = (
{'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : int = False
_UpperCamelCase : List[Any] = False
_UpperCamelCase : str = False
_UpperCamelCase : str = False
def __a ( self ):
_lowercase : List[str] = TFCvtModelTester(self )
_lowercase : Optional[int] = TFCvtConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason='Cvt does not output attentions' )
def __a ( self ):
pass
@unittest.skip(reason='Cvt does not use inputs_embeds' )
def __a ( self ):
pass
@unittest.skip(reason='Cvt does not support input and output embeddings' )
def __a ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
def __a ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def __a ( self ):
super().test_keras_fit()
@unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' )
def __a ( self ):
_lowercase : Optional[Any] = tf.keras.mixed_precision.Policy('mixed_float16' )
tf.keras.mixed_precision.set_global_policy(_lowerCAmelCase )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy('float32' )
def __a ( self ):
_lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : List[Any] = model_class(_lowerCAmelCase )
_lowercase : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : Tuple = [*signature.parameters.keys()]
_lowercase : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def __a ( self ):
def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = model_class(_lowerCAmelCase )
_lowercase : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
_lowercase : List[Any] = outputs.hidden_states
_lowercase : str = len(self.model_tester.depth )
self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Tuple = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : int = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFCvtModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __magic_name__ ( ) -> Tuple:
_lowercase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def __a ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __a ( self ):
_lowercase : List[str] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowercase : Dict = self.default_image_processor
_lowercase : Dict = prepare_img()
_lowercase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='tf' )
# forward pass
_lowercase : int = model(**_lowerCAmelCase )
# verify the logits
_lowercase : Tuple = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
_lowercase : Optional[int] = tf.constant([0.92_85, 0.90_15, -0.31_50] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1E-4 ) )
| 709 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPFeatureExtractor"]
UpperCamelCase = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
return str(snake_case_ ) == str(snake_case_ )[::-1]
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return int(snake_case_ ) + int(str(snake_case_ )[::-1] )
def __magic_name__ ( SCREAMING_SNAKE_CASE = 10_000 ) -> int:
_lowercase : Dict = []
for num in range(1 , snake_case_ ):
_lowercase : Dict = 0
_lowercase : str = num
while iterations < 50:
_lowercase : Any = sum_reverse(snake_case_ )
iterations += 1
if is_palindrome(snake_case_ ):
break
else:
lychrel_nums.append(snake_case_ )
return len(snake_case_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 710 |
from collections.abc import Sequence
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
_lowercase : Optional[Any] = 0.0
for coeff in reversed(SCREAMING_SNAKE_CASE ):
_lowercase : Optional[int] = result * x + coeff
return result
if __name__ == "__main__":
UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCamelCase = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 677 | 0 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ):
@require_torch
def __a ( self ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_lowercase : Optional[Any] = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_lowercase : int = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_lowercase : Dict = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_lowercase : Any = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCamelCase__ )
BertModel.from_pretrained(UpperCamelCase__ )
BertTokenizer.from_pretrained(UpperCamelCase__ )
pipeline(task='fill-mask' , model=UpperCamelCase__ )
# baseline - just load from_pretrained with normal network
_lowercase : List[Any] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_lowercase : List[Any] = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowercase : Any = '''1'''
_lowercase : List[str] = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def __a ( self ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_lowercase : str = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_lowercase : List[str] = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_lowercase : str = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_lowercase : Any = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(UpperCamelCase__ )
BertModel.from_pretrained(UpperCamelCase__ )
BertTokenizer.from_pretrained(UpperCamelCase__ )
pipeline(task='fill-mask' , model=UpperCamelCase__ )
# baseline - just load from_pretrained with normal network
_lowercase : int = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_lowercase : Optional[int] = self.get_env()
_lowercase : int = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def __a ( self ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_lowercase : List[str] = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_lowercase : Union[str, Any] = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_lowercase : Dict = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_lowercase : int = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_lowercase : Dict = self.get_env()
_lowercase : Optional[int] = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
_lowercase : List[Any] = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowercase : List[Any] = '''1'''
_lowercase : Dict = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def __a ( self ):
_lowercase : int = '''
from transformers import pipeline
'''
_lowercase : str = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_lowercase : Optional[int] = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_lowercase : int = self.get_env()
_lowercase : Optional[int] = '''1'''
_lowercase : int = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_lowercase : Dict = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def __a ( self ):
_lowercase : str = '''
from transformers import AutoModel
'''
_lowercase : List[Any] = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_lowercase : int = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_lowercase : Tuple = self.get_env()
_lowercase : str = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowercase : Any = '''1'''
_lowercase : Any = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
| 711 |
from __future__ import annotations
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase=None ):
_lowercase : int = data
_lowercase : Union[str, Any] = None
def __repr__( self ):
_lowercase : Dict = []
_lowercase : Tuple = self
while temp:
string_rep.append(F"""{temp.data}""" )
_lowercase : Optional[Any] = temp.next
return "->".join(_lowerCAmelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
if not elements_list:
raise Exception('The Elements List is empty' )
_lowercase : Union[str, Any] = Node(elements_list[0] )
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
_lowercase : Optional[int] = Node(elements_list[i] )
_lowercase : List[Any] = current.next
return head
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None:
if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __magic_name__ ( ) -> List[str]:
from doctest import testmod
testmod()
_lowercase : int = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
UpperCamelCase : Any = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None ):
_lowercase : Union[str, Any] = None
_lowercase : Union[str, Any] = os.path.abspath(os.path.join('examples' , 'by_feature' ) )
_lowercase : Union[str, Any] = os.path.abspath('examples' )
for item in os.listdir(_lowerCamelCase ):
if item not in EXCLUDE_EXAMPLES:
_lowercase : int = os.path.join(_lowerCamelCase , _lowerCamelCase )
if os.path.isfile(_lowerCamelCase ) and ".py" in item_path:
with self.subTest(
tested_script=_lowerCamelCase , feature_script=_lowerCamelCase , tested_section='main()' if parser_only else 'training_function()' , ):
_lowercase : List[Any] = compare_against_test(
os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowercase : List[str] = '\n'.join(_lowerCamelCase )
if special_strings is not None:
for string in special_strings:
_lowercase : List[Any] = diff.replace(_lowerCamelCase , '' )
self.assertEqual(_lowerCamelCase , '' )
def __a ( self ):
self.one_complete_example('complete_nlp_example.py' , _lowerCamelCase )
self.one_complete_example('complete_nlp_example.py' , _lowerCamelCase )
def __a ( self ):
_lowercase : List[Any] = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) )
_lowercase : str = [
' ' * 1_6 + '{\n\n',
' ' * 2_0 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 2_0 + '"f1": eval_metric["f1"],\n\n',
' ' * 2_0 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 2_0 + '"epoch": epoch,\n\n',
' ' * 1_6 + '},\n\n',
' ' * 1_6 + 'step=epoch,\n',
' ' * 1_2,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
self.one_complete_example('complete_cv_example.py' , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class lowerCAmelCase_ ( lowerCAmelCase__ ):
_UpperCamelCase : str = False
@classmethod
def __a ( cls ):
super().setUpClass()
_lowercase : int = tempfile.mkdtemp()
_lowercase : List[Any] = os.path.join(cls._tmpdir , 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
_lowercase : List[Any] = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def __a ( cls ):
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def __a ( self ):
_lowercase : List[str] = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n """.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) )
def __a ( self ):
_lowercase : List[Any] = F"""\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n """.split()
_lowercase : str = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) )
def __a ( self ):
_lowercase : Tuple = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n """.split()
_lowercase : Tuple = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase )
self.assertNotIn('epoch 0:' , _lowerCamelCase )
self.assertIn('epoch 1:' , _lowerCamelCase )
def __a ( self ):
_lowercase : List[str] = F"""\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n """.split()
_lowercase : Any = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase )
if torch.cuda.is_available():
_lowercase : Optional[int] = torch.cuda.device_count()
else:
_lowercase : List[Any] = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , _lowerCamelCase )
self.assertIn('epoch 1:' , _lowerCamelCase )
else:
self.assertIn('epoch 0:' , _lowerCamelCase )
self.assertIn('epoch 1:' , _lowerCamelCase )
@slow
def __a ( self ):
_lowercase : Tuple = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ):
_lowercase : Dict = run_command(self._launch_args + testargs , return_stdout=_lowerCamelCase )
_lowercase : Optional[int] = re.findall('({.+})' , _lowerCamelCase )
_lowercase : Optional[Any] = [r for r in results if 'accuracy' in r][-1]
_lowercase : List[str] = ast.literal_eval(_lowerCamelCase )
self.assertGreaterEqual(results['accuracy'] , 0.75 )
def __a ( self ):
_lowercase : int = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )
def __a ( self ):
with tempfile.TemporaryDirectory() as tmpdir:
_lowercase : Optional[Any] = F"""\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n """.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , 'tracking' ) ) )
def __a ( self ):
_lowercase : str = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def __a ( self ):
_lowercase : str = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 712 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2)
if __name__ == "__main__":
def __magic_name__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
benchmark()
| 677 | 0 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
UpperCamelCase = data_utils.TransfoXLTokenizer
UpperCamelCase = data_utils.TransfoXLCorpus
UpperCamelCase = data_utils
UpperCamelCase = data_utils
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(__snake_case , 'rb' ) as fp:
_lowercase : Optional[int] = pickle.load(__snake_case , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
_lowercase : Tuple = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"]
print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" )
_lowercase : Union[str, Any] = corpus.vocab.__dict__
torch.save(__snake_case , __snake_case )
_lowercase : str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , __snake_case )
_lowercase : str = pytorch_dump_folder_path + "/" + CORPUS_NAME
print(F"""Save dataset to {pytorch_dataset_dump_path}""" )
torch.save(__snake_case , __snake_case )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
_lowercase : Tuple = os.path.abspath(__snake_case )
_lowercase : int = os.path.abspath(__snake_case )
print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" )
# Initialise PyTorch model
if transfo_xl_config_file == "":
_lowercase : Dict = TransfoXLConfig()
else:
_lowercase : List[Any] = TransfoXLConfig.from_json_file(__snake_case )
print(F"""Building PyTorch model from configuration: {config}""" )
_lowercase : str = TransfoXLLMHeadModel(__snake_case )
_lowercase : Any = load_tf_weights_in_transfo_xl(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
_lowercase : Dict = os.path.join(__snake_case , __snake_case )
_lowercase : int = os.path.join(__snake_case , __snake_case )
print(F"""Save PyTorch model to {os.path.abspath(__snake_case )}""" )
torch.save(model.state_dict() , __snake_case )
print(F"""Save configuration file to {os.path.abspath(__snake_case )}""" )
with open(__snake_case , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
UpperCamelCase = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase = 16
UpperCamelCase = 32
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ) -> Any:
_lowercase : str = AutoTokenizer.from_pretrained('bert-base-cased' )
_lowercase : Union[str, Any] = load_dataset('glue' , 'mrpc' )
def tokenize_function(SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
_lowercase : str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowercase : str = datasets.map(
a__ , batched=a__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowercase : Tuple = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowercase : List[str] = 16
elif accelerator.mixed_precision != "no":
_lowercase : Dict = 8
else:
_lowercase : Tuple = None
return tokenizer.pad(
a__ , padding='longest' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='pt' , )
# Instantiate dataloaders.
_lowercase : Optional[Any] = DataLoader(
tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ )
_lowercase : List[str] = DataLoader(
tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase = mocked_dataloaders # noqa: F811
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
if os.environ.get('TESTING_MOCKED_DATALOADERS' , a__ ) == "1":
_lowercase : Any = 2
# Initialize accelerator
_lowercase : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowercase : Optional[int] = config['lr']
_lowercase : int = int(config['num_epochs'] )
_lowercase : Optional[int] = int(config['seed'] )
_lowercase : int = int(config['batch_size'] )
_lowercase : Optional[Any] = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
_lowercase : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_lowercase : Tuple = batch_size // MAX_GPU_BATCH_SIZE
_lowercase : Tuple = MAX_GPU_BATCH_SIZE
set_seed(a__ )
_lowercase , _lowercase : Any = get_dataloaders(a__ , a__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowercase : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowercase : Any = model.to(accelerator.device )
# Instantiate optimizer
_lowercase : Union[str, Any] = AdamW(params=model.parameters() , lr=a__ )
# Instantiate scheduler
_lowercase : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = accelerator.prepare(
a__ , a__ , a__ , a__ , a__ )
# Now we train the model
for epoch in range(a__ ):
model.train()
for step, batch in enumerate(a__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_lowercase : Tuple = model(**a__ )
_lowercase : List[Any] = outputs.loss
_lowercase : List[str] = loss / gradient_accumulation_steps
accelerator.backward(a__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_lowercase : List[str] = 0
for step, batch in enumerate(a__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowercase : Tuple = model(**a__ )
_lowercase : List[str] = outputs.logits.argmax(dim=-1 )
_lowercase , _lowercase : Dict = accelerator.gather((predictions, batch['labels']) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(a__ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_lowercase : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_lowercase : Dict = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=a__ , references=a__ , )
_lowercase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , a__ )
def __magic_name__ ( ) -> str:
_lowercase : List[str] = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=a__ , default=a__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
_lowercase : Optional[Any] = parser.parse_args()
_lowercase : Any = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(a__ , a__ )
if __name__ == "__main__":
main()
| 714 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Any = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Tuple = normalizer_class(**_lowerCAmelCase )
_lowercase : Union[str, Any] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = [self.sep_token_id]
_lowercase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 677 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowerCAmelCase_ ( UpperCamelCase__ ):
_UpperCamelCase : List[Any] = "Salesforce/blip-image-captioning-base"
_UpperCamelCase : Optional[int] = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
_UpperCamelCase : Any = "image_captioner"
_UpperCamelCase : Optional[Any] = AutoModelForVisionaSeq
_UpperCamelCase : Any = ["image"]
_UpperCamelCase : List[Any] = ["text"]
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
requires_backends(self , ['vision'] )
super().__init__(*__A , **__A )
def __a ( self , _lowerCAmelCase ):
return self.pre_processor(images=__A , return_tensors='pt' )
def __a ( self , _lowerCAmelCase ):
return self.model.generate(**__A )
def __a ( self , _lowerCAmelCase ):
return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0].strip()
| 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 716 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
for attribute in key.split('.' ):
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
_lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
_lowercase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_lowercase : List[str] = value
elif weight_type == "weight_g":
_lowercase : Any = value
elif weight_type == "weight_v":
_lowercase : Tuple = value
elif weight_type == "bias":
_lowercase : List[str] = value
else:
_lowercase : Dict = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = []
_lowercase : Optional[int] = fairseq_model.state_dict()
_lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowercase : Dict = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
_lowercase : int = True
else:
for key, mapped_key in MAPPING.items():
_lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
_lowercase : Union[str, Any] = True
if "*" in mapped_key:
_lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
_lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_lowercase : Optional[int] = 'weight_g'
elif "weight_v" in name:
_lowercase : Optional[Any] = 'weight_v'
elif "weight" in name:
_lowercase : str = 'weight'
elif "bias" in name:
_lowercase : Any = 'bias'
else:
_lowercase : str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = full_name.split('conv_layers.' )[-1]
_lowercase : Any = name.split('.' )
_lowercase : Optional[Any] = int(items[0] )
_lowercase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_lowercase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_lowercase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_lowercase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_lowercase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
if config_path is not None:
_lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertConfig()
if is_finetuned:
if dict_path:
_lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowercase : Dict = target_dict.pad_index
_lowercase : Dict = target_dict.bos_index
_lowercase : Tuple = target_dict.eos_index
_lowercase : List[Any] = len(target_dict.symbols )
_lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE )
_lowercase : int = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , )
_lowercase : str = True if config.feat_extract_norm == 'layer' else False
_lowercase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
_lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE )
if is_finetuned:
_lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
_lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_lowercase : int = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[int]:
_lowercase : List[str] = int(SCREAMING_SNAKE_CASE )
# Initialize Result
_lowercase : Optional[Any] = []
# Traverse through all denomination
for denomination in reversed(SCREAMING_SNAKE_CASE ):
# Find denominations
while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ):
total_value -= int(SCREAMING_SNAKE_CASE )
answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
UpperCamelCase = []
UpperCamelCase = "0"
if (
input("Do you want to enter your denominations ? (yY/n): ").strip().lower()
== "y"
):
UpperCamelCase = int(input("Enter the number of denominations you want to add: ").strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
UpperCamelCase = input("Enter the change you want to make in Indian Currency: ").strip()
else:
# All denominations of Indian Currency if user does not enter
UpperCamelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2_000]
UpperCamelCase = input("Enter the change you want to make: ").strip()
if int(value) == 0 or int(value) < 0:
print("The total value cannot be zero or negative.")
else:
print(f'''Following is minimal change for {value}: ''')
UpperCamelCase = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=" ")
| 717 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ):
_lowercase : List[str] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : str = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_input_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Optional[Any] = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : str = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = num_labels
_lowercase : List[str] = num_choices
_lowercase : Dict = scope
_lowercase : List[Any] = range_bbox
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowercase : List[str] = bbox[i, j, 3]
_lowercase : Optional[int] = bbox[i, j, 1]
_lowercase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowercase : Dict = bbox[i, j, 2]
_lowercase : Dict = bbox[i, j, 0]
_lowercase : int = t
_lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Union[str, Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : str = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Any = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase )
_lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = self.num_labels
_lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_labels
_lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[Any] = config_and_inputs
_lowercase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Union[str, Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = 10
def __a ( self ):
_lowercase : Optional[int] = TFLayoutLMModelTester(self )
_lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def __a ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
_lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
_lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
_lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
_lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
_lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the sequence output on [0, :3, :3]
_lowercase : Optional[Any] = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) )
# test the pooled output on [1, :3]
_lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
_lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Any = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
_lowercase : List[Any] = outputs.loss
_lowercase : Any = (2,)
self.assertEqual(loss.shape , _lowerCAmelCase )
# test the shape of the logits
_lowercase : str = outputs.logits
_lowercase : Dict = (2, 2)
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Dict = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Dict = outputs.logits
_lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Any = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
| 677 | 0 |
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCamelCase = {
"allenai/led-base-16384": 16_384,
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : List[str] = VOCAB_FILES_NAMES
_UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[Any] = LEDTokenizer
_UpperCamelCase : List[str] = ["input_ids", "attention_mask"]
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ):
super().__init__(
__A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , )
_lowercase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , __A ) != add_prefix_space:
_lowercase : Optional[Any] = getattr(__A , pre_tok_state.pop('type' ) )
_lowercase : List[str] = add_prefix_space
_lowercase : Tuple = pre_tok_class(**__A )
_lowercase : List[str] = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_lowercase : Union[str, Any] = 'post_processor'
_lowercase : Dict = getattr(self.backend_tokenizer , __A , __A )
if tokenizer_component_instance:
_lowercase : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowercase : Dict = tuple(state['sep'] )
if "cls" in state:
_lowercase : Optional[int] = tuple(state['cls'] )
_lowercase : Dict = False
if state.get('add_prefix_space' , __A ) != add_prefix_space:
_lowercase : Tuple = add_prefix_space
_lowercase : Union[str, Any] = True
if state.get('trim_offsets' , __A ) != trim_offsets:
_lowercase : Any = trim_offsets
_lowercase : Optional[Any] = True
if changes_to_apply:
_lowercase : Optional[Any] = getattr(__A , state.pop('type' ) )
_lowercase : Optional[int] = component_class(**__A )
setattr(self.backend_tokenizer , __A , __A )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def __a ( self ):
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def __a ( self , _lowerCAmelCase ):
_lowercase : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value
_lowercase : Optional[int] = value
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
_lowercase : Tuple = kwargs.get('is_split_into_words' , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*__A , **__A )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
_lowercase : List[str] = kwargs.get('is_split_into_words' , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'to use it with pretokenized inputs.' )
return super()._encode_plus(*__A , **__A )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Dict = [self.sep_token_id]
_lowercase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase = None , _lowerCAmelCase = None , ):
_lowercase : Tuple = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
_lowercase : int = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_lowercase : List[Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_lowercase : Any = len(encoded_inputs['global_attention_mask'] ) != len(__A )
if needs_to_be_padded:
_lowercase : Optional[int] = len(__A ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_lowercase : List[Any] = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
_lowercase : List[str] = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 718 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : List[str] = logging.get_logger()
# the current default level is logging.WARNING
_lowercase : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = logging.get_verbosity()
_lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : Tuple = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase )
_lowercase : Optional[Any] = logging.log_levels[env_level_str]
_lowercase : Dict = logging.get_verbosity()
self.assertEqual(
_lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_lowercase : Any = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
_lowercase : Tuple = logging.logging.getLogger()
with CaptureLogger(_lowerCAmelCase ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def __a ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
_lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : List[str] = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
def __magic_name__ ( ) -> List[str]:
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 677 | 0 |
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE="29500" ) -> Union[str, Any]:
_lowercase : Tuple = False
_lowercase : Union[str, Any] = False
if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ):
_lowercase : List[str] = True
elif "IPython" in sys.modules:
_lowercase : str = """google.colab""" in str(sys.modules['IPython'].get_ipython() )
try:
_lowercase : int = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _lowerCamelCase ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside '
'your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if num_processes is None:
_lowercase : int = 8
_lowercase : Any = PrepareForLaunch(_lowerCamelCase , distributed_type='TPU' )
print(F"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(_lowerCamelCase , args=_lowerCamelCase , nprocs=_lowerCamelCase , start_method='fork' )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on one CPU.' )
function(*_lowerCamelCase )
else:
if num_processes is None:
raise ValueError(
'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized '
'inside your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if torch.cuda.is_initialized():
raise ValueError(
'To launch a multi-GPU training from your notebook, you need to avoid running any instruction '
'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA '
'function.' )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=_lowerCamelCase , master_addr='127.0.01' , master_port=_lowerCamelCase , mixed_precision=_lowerCamelCase ):
_lowercase : str = PrepareForLaunch(_lowerCamelCase , distributed_type='MULTI_GPU' )
print(F"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(_lowerCamelCase , args=_lowerCamelCase , nprocs=_lowerCamelCase , start_method='fork' )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. '
'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. '
'Please review your imports and test them when running the `notebook_launcher()` to identify '
'which one is problematic.' ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
_lowercase : List[str] = """1"""
print('Launching training on MPS.' )
elif torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on CPU.' )
function(*_lowerCamelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=2 ) -> List[str]:
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=_lowerCamelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ):
_lowercase : Union[str, Any] = PrepareForLaunch(_lowerCamelCase , debug=_lowerCamelCase )
start_processes(_lowerCamelCase , args=_lowerCamelCase , nprocs=_lowerCamelCase , start_method='fork' )
| 719 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase = "pt"
elif is_tf_available():
UpperCamelCase = "tf"
else:
UpperCamelCase = "jax"
class lowerCAmelCase_ ( __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = PerceiverTokenizer
_UpperCamelCase : str = False
def __a ( self ):
super().setUp()
_lowercase : List[Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def __a ( self , **_lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_lowercase : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
_lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) )
_lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowercase : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowercase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowercase : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowercase : List[Any] = ' ' + output_txt
_lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __a ( self ):
_lowercase : Dict = self.perceiver_tokenizer
_lowercase : Optional[Any] = 'Unicode €.'
_lowercase : str = tokenizer(_lowerCAmelCase )
_lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' )
_lowercase : Union[str, Any] = tokenizer('e è é ê ë' )
_lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : int = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def __a ( self ):
_lowercase : List[str] = self.perceiver_tokenizer
_lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
_lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
_lowercase : int = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def __a ( self ):
_lowercase : List[Any] = self.perceiver_tokenizer
_lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _lowerCAmelCase )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertNotIn('decoder_input_ids' , _lowerCAmelCase )
self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.perceiver_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : Optional[int] = tokenizer(
text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
def __a ( self ):
# safety check on max_len default value so we are sure the test works
_lowercase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_lowercase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
_lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[str] = tempfile.mkdtemp()
_lowercase : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Any = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : List[str] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(_lowerCAmelCase )
_lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
_lowercase : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : Optional[int] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __a ( self ):
_lowercase : str = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '�' )
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
_lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 677 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : torch.FloatTensor
class lowerCAmelCase_ ( __snake_case , __snake_case ):
@register_to_config
def __init__( self , _lowerCAmelCase = 6_5_5_3_6 , _lowerCAmelCase = None , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0 , _lowerCAmelCase = "fourier" , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = 0.0 , _lowerCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _lowerCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _lowerCAmelCase = "UNetMidBlock1D" , _lowerCAmelCase = None , _lowerCAmelCase = (3_2, 3_2, 6_4) , _lowerCAmelCase = None , _lowerCAmelCase = 8 , _lowerCAmelCase = 1 , _lowerCAmelCase = False , ):
super().__init__()
_lowercase : str = sample_size
# time
if time_embedding_type == "fourier":
_lowercase : Optional[Any] = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=A__ , log=A__ , flip_sin_to_cos=A__ )
_lowercase : Optional[int] = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
_lowercase : Optional[Any] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=A__ , downscale_freq_shift=A__ )
_lowercase : int = block_out_channels[0]
if use_timestep_embedding:
_lowercase : Any = block_out_channels[0] * 4
_lowercase : List[Any] = TimestepEmbedding(
in_channels=A__ , time_embed_dim=A__ , act_fn=A__ , out_dim=block_out_channels[0] , )
_lowercase : int = nn.ModuleList([] )
_lowercase : Tuple = None
_lowercase : List[str] = nn.ModuleList([] )
_lowercase : int = None
# down
_lowercase : List[str] = in_channels
for i, down_block_type in enumerate(A__ ):
_lowercase : Optional[Any] = output_channel
_lowercase : Optional[Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
_lowercase : str = i == len(A__ ) - 1
_lowercase : Any = get_down_block(
A__ , num_layers=A__ , in_channels=A__ , out_channels=A__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(A__ )
# mid
_lowercase : List[str] = get_mid_block(
A__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A__ , add_downsample=A__ , )
# up
_lowercase : Union[str, Any] = list(reversed(A__ ) )
_lowercase : int = reversed_block_out_channels[0]
if out_block_type is None:
_lowercase : str = out_channels
else:
_lowercase : Any = block_out_channels[0]
for i, up_block_type in enumerate(A__ ):
_lowercase : List[str] = output_channel
_lowercase : str = (
reversed_block_out_channels[i + 1] if i < len(A__ ) - 1 else final_upsample_channels
)
_lowercase : int = i == len(A__ ) - 1
_lowercase : str = get_up_block(
A__ , num_layers=A__ , in_channels=A__ , out_channels=A__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(A__ )
_lowercase : Dict = output_channel
# out
_lowercase : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 )
_lowercase : List[Any] = get_out_block(
out_block_type=A__ , num_groups_out=A__ , embed_dim=block_out_channels[0] , out_channels=A__ , act_fn=A__ , fc_dim=block_out_channels[-1] // 4 , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ):
_lowercase : Any = timestep
if not torch.is_tensor(A__ ):
_lowercase : Tuple = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0:
_lowercase : Optional[Any] = timesteps[None].to(sample.device )
_lowercase : List[str] = self.time_proj(A__ )
if self.config.use_timestep_embedding:
_lowercase : Tuple = self.time_mlp(A__ )
else:
_lowercase : Optional[int] = timestep_embed[..., None]
_lowercase : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
_lowercase : Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
_lowercase : List[str] = ()
for downsample_block in self.down_blocks:
_lowercase : str = downsample_block(hidden_states=A__ , temb=A__ )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
_lowercase : Any = self.mid_block(A__ , A__ )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
_lowercase : int = down_block_res_samples[-1:]
_lowercase : str = down_block_res_samples[:-1]
_lowercase : List[Any] = upsample_block(A__ , res_hidden_states_tuple=A__ , temb=A__ )
# 5. post-process
if self.out_block:
_lowercase : str = self.out_block(A__ , A__ )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=A__ )
| 720 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def __magic_name__ ( SCREAMING_SNAKE_CASE = "isbn/0140328726" ) -> dict:
_lowercase : int = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('/' ) != 1:
_lowercase : List[Any] = F"""{olid} is not a valid Open Library olid"""
raise ValueError(lowerCAmelCase__ )
return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json()
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> dict:
_lowercase : Optional[int] = {
'title': 'Title',
'publish_date': 'Publish date',
'authors': 'Authors',
'number_of_pages': 'Number of pages:',
'first_sentence': 'First sentence',
'isbn_10': 'ISBN (10)',
'isbn_13': 'ISBN (13)',
}
_lowercase : Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
_lowercase : Union[str, Any] = [
get_openlibrary_data(author['key'] )['name'] for author in data['Authors']
]
_lowercase : Dict = data['First sentence']['value']
for key, value in data.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_lowercase : str = ', '.join(lowerCAmelCase__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
UpperCamelCase = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
UpperCamelCase = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print("\n".join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 721 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Tuple = "ClapFeatureExtractor"
_UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowercase : Any = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowercase : Union[str, Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __a ( self ):
_lowercase : Dict = self.tokenizer.model_input_names
_lowercase : Any = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 677 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["""GLPNFeatureExtractor"""]
UpperCamelCase = ["""GLPNImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"""GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GLPNForDepthEstimation""",
"""GLPNLayer""",
"""GLPNModel""",
"""GLPNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = num_of_nodes
_lowercase : list[list[int]] = []
_lowercase : dict[int, int] = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
self.m_edges.append([u_node, v_node, weight] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowercase : Optional[int] = self.find_component(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if component_size[u_node] <= component_size[v_node]:
_lowercase : str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
_lowercase : Any = self.find_component(_lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = []
_lowercase : Optional[Any] = 0
_lowercase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowercase : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowercase , _lowercase , _lowercase : List[str] = edge
_lowercase : Union[str, Any] = self.m_component[u]
_lowercase : Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowercase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : int = edge
_lowercase : Optional[int] = self.m_component[u]
_lowercase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
_lowercase : str = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
UpperCamelCase = logging.get_logger(__name__)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
_lowercase : Dict = tensor_name.split('.' )
for split in splits[:-1]:
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
_lowercase : Optional[int] = new_module
_lowercase : List[Any] = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
_lowercase : Optional[int] = tensor_name in module._buffers
_lowercase : Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
_lowercase : Dict = False
_lowercase : Dict = False
if is_buffer or not is_bitsandbytes_available():
_lowercase : Any = False
_lowercase : List[str] = False
else:
_lowercase : str = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
_lowercase : List[str] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
_lowercase : Dict = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
_lowercase : Optional[int] = old_value.to(SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
_lowercase : int = value.to('cpu' )
if value.dtype == torch.inta:
_lowercase : Optional[Any] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
_lowercase : Any = torch.tensor(SCREAMING_SNAKE_CASE , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , SCREAMING_SNAKE_CASE ) and fpaa_statistics is None:
_lowercase : Optional[Any] = new_value.T
_lowercase : Tuple = old_value.__dict__
if is_abit:
_lowercase : Any = bnb.nn.IntaParams(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
elif is_abit:
_lowercase : List[str] = bnb.nn.Paramsabit(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(SCREAMING_SNAKE_CASE ) )
else:
if value is None:
_lowercase : List[str] = old_value.to(SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
_lowercase : Tuple = value.to(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[str] = torch.tensor(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE )
if is_buffer:
_lowercase : List[str] = new_value
else:
_lowercase : Any = nn.Parameter(SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad )
_lowercase : List[str] = new_value
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]:
for name, module in model.named_children():
if current_key_name is None:
_lowercase : Any = []
current_key_name.append(SCREAMING_SNAKE_CASE )
if (isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase , _lowercase : str = module.weight.shape
else:
_lowercase : List[str] = module.in_features
_lowercase : Optional[int] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
_lowercase : Dict = bnb.nn.LinearabitLt(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
_lowercase : List[Any] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
_lowercase : str = bnb.nn.Linearabit(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
_lowercase : str = True
# Store the module class in case we need to transpose the weight later
_lowercase : List[Any] = type(SCREAMING_SNAKE_CASE )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(SCREAMING_SNAKE_CASE )
if len(list(module.children() ) ) > 0:
_lowercase , _lowercase : Any = _replace_with_bnb_linear(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_been_replaced=SCREAMING_SNAKE_CASE , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str:
_lowercase : Optional[Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
_lowercase , _lowercase : Dict = _replace_with_bnb_linear(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def __magic_name__ ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , SCREAMING_SNAKE_CASE , )
return replace_with_bnb_linear(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __magic_name__ ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , SCREAMING_SNAKE_CASE , )
return set_module_quantized_tensor_to_device(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
_lowercase : Tuple = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
_lowercase : Dict = find_tied_parameters(SCREAMING_SNAKE_CASE )
# For compatibility with Accelerate < 0.18
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
_lowercase : Optional[Any] = sum(SCREAMING_SNAKE_CASE , [] )
_lowercase : List[Any] = len(SCREAMING_SNAKE_CASE ) > 0
# Check if it is a base model
_lowercase : Optional[Any] = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
_lowercase : Optional[Any] = list(model.named_children() )
_lowercase : Any = [list_modules[-1][0]]
# add last module together with tied weights
_lowercase : List[Any] = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE )
# remove ".weight" from the keys
_lowercase : Union[str, Any] = ['.weight', '.bias']
_lowercase : Optional[int] = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
_lowercase : int = name.replace(SCREAMING_SNAKE_CASE , '' )
filtered_module_names.append(SCREAMING_SNAKE_CASE )
return filtered_module_names
| 701 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = {}
_lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids']
_lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
UpperCamelCase = HfArgumentParser(PretokenizationArguments)
UpperCamelCase = parser.parse_args()
if args.num_workers is None:
UpperCamelCase = multiprocessing.cpu_count()
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCamelCase = time.time()
UpperCamelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
UpperCamelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 677 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
if principal <= 0:
raise Exception('Principal borrowed must be > 0' )
if rate_per_annum < 0:
raise Exception('Rate of interest must be >= 0' )
if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise Exception('Years to repay must be an integer > 0' )
# Yearly rate is divided by 12 to get monthly rate
_lowercase : str = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
_lowercase : str = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration}
UpperCamelCase = {"facebook/bart-base": BartTokenizer}
def __magic_name__ ( ) -> str:
_lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , )
parser.add_argument(
'--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' )
_lowercase : Optional[Any] = parser.parse_args()
return args
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]:
_lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE )
if model_name in ["facebook/bart-base"]:
_lowercase : Dict = 0
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = 0
return huggingface_model, tokenizer
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
model.eval()
_lowercase : List[Any] = None
_lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) )
with torch.no_grad():
_lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.'
_lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device )
_lowercase : str = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=SCREAMING_SNAKE_CASE , )
logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) )
logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = ort_sess.run(
SCREAMING_SNAKE_CASE , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(SCREAMING_SNAKE_CASE ),
'max_length': np.array(SCREAMING_SNAKE_CASE ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def __magic_name__ ( ) -> Any:
_lowercase : Dict = parse_args()
_lowercase : Union[str, Any] = 5
_lowercase : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_lowercase : Optional[Any] = torch.device(args.device )
_lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(SCREAMING_SNAKE_CASE )
if args.max_length:
_lowercase : Any = args.max_length
if args.num_beams:
_lowercase : List[str] = args.num_beams
if args.output_file_path:
_lowercase : Union[str, Any] = args.output_file_path
else:
_lowercase : Tuple = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
UpperCamelCase = "Create a default config file for Accelerate with only a few flags set."
def __magic_name__ ( SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE = default_json_config_file , SCREAMING_SNAKE_CASE = False ) -> str:
'''simple docstring'''
_lowercase : Optional[Any] = Path(SCREAMING_SNAKE_CASE_ )
path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
if path.exists():
print(
F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" )
return False
_lowercase : Tuple = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F"""`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}""" )
_lowercase : Any = {
'compute_environment': 'LOCAL_MACHINE',
'mixed_precision': mixed_precision,
}
if torch.cuda.is_available():
_lowercase : Union[str, Any] = torch.cuda.device_count()
_lowercase : int = num_gpus
_lowercase : Any = False
if num_gpus > 1:
_lowercase : Dict = 'MULTI_GPU'
else:
_lowercase : Any = 'NO'
elif is_xpu_available() and use_xpu:
_lowercase : Tuple = torch.xpu.device_count()
_lowercase : int = num_xpus
_lowercase : Any = False
if num_xpus > 1:
_lowercase : Dict = 'MULTI_XPU'
else:
_lowercase : Dict = 'NO'
elif is_npu_available():
_lowercase : int = torch.npu.device_count()
_lowercase : Optional[int] = num_npus
_lowercase : List[str] = False
if num_npus > 1:
_lowercase : Union[str, Any] = 'MULTI_NPU'
else:
_lowercase : int = 'NO'
else:
_lowercase : str = 0
_lowercase : List[Any] = True
_lowercase : Optional[int] = 1
_lowercase : List[str] = 'NO'
_lowercase : List[str] = ClusterConfig(**SCREAMING_SNAKE_CASE_ )
config.to_json_file(SCREAMING_SNAKE_CASE_ )
return path
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
'''simple docstring'''
_lowercase : int = parser.add_parser('default' , parents=SCREAMING_SNAKE_CASE_ , help=SCREAMING_SNAKE_CASE_ , formatter_class=SCREAMING_SNAKE_CASE_ )
parser.add_argument(
'--config_file' , default=SCREAMING_SNAKE_CASE_ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , dest='save_location' , )
parser.add_argument(
'--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=SCREAMING_SNAKE_CASE_ , help='Whether or not to use mixed precision training. '
'Choose between FP16 and BF16 (bfloat16) training. '
'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , )
parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
return parser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
_lowercase : Any = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F"""accelerate configuration saved at {config_file}""" )
| 703 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_UpperCamelCase : List[Any] = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = False
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ):
_lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
_lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : Optional[Any] = parent
_lowercase : str = batch_size
_lowercase : Optional[int] = seq_length
_lowercase : Tuple = is_training
_lowercase : List[Any] = use_input_mask
_lowercase : Optional[Any] = use_token_type_ids
_lowercase : Any = use_labels
_lowercase : str = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Tuple = hidden_act
_lowercase : Dict = hidden_dropout_prob
_lowercase : Optional[int] = attention_probs_dropout_prob
_lowercase : Tuple = max_position_embeddings
_lowercase : List[str] = type_vocab_size
_lowercase : Optional[Any] = type_sequence_label_size
_lowercase : List[Any] = initializer_range
_lowercase : List[str] = num_labels
_lowercase : Union[str, Any] = num_choices
_lowercase : List[str] = scope
_lowercase : Union[str, Any] = embedding_size
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Optional[int] = None
if self.use_input_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Dict = None
_lowercase : Any = None
_lowercase : int = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase )
_lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
_lowercase : Tuple = [input_ids, input_mask]
_lowercase : str = model(_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Optional[int] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase )
_lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = self.num_labels
_lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase )
_lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_choices
_lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : str = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.num_labels
_lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : int = config_and_inputs
_lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def __a ( self ):
_lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self )
_lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase )
@slow
def __a ( self ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' )
_lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_lowercase : List[str] = model(_lowerCAmelCase )[0]
_lowercase : str = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , _lowerCAmelCase )
_lowercase : List[Any] = tf.constant(
[
[
[-4.5_91_95_47, -9.24_82_95, -9.64_52_56],
[-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37],
[-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
| 677 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
UpperCamelCase = {
"gpt-neox-20b": 2_048,
}
class lowerCAmelCase_ ( __A ):
_UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
_UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space:
_lowercase : List[Any] = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) )
_lowercase : int = add_prefix_space
_lowercase : List[Any] = pre_tok_class(**_lowerCAmelCase )
_lowercase : int = add_prefix_space
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Dict = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase ):
_lowercase : int = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] )
if len(_lowerCAmelCase ) > self.model_max_length:
_lowercase : int = input_ids[-self.model_max_length :]
return input_ids
| 704 |
import qiskit
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts:
_lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
_lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
_lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = single_qubit_measure(2, 2)
print(f'''Total count for various states are: {counts}''')
| 677 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"],
"tokenization_perceiver": ["PerceiverTokenizer"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["PerceiverFeatureExtractor"]
UpperCamelCase = ["PerceiverImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCamelCase = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict:
if attention_mask is None:
_lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ):
_lowercase : List[str] = parent
_lowercase : List[Any] = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : Optional[Any] = is_training
_lowercase : Tuple = use_labels
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : Tuple = intermediate_size
_lowercase : Any = hidden_act
_lowercase : Optional[Any] = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = eos_token_id
_lowercase : int = pad_token_id
_lowercase : Tuple = bos_token_id
_lowercase : List[Any] = initializer_range
def __a ( self ):
_lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Tuple = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , )
_lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = 2_0
_lowercase : List[Any] = model_class_name(_lowerCAmelCase )
_lowercase : List[Any] = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : int = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
_lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = 2_0
_lowercase : Any = model_class_name(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : Optional[int] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
_lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Tuple = 99
def __a ( self ):
_lowercase : Dict = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
_lowercase : Union[str, Any] = input_ids.shape[0]
_lowercase : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __a ( self ):
_lowercase , _lowercase , _lowercase : int = self._get_config_and_data()
_lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase )
_lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
_lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
_lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
_lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase )
_lowercase : Tuple = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
_lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowerCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __a ( self ):
_lowercase : List[str] = FlaxBlenderbotSmallModelTester(self )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ):
_lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : int = model_class(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
_lowercase : List[Any] = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ):
for model_class_name in self.all_model_classes:
_lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id
_lowercase : int = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 677 | 0 |
'''simple docstring'''
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = name
_lowercase : List[Any] = val
def __str__( self ):
return F"""{self.__class__.__name__}({self.name}, {self.val})"""
def __lt__( self , _lowerCAmelCase ):
return self.val < other.val
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = {}
_lowercase : List[Any] = {}
_lowercase : str = self.build_heap(snake_case__ )
def __getitem__( self , _lowerCAmelCase ):
return self.get_value(snake_case__ )
def __a ( self , _lowerCAmelCase ):
return (idx - 1) // 2
def __a ( self , _lowerCAmelCase ):
return idx * 2 + 1
def __a ( self , _lowerCAmelCase ):
return idx * 2 + 2
def __a ( self , _lowerCAmelCase ):
return self.heap_dict[key]
def __a ( self , _lowerCAmelCase ):
_lowercase : Optional[Any] = len(snake_case__ ) - 1
_lowercase : Union[str, Any] = self.get_parent_idx(snake_case__ )
for idx, i in enumerate(snake_case__ ):
_lowercase : str = idx
_lowercase : Dict = i.val
for i in range(snake_case__ , -1 , -1 ):
self.sift_down(snake_case__ , snake_case__ )
return array
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
while True:
_lowercase : Optional[Any] = self.get_left_child_idx(snake_case__ ) # noqa: E741
_lowercase : Tuple = self.get_right_child_idx(snake_case__ )
_lowercase : str = idx
if l < len(snake_case__ ) and array[l] < array[idx]:
_lowercase : Union[str, Any] = l
if r < len(snake_case__ ) and array[r] < array[smallest]:
_lowercase : int = r
if smallest != idx:
_lowercase , _lowercase : List[Any] = array[smallest], array[idx]
(
(
_lowercase
) , (
_lowercase
) ,
) : List[str] = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
_lowercase : int = smallest
else:
break
def __a ( self , _lowerCAmelCase ):
_lowercase : str = self.get_parent_idx(snake_case__ )
while p >= 0 and self.heap[p] > self.heap[idx]:
_lowercase , _lowercase : List[Any] = self.heap[idx], self.heap[p]
_lowercase , _lowercase : Optional[Any] = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
_lowercase : List[str] = p
_lowercase : Dict = self.get_parent_idx(snake_case__ )
def __a ( self ):
return self.heap[0]
def __a ( self ):
_lowercase , _lowercase : Dict = self.heap[-1], self.heap[0]
_lowercase , _lowercase : int = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
_lowercase : List[str] = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def __a ( self , _lowerCAmelCase ):
self.heap.append(snake_case__ )
_lowercase : List[str] = len(self.heap ) - 1
_lowercase : int = node.val
self.sift_up(len(self.heap ) - 1 )
def __a ( self ):
return len(self.heap ) == 0
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
_lowercase : int = new_value
_lowercase : List[str] = new_value
self.sift_up(self.idx_of_element[node] )
UpperCamelCase = Node("R", -1)
UpperCamelCase = Node("B", 6)
UpperCamelCase = Node("A", 3)
UpperCamelCase = Node("X", 1)
UpperCamelCase = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
UpperCamelCase = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Dict = "longformer"
def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : Optional[int] = attention_window
_lowercase : str = sep_token_id
_lowercase : Optional[Any] = bos_token_id
_lowercase : List[Any] = eos_token_id
_lowercase : Optional[Any] = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Optional[int] = num_attention_heads
_lowercase : List[str] = hidden_act
_lowercase : List[str] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : str = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = layer_norm_eps
_lowercase : List[str] = onnx_export
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = True
@property
def __a ( self ):
if self.task == "multiple-choice":
_lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def __a ( self ):
_lowercase : Optional[int] = super().outputs
if self.task == "default":
_lowercase : List[str] = {0: 'batch'}
return outputs
@property
def __a ( self ):
return 1E-4
@property
def __a ( self ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 1_4 )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : int = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
_lowercase : str = torch.zeros_like(inputs['input_ids'] )
# make every second token global
_lowercase : Any = 1
return inputs
| 677 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCamelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["GPTSw3Tokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 707 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : int = parent
_lowercase : Union[str, Any] = batch_size
_lowercase : Union[str, Any] = seq_length
_lowercase : Dict = is_training
_lowercase : Tuple = use_input_mask
_lowercase : int = use_token_type_ids
_lowercase : Tuple = use_labels
_lowercase : Any = vocab_size
_lowercase : str = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Any = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Tuple = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : List[str] = max_position_embeddings
_lowercase : Union[str, Any] = type_vocab_size
_lowercase : str = type_sequence_label_size
_lowercase : Optional[int] = initializer_range
_lowercase : Optional[int] = num_labels
_lowercase : int = num_choices
_lowercase : Dict = scope
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : List[str] = None
_lowercase : Dict = None
_lowercase : Optional[int] = None
if self.use_labels:
_lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[int] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self ):
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = DistilBertModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = DistilBertForMaskedLM(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = DistilBertForQuestionAnswering(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : Tuple = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = self.num_labels
_lowercase : Dict = DistilBertForSequenceClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : Tuple = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = self.num_labels
_lowercase : Union[str, Any] = DistilBertForTokenClassification(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_choices
_lowercase : int = DistilBertForMultipleChoice(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
_lowercase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : List[str] = model(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Tuple = config_and_inputs
_lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : List[str] = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_UpperCamelCase : Optional[Any] = (
{
"feature-extraction": DistilBertModel,
"fill-mask": DistilBertForMaskedLM,
"question-answering": DistilBertForQuestionAnswering,
"text-classification": DistilBertForSequenceClassification,
"token-classification": DistilBertForTokenClassification,
"zero-shot": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase : Tuple = True
_UpperCamelCase : List[Any] = True
_UpperCamelCase : Optional[int] = True
_UpperCamelCase : List[Any] = True
def __a ( self ):
_lowercase : int = DistilBertModelTester(self )
_lowercase : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , dim=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = DistilBertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@slow
@require_torch_gpu
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
_lowercase : Any = True
_lowercase : Optional[int] = model_class(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : int = torch.jit.trace(
_lowerCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'traced_model.pt' ) )
_lowercase : Optional[Any] = torch.jit.load(os.path.join(_lowerCAmelCase , 'traced_model.pt' ) , map_location=_lowerCAmelCase )
loaded(inputs_dict['input_ids'].to(_lowerCAmelCase ) , inputs_dict['attention_mask'].to(_lowerCAmelCase ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : int = DistilBertModel.from_pretrained('distilbert-base-uncased' )
_lowercase : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_lowercase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_lowercase : List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
_lowercase : Any = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , _lowerCAmelCase )
_lowercase : List[str] = torch.tensor(
[[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
| 708 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list:
_lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : Dict = i
_lowercase : str = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_lowercase : Optional[Any] = array[temp_index - 1]
temp_index -= 1
_lowercase : Optional[Any] = temp_index_value
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap
_lowercase : List[str] = index
_lowercase : List[str] = 2 * index + 1 # Left Node
_lowercase : Union[str, Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_lowercase : Any = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_lowercase : str = right_index
if largest != index:
_lowercase , _lowercase : List[str] = array[largest], array[index]
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
_lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_lowercase , _lowercase : List[Any] = array[0], array[i]
heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE )
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[Any] = low
_lowercase : Tuple = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_lowercase , _lowercase : Tuple = array[j], array[i]
i += 1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
if len(SCREAMING_SNAKE_CASE ) == 0:
return array
_lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) )
_lowercase : str = 16
return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(SCREAMING_SNAKE_CASE )
max_depth -= 1
_lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = p
return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input("Enter numbers separated by a comma : ").strip()
UpperCamelCase = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 677 | 0 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[int]:
_lowercase : Dict = []
_lowercase : Tuple = 2
_lowercase : List[str] = int(math.sqrt(_A ) ) # Size of every segment
_lowercase : Union[str, Any] = [True] * (end + 1)
_lowercase : Any = []
while start <= end:
if temp[start] is True:
in_prime.append(_A )
for i in range(start * start , end + 1 , _A ):
_lowercase : Optional[int] = False
start += 1
prime += in_prime
_lowercase : Dict = end + 1
_lowercase : Dict = min(2 * end , _A )
while low <= n:
_lowercase : str = [True] * (high - low + 1)
for each in in_prime:
_lowercase : List[str] = math.floor(low / each ) * each
if t < low:
t += each
for j in range(_A , high + 1 , _A ):
_lowercase : Any = False
for j in range(len(_A ) ):
if temp[j] is True:
prime.append(j + low )
_lowercase : Tuple = high + 1
_lowercase : Optional[Any] = min(high + end , _A )
return prime
print(sieve(10**6))
| 709 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPFeatureExtractor"]
UpperCamelCase = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
UpperCamelCase = {
'gwf-440k': {
'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt',
'sample_rate': 48_000,
'sample_size': 65_536,
},
'jmann-small-190k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt',
'sample_rate': 48_000,
'sample_size': 65_536,
},
'jmann-large-580k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt',
'sample_rate': 48_000,
'sample_size': 131_072,
},
'maestro-uncond-150k': {
'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
'unlocked-uncond-250k': {
'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
'honk-140k': {
'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt',
'sample_rate': 16_000,
'sample_size': 65_536,
},
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
return torch.atana(A_ , A_ ) / math.pi * 2
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Tuple = torch.sin(t * math.pi / 2 ) ** 2
_lowercase : Dict = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(A_ , A_ )
class lowerCAmelCase_ ( _A ):
pass
class lowerCAmelCase_ ( nn.Module ):
def __init__( self , _lowerCAmelCase ):
super().__init__()
_lowercase : Any = DiffusionAttnUnetaD(UpperCamelCase__ , n_attn_layers=4 )
_lowercase : str = deepcopy(self.diffusion )
_lowercase : str = torch.quasirandom.SobolEngine(1 , scramble=UpperCamelCase__ )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
_lowercase : List[Any] = MODELS_MAP[model_name]['url']
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
UpperCamelCase = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
}
UpperCamelCase = {
'8': 'resnets.0',
'9': 'attentions.0',
'10': 'resnets.1',
'11': 'attentions.1',
'12': 'resnets.2',
'13': 'attentions.2',
}
UpperCamelCase = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
'8': 'resnets.3',
'9': 'attentions.3',
'10': 'resnets.4',
'11': 'attentions.4',
'12': 'resnets.5',
'13': 'attentions.5',
}
UpperCamelCase = {
'0': 'resnets.0',
'1': 'resnets.1',
'2': 'resnets.2',
'4': 'resnets.0',
'5': 'resnets.1',
'6': 'resnets.2',
}
UpperCamelCase = {
'skip': 'conv_skip',
'main.0': 'conv_1',
'main.1': 'group_norm_1',
'main.3': 'conv_2',
'main.4': 'group_norm_2',
}
UpperCamelCase = {
'norm': 'group_norm',
'qkv_proj': ['query', 'key', 'value'],
'out_proj': ['proj_attn'],
}
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if name.startswith('skip' ):
return name.replace('skip' , RES_CONV_MAP['skip'] )
# name has to be of format main.{digit}
if not name.startswith('main.' ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
for key, value in ATTN_MAP.items():
if name.startswith(A_ ) and not isinstance(A_ , A_ ):
return name.replace(A_ , A_ )
elif name.startswith(A_ ):
return [name.replace(A_ , A_ ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 ) -> Union[str, Any]:
_lowercase : List[str] = input_string
if string.split('.' )[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj' )
_lowercase : Any = 0
if string.startswith('net.3.' ):
depth += 1
_lowercase : Any = string[6:]
elif string.startswith('net.' ):
_lowercase : List[str] = string[4:]
while string.startswith('main.7.' ):
depth += 1
_lowercase : Any = string[7:]
if string.startswith('main.' ):
_lowercase : Optional[int] = string[5:]
# mid block
if string[:2].isdigit():
_lowercase : int = string[:2]
_lowercase : List[Any] = string[2:]
else:
_lowercase : Union[str, Any] = string[0]
_lowercase : str = string[1:]
if depth == max_depth:
_lowercase : Tuple = MID_NUM_TO_LAYER[layer_num]
_lowercase : Union[str, Any] = 'mid_block'
elif depth > 0 and int(A_ ) < 7:
_lowercase : Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num]
_lowercase : int = F"""down_blocks.{depth}"""
elif depth > 0 and int(A_ ) > 7:
_lowercase : str = UP_NUM_TO_LAYER[layer_num]
_lowercase : Union[str, Any] = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
_lowercase : List[Any] = DEPTH_0_TO_LAYER[layer_num]
_lowercase : int = F"""up_blocks.{max_depth - 1}""" if int(A_ ) > 3 else 'down_blocks.0'
if not string_left.startswith('.' ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
_lowercase : int = string_left[1:]
if "resnets" in new_layer:
_lowercase : int = convert_resconv_naming(A_ )
elif "attentions" in new_layer:
_lowercase : Union[str, Any] = convert_attn_naming(A_ )
_lowercase : List[Any] = new_string_left
if not isinstance(A_ , A_ ):
_lowercase : Dict = prefix + '.' + new_layer + '.' + string_left
else:
_lowercase : Union[str, Any] = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Optional[int] = {}
for k, v in state_dict.items():
if k.endswith('kernel' ):
# up- and downsample layers, don't have trainable weights
continue
_lowercase : int = rename(A_ )
# check if we need to transform from Conv => Linear for attention
if isinstance(A_ , A_ ):
_lowercase : Any = transform_conv_attns(A_ , A_ , A_ )
else:
_lowercase : Tuple = v
return new_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
if len(A_ ) == 1:
if len(v.shape ) == 3:
# weight
_lowercase : Tuple = v[:, :, 0]
else:
# bias
_lowercase : Any = v
else:
# qkv matrices
_lowercase : str = v.shape[0]
_lowercase : str = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
_lowercase : Any = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
_lowercase : int = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
_lowercase : int = args.model_path.split('/' )[-1].split('.' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
_lowercase : str = download(A_ )
_lowercase : Optional[int] = MODELS_MAP[model_name]['sample_rate']
_lowercase : Any = MODELS_MAP[model_name]['sample_size']
_lowercase : List[str] = Object()
_lowercase : Any = sample_size
_lowercase : int = sample_rate
_lowercase : Any = 0
_lowercase : Optional[int] = UNetaDModel(sample_size=A_ , sample_rate=A_ )
_lowercase : Union[str, Any] = diffusers_model.state_dict()
_lowercase : Optional[Any] = DiffusionUncond(A_ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=A_ )['state_dict'] )
_lowercase : str = orig_model.diffusion_ema.eval()
_lowercase : Any = orig_model.state_dict()
_lowercase : List[Any] = rename_orig_weights(A_ )
_lowercase : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
_lowercase : str = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(A_ ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith('kernel' ) for k in list(A_ ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
_lowercase : Optional[int] = value.squeeze()
_lowercase : Union[str, Any] = value
diffusers_model.load_state_dict(A_ )
_lowercase : Any = 100
_lowercase : List[Any] = 33
_lowercase : Optional[Any] = IPNDMScheduler(num_train_timesteps=A_ )
_lowercase : Dict = torch.manual_seed(A_ )
_lowercase : str = torch.randn([1, 2, config.sample_size] , generator=A_ ).to(A_ )
_lowercase : Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=A_ )[:-1]
_lowercase : Optional[Any] = get_crash_schedule(A_ )
_lowercase : Dict = DanceDiffusionPipeline(unet=A_ , scheduler=A_ )
_lowercase : Optional[int] = torch.manual_seed(33 )
_lowercase : Tuple = pipe(num_inference_steps=A_ , generator=A_ ).audios
_lowercase : Optional[int] = sampling.iplms_sample(A_ , A_ , A_ , {} )
_lowercase : Optional[Any] = generated.clamp(-1 , 1 )
_lowercase : Optional[int] = (generated - audio).abs().sum()
_lowercase : Union[str, Any] = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('Diff sum' , A_ )
print('Diff max' , A_ )
assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
UpperCamelCase = parser.parse_args()
main(args)
| 710 |
from collections.abc import Sequence
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
_lowercase : Optional[Any] = 0.0
for coeff in reversed(SCREAMING_SNAKE_CASE ):
_lowercase : Optional[int] = result * x + coeff
return result
if __name__ == "__main__":
UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCamelCase = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 677 | 0 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : int = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowercase : Any = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 )
_lowercase : Any = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
for example in examples:
_lowercase : Optional[Any] = video_classifier(_A )
self.assertEqual(
_A , [
{'score': ANY(_A ), 'label': ANY(_A )},
{'score': ANY(_A ), 'label': ANY(_A )},
] , )
@require_torch
def __a ( self ):
_lowercase : Dict = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
_lowercase : Optional[Any] = VideoMAEFeatureExtractor(
size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} )
_lowercase : List[str] = pipeline(
'video-classification' , model=_A , feature_extractor=_A , frame_sampling_rate=4 )
_lowercase : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
_lowercase : Optional[int] = video_classifier(_A , top_k=2 )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , )
_lowercase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_A , decimals=4 ) , [
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
[{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}],
] , )
@require_tf
def __a ( self ):
pass
| 711 |
from __future__ import annotations
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase=None ):
_lowercase : int = data
_lowercase : Union[str, Any] = None
def __repr__( self ):
_lowercase : Dict = []
_lowercase : Tuple = self
while temp:
string_rep.append(F"""{temp.data}""" )
_lowercase : Optional[Any] = temp.next
return "->".join(_lowerCAmelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
if not elements_list:
raise Exception('The Elements List is empty' )
_lowercase : Union[str, Any] = Node(elements_list[0] )
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
_lowercase : Optional[int] = Node(elements_list[i] )
_lowercase : List[Any] = current.next
return head
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None:
if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __magic_name__ ( ) -> List[str]:
from doctest import testmod
testmod()
_lowercase : int = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
UpperCamelCase : int = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
UpperCamelCase : str = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
UpperCamelCase : List[str] = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
UpperCamelCase : str = f'''down_blocks.{i}.resnets.{j}.'''
UpperCamelCase : Union[str, Any] = f'''input_blocks.{3*i + j + 1}.0.'''
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
UpperCamelCase : List[str] = f'''down_blocks.{i}.attentions.{j}.'''
UpperCamelCase : Optional[Any] = f'''input_blocks.{3*i + j + 1}.1.'''
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
UpperCamelCase : Tuple = f'''up_blocks.{i}.resnets.{j}.'''
UpperCamelCase : Any = f'''output_blocks.{3*i + j}.0.'''
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
UpperCamelCase : Any = f'''up_blocks.{i}.attentions.{j}.'''
UpperCamelCase : Union[str, Any] = f'''output_blocks.{3*i + j}.1.'''
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
UpperCamelCase : Any = f'''down_blocks.{i}.downsamplers.0.conv.'''
UpperCamelCase : Any = f'''input_blocks.{3*(i+1)}.0.op.'''
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
UpperCamelCase : Optional[Any] = f'''up_blocks.{i}.upsamplers.0.'''
UpperCamelCase : Tuple = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.'''
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
UpperCamelCase : Optional[Any] = "mid_block.attentions.0."
UpperCamelCase : Any = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
UpperCamelCase : Optional[Any] = f'''mid_block.resnets.{j}.'''
UpperCamelCase : int = f'''middle_block.{2*j}.'''
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
_lowercase : Dict = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
_lowercase : Tuple = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
_lowercase : Optional[int] = v.replace(__snake_case , __snake_case )
_lowercase : int = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
_lowercase : List[Any] = v.replace(__snake_case , __snake_case )
_lowercase : str = v
_lowercase : List[Any] = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
UpperCamelCase : Optional[Any] = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
UpperCamelCase : Union[str, Any] = f'''encoder.down_blocks.{i}.resnets.{j}.'''
UpperCamelCase : Optional[Any] = f'''encoder.down.{i}.block.{j}.'''
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
UpperCamelCase : Any = f'''down_blocks.{i}.downsamplers.0.'''
UpperCamelCase : List[str] = f'''down.{i}.downsample.'''
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
UpperCamelCase : Tuple = f'''up_blocks.{i}.upsamplers.0.'''
UpperCamelCase : Union[str, Any] = f'''up.{3-i}.upsample.'''
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
UpperCamelCase : Optional[Any] = f'''decoder.up_blocks.{i}.resnets.{j}.'''
UpperCamelCase : Dict = f'''decoder.up.{3-i}.block.{j}.'''
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
UpperCamelCase : Any = f'''mid_block.resnets.{i}.'''
UpperCamelCase : Dict = f'''mid.block_{i+1}.'''
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
UpperCamelCase : Dict = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("proj_out.", "proj_attn."),
]
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return w.reshape(*w.shape , 1 , 1 )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : str = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
_lowercase : Union[str, Any] = v.replace(__snake_case , __snake_case )
_lowercase : str = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
_lowercase : Optional[Any] = v.replace(__snake_case , __snake_case )
_lowercase : int = v
_lowercase : int = {v: vae_state_dict[k] for k, v in mapping.items()}
_lowercase : Any = ['q', 'k', 'v', 'proj_out']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if F"""mid.attn_1.{weight_name}.weight""" in k:
print(F"""Reshaping {k} for SD format""" )
_lowercase : List[Any] = reshape_weight_for_sd(__snake_case )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
UpperCamelCase : Optional[Any] = [
# (stable-diffusion, HF Diffusers)
("resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "transformer.text_model.final_layer_norm."),
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
UpperCamelCase : List[str] = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
UpperCamelCase : Optional[Any] = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
UpperCamelCase : Dict = {"q": 0, "k": 1, "v": 2}
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : str = {}
_lowercase : Optional[Any] = {}
_lowercase : Optional[int] = {}
for k, v in text_enc_dict.items():
if (
k.endswith('.self_attn.q_proj.weight' )
or k.endswith('.self_attn.k_proj.weight' )
or k.endswith('.self_attn.v_proj.weight' )
):
_lowercase : Tuple = k[: -len('.q_proj.weight' )]
_lowercase : Dict = k[-len('q_proj.weight' )]
if k_pre not in capture_qkv_weight:
_lowercase : Tuple = [None, None, None]
_lowercase : Union[str, Any] = v
continue
if (
k.endswith('.self_attn.q_proj.bias' )
or k.endswith('.self_attn.k_proj.bias' )
or k.endswith('.self_attn.v_proj.bias' )
):
_lowercase : str = k[: -len('.q_proj.bias' )]
_lowercase : int = k[-len('q_proj.bias' )]
if k_pre not in capture_qkv_bias:
_lowercase : Tuple = [None, None, None]
_lowercase : Optional[int] = v
continue
_lowercase : List[Any] = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , __snake_case )
_lowercase : Optional[int] = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
_lowercase : str = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , __snake_case )
_lowercase : List[str] = torch.cat(__snake_case )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
_lowercase : str = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , __snake_case )
_lowercase : str = torch.cat(__snake_case )
return new_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
return text_enc_dict
if __name__ == "__main__":
UpperCamelCase : str = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
)
UpperCamelCase : List[str] = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
UpperCamelCase : List[str] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
UpperCamelCase : Dict = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
UpperCamelCase : Dict = osp.join(args.model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
UpperCamelCase : Optional[int] = load_file(unet_path, device="cpu")
else:
UpperCamelCase : Optional[Any] = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
UpperCamelCase : Optional[int] = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
UpperCamelCase : List[Any] = load_file(vae_path, device="cpu")
else:
UpperCamelCase : List[str] = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
UpperCamelCase : Dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
UpperCamelCase : Optional[Any] = load_file(text_enc_path, device="cpu")
else:
UpperCamelCase : str = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
UpperCamelCase : Optional[int] = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
UpperCamelCase : int = convert_unet_state_dict(unet_state_dict)
UpperCamelCase : List[Any] = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
UpperCamelCase : List[str] = convert_vae_state_dict(vae_state_dict)
UpperCamelCase : str = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
UpperCamelCase : Optional[int] = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
UpperCamelCase : Dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
UpperCamelCase : Dict = convert_text_enc_state_dict_vaa(text_enc_dict)
UpperCamelCase : List[str] = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
UpperCamelCase : Dict = convert_text_enc_state_dict(text_enc_dict)
UpperCamelCase : int = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
UpperCamelCase : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
UpperCamelCase : Any = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
UpperCamelCase : Dict = {"state_dict": state_dict}
torch.save(state_dict, args.checkpoint_path)
| 712 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2)
if __name__ == "__main__":
def __magic_name__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
benchmark()
| 677 | 0 |
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"vocab_file": "vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
"merges_file": "merges.txt",
}
UpperCamelCase = {
"vocab_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"
),
},
"tokenizer_config_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"
),
},
"merges_file": {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"
),
},
}
UpperCamelCase = "</w>"
UpperCamelCase = "@@ "
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : Optional[int] = set()
_lowercase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowercase : Optional[Any] = char
return pairs
# Speech2Text2 has no max input length
UpperCamelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024}
class lowerCAmelCase_ ( lowercase_ ):
_UpperCamelCase : Tuple = VOCAB_FILES_NAMES
_UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : str = ["input_ids", "attention_mask"]
def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase=False , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , **lowerCamelCase_ , )
_lowercase : Union[str, Any] = do_lower_case
with open(lowerCamelCase_ , encoding='utf-8' ) as vocab_handle:
_lowercase : Optional[int] = json.load(lowerCamelCase_ )
_lowercase : int = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
_lowercase : Any = None
_lowercase : Optional[Any] = None
else:
with open(lowerCamelCase_ , encoding='utf-8' ) as merges_handle:
_lowercase : Optional[int] = merges_handle.read().split('\n' )[:-1]
_lowercase : int = [tuple(merge.split()[:2] ) for merge in merges]
_lowercase : str = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) )
_lowercase : List[str] = {}
@property
def __a ( self ):
return len(self.decoder )
def __a ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self , _lowerCAmelCase ):
_lowercase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_lowercase : Dict = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
_lowercase : Optional[int] = min(lowerCamelCase_ , key=lambda _lowerCAmelCase : self.bpe_ranks.get(lowerCamelCase_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowercase : List[Any] = bigram
_lowercase : Any = []
_lowercase : Optional[int] = 0
while i < len(lowerCamelCase_ ):
try:
_lowercase : List[str] = word.index(lowerCamelCase_ , lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowercase : Union[str, Any] = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowercase : List[Any] = tuple(lowerCamelCase_ )
_lowercase : Optional[int] = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
_lowercase : Any = get_pairs(lowerCamelCase_ )
_lowercase : Dict = """ """.join(lowerCamelCase_ )
if word == "\n " + BPE_TOKEN_MERGES:
_lowercase : List[str] = """\n""" + BPE_TOKEN_MERGES
if word.endswith(lowerCamelCase_ ):
_lowercase : Tuple = word.replace(lowerCamelCase_ , '' )
_lowercase : Optional[Any] = word.replace(' ' , lowerCamelCase_ )
_lowercase : int = word
return word
def __a ( self , _lowerCAmelCase ):
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
_lowercase : Any = text.lower()
_lowercase : Any = text.split()
_lowercase : Optional[int] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(' ' ) ) )
return split_tokens
def __a ( self , _lowerCAmelCase ):
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) )
def __a ( self , _lowerCAmelCase ):
_lowercase : List[str] = self.decoder.get(lowerCamelCase_ , self.unk_token )
return result
def __a ( self , _lowerCAmelCase ):
_lowercase : int = """ """.join(lowerCamelCase_ )
# make sure @@ tokens are concatenated
_lowercase : Optional[int] = """""".join(string.split(lowerCamelCase_ ) )
return string
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowercase : List[str] = os.path.join(
lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowercase : int = os.path.join(
lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '\n' )
_lowercase : Union[str, Any] = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowercase : Any = token_index
writer.write(' '.join(lowerCamelCase_ ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase = 16
UpperCamelCase = 32
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ) -> Dict:
_lowercase : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' )
_lowercase : Any = load_dataset('glue' , 'mrpc' )
def tokenize_function(SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
_lowercase : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowercase : List[Any] = datasets.map(
A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowercase : Dict = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowercase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowercase : Union[str, Any] = 16
elif accelerator.mixed_precision != "no":
_lowercase : List[str] = 8
else:
_lowercase : str = None
return tokenizer.pad(
A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , )
# Instantiate dataloaders.
_lowercase : List[str] = DataLoader(
tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
_lowercase : Tuple = DataLoader(
tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase = mocked_dataloaders # noqa: F811
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
if os.environ.get('TESTING_MOCKED_DATALOADERS' , A__ ) == "1":
_lowercase : Any = 2
# Initialize accelerator
_lowercase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowercase : Union[str, Any] = config['lr']
_lowercase : Any = int(config['num_epochs'] )
_lowercase : List[str] = int(config['seed'] )
_lowercase : Dict = int(config['batch_size'] )
_lowercase : Optional[int] = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
_lowercase : Dict = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_lowercase : int = batch_size // MAX_GPU_BATCH_SIZE
_lowercase : Dict = MAX_GPU_BATCH_SIZE
set_seed(A__ )
_lowercase , _lowercase : Optional[int] = get_dataloaders(A__ , A__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowercase : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowercase : Any = model.to(accelerator.device )
# Instantiate optimizer
_lowercase : List[str] = AdamW(params=model.parameters() , lr=A__ )
# Instantiate scheduler
_lowercase : Any = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Any = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# Now we train the model
for epoch in range(A__ ):
model.train()
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_lowercase : Any = model(**A__ )
_lowercase : int = outputs.loss
_lowercase : Optional[Any] = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_lowercase : List[str] = 0
for step, batch in enumerate(A__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowercase : Tuple = model(**A__ )
_lowercase : str = outputs.logits.argmax(dim=-1 )
_lowercase , _lowercase : str = accelerator.gather((predictions, batch['labels']) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(A__ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_lowercase : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_lowercase : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=A__ , references=A__ , )
_lowercase : Union[str, Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , A__ )
def __magic_name__ ( ) -> Tuple:
_lowercase : Tuple = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
_lowercase : int = parser.parse_args()
_lowercase : List[str] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 714 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Any = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Tuple = normalizer_class(**_lowerCAmelCase )
_lowercase : Union[str, Any] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = [self.sep_token_id]
_lowercase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 677 | 0 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope='session' )
def __magic_name__ ( ) -> Any:
_lowercase : str = 10
_lowercase : Union[str, Any] = datasets.Features(
{
'tokens': datasets.Sequence(datasets.Value('string' ) ),
'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ),
'answers': datasets.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
'id': datasets.Value('int64' ),
} )
_lowercase : List[str] = datasets.Dataset.from_dict(
{
'tokens': [['foo'] * 5] * n,
'labels': [[1] * 5] * n,
'answers': [{'answer_start': [97], 'text': ['1976']}] * 10,
'id': list(range(lowerCamelCase__ ) ),
} , features=lowerCamelCase__ , )
return dataset
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' )
dataset.map(cache_file_name=lowerCamelCase__ )
return filename
# FILE_CONTENT + files
UpperCamelCase = "\\n Text data.\n Second line of data."
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "file.txt"
_lowercase : List[str] = FILE_CONTENT
with open(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ )
return filename
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
import bza
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / "file.txt.bz2"
_lowercase : Tuple = bytes(lowerCamelCase__ , 'utf-8' )
with bza.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
import gzip
_lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' )
_lowercase : List[str] = bytes(lowerCamelCase__ , 'utf-8' )
with gzip.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / "file.txt.lz4"
_lowercase : Optional[Any] = bytes(lowerCamelCase__ , 'utf-8' )
with lza.frame.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_lowercase : int = tmp_path_factory.mktemp('data' ) / "file.txt.7z"
with pyazr.SevenZipFile(lowerCamelCase__ , 'w' ) as archive:
archive.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
import tarfile
_lowercase : str = tmp_path_factory.mktemp('data' ) / "file.txt.tar"
with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f:
f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
import lzma
_lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / "file.txt.xz"
_lowercase : List[str] = bytes(lowerCamelCase__ , 'utf-8' )
with lzma.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
import zipfile
_lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / "file.txt.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "file.txt.zst"
_lowercase : Optional[Any] = bytes(lowerCamelCase__ , 'utf-8' )
with zstd.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
_lowercase : Tuple = tmp_path_factory.mktemp('data' ) / "file.xml"
_lowercase : Optional[int] = textwrap.dedent(
'\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' )
with open(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ )
return filename
UpperCamelCase = [
{"col_1": "0", "col_2": 0, "col_3": 0.0},
{"col_1": "1", "col_2": 1, "col_3": 1.0},
{"col_1": "2", "col_2": 2, "col_3": 2.0},
{"col_1": "3", "col_2": 3, "col_3": 3.0},
]
UpperCamelCase = [
{"col_1": "4", "col_2": 4, "col_3": 4.0},
{"col_1": "5", "col_2": 5, "col_3": 5.0},
]
UpperCamelCase = {
"col_1": ["0", "1", "2", "3"],
"col_2": [0, 1, 2, 3],
"col_3": [0.0, 1.0, 2.0, 3.0],
}
UpperCamelCase = [
{"col_3": 0.0, "col_1": "0", "col_2": 0},
{"col_3": 1.0, "col_1": "1", "col_2": 1},
]
UpperCamelCase = [
{"col_1": "s0", "col_2": 0, "col_3": 0.0},
{"col_1": "s1", "col_2": 1, "col_3": 1.0},
{"col_1": "s2", "col_2": 2, "col_3": 2.0},
{"col_1": "s3", "col_2": 3, "col_3": 3.0},
]
@pytest.fixture(scope='session' )
def __magic_name__ ( ) -> Optional[int]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[int] = datasets.Dataset.from_dict(lowerCamelCase__ )
_lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' )
dataset.map(cache_file_name=lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' )
with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con:
_lowercase : Union[str, Any] = con.cursor()
cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' )
for item in DATA:
cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' )
with open(lowerCamelCase__ , 'w' , newline='' ) as f:
_lowercase : Optional[int] = csv.DictWriter(lowerCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
_lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' )
with open(lowerCamelCase__ , 'w' , newline='' ) as f:
_lowercase : Union[str, Any] = csv.DictWriter(lowerCamelCase__ , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
import bza
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "dataset.csv.bz2"
with open(lowerCamelCase__ , 'rb' ) as f:
_lowercase : Optional[Any] = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(lowerCamelCase__ , 'wb' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / "dataset.csv.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / "dataset.csv.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) )
f.write(lowerCamelCase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
_lowercase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' )
_lowercase : str = pa.schema(
{
'col_1': pa.string(),
'col_2': pa.intaa(),
'col_3': pa.floataa(),
} )
with open(lowerCamelCase__ , 'wb' ) as f:
_lowercase : Union[str, Any] = pq.ParquetWriter(lowerCamelCase__ , schema=lowerCamelCase__ )
_lowercase : Optional[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase__ ) )] for k in DATA[0]} , schema=lowerCamelCase__ )
writer.write_table(lowerCamelCase__ )
writer.close()
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
_lowercase : int = {"data": DATA}
with open(lowerCamelCase__ , 'w' ) as f:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
_lowercase : int = {"data": DATA_DICT_OF_LISTS}
with open(lowerCamelCase__ , 'w' ) as f:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in DATA:
f.write(json.dumps(lowerCamelCase__ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple:
_lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in DATA:
f.write(json.dumps(lowerCamelCase__ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in DATA_312:
f.write(json.dumps(lowerCamelCase__ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in DATA_STR:
f.write(json.dumps(lowerCamelCase__ ) + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
import gzip
_lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' )
with open(lowerCamelCase__ , 'rb' ) as orig_file:
with gzip.open(lowerCamelCase__ , 'wb' ) as zipped_file:
zipped_file.writelines(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
import gzip
_lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' )
with open(lowerCamelCase__ , 'rb' ) as orig_file:
with gzip.open(lowerCamelCase__ , 'wb' ) as zipped_file:
zipped_file.writelines(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / "dataset.jsonl.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
_lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase__ ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / "dataset.jsonl.tar"
with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f:
f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(lowerCamelCase__ , 'w' ) as f:
f.add(lowerCamelCase__ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase__ ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
_lowercase : List[Any] = ["0", "1", "2", "3"]
_lowercase : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : Union[str, Any] = ["0", "1", "2", "3"]
_lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' )
with open(lowerCamelCase__ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : List[str] = ["0", "1", "2", "3"]
_lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / "dataset.abc"
with open(lowerCamelCase__ , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = tmp_path_factory.mktemp('data' ) / "dataset.text.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
f.write(lowerCamelCase__ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase__ ) ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Any = tmp_path_factory.mktemp('data' ) / "dataset.ext.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename('unsupported.ext' ) )
f.write(lowerCamelCase__ , arcname=os.path.basename('unsupported_2.ext' ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : Union[str, Any] = "\n".join(['First', 'Second\u2029with Unicode new line', 'Third'] )
_lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' )
with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(lowerCamelCase__ )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( ) -> Optional[int]:
return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' )
@pytest.fixture(scope='session' )
def __magic_name__ ( ) -> Any:
return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' )
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
_lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / "dataset.img.zip"
with zipfile.ZipFile(lowerCamelCase__ , 'w' ) as f:
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) )
f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ).replace('.jpg' , '2.jpg' ) )
return path
@pytest.fixture(scope='session' )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : Optional[Any] = tmp_path_factory.mktemp('data_dir' )
(data_dir / "subdir").mkdir()
with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden file
with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
return data_dir
| 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
UpperCamelCase = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
_lowercase : int = XLNetConfig.from_json_file(a__ )
_lowercase : Dict = finetuning_task.lower() if finetuning_task is not None else ''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowercase : Optional[Any] = finetuning_task
_lowercase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowercase : Union[str, Any] = XLNetForSequenceClassification(a__ )
elif "squad" in finetuning_task:
_lowercase : Any = finetuning_task
_lowercase : Tuple = XLNetForQuestionAnswering(a__ )
else:
_lowercase : Optional[Any] = XLNetLMHeadModel(a__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(a__ , a__ , a__ )
# Save pytorch-model
_lowercase : int = os.path.join(a__ , a__ )
_lowercase : Dict = os.path.join(a__ , a__ )
print(F"""Save PyTorch model to {os.path.abspath(a__ )}""" )
torch.save(model.state_dict() , a__ )
print(F"""Save configuration file to {os.path.abspath(a__ )}""" )
with open(a__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
UpperCamelCase = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 716 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
for attribute in key.split('.' ):
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
_lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
_lowercase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_lowercase : List[str] = value
elif weight_type == "weight_g":
_lowercase : Any = value
elif weight_type == "weight_v":
_lowercase : Tuple = value
elif weight_type == "bias":
_lowercase : List[str] = value
else:
_lowercase : Dict = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = []
_lowercase : Optional[int] = fairseq_model.state_dict()
_lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowercase : Dict = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
_lowercase : int = True
else:
for key, mapped_key in MAPPING.items():
_lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
_lowercase : Union[str, Any] = True
if "*" in mapped_key:
_lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
_lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_lowercase : Optional[int] = 'weight_g'
elif "weight_v" in name:
_lowercase : Optional[Any] = 'weight_v'
elif "weight" in name:
_lowercase : str = 'weight'
elif "bias" in name:
_lowercase : Any = 'bias'
else:
_lowercase : str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = full_name.split('conv_layers.' )[-1]
_lowercase : Any = name.split('.' )
_lowercase : Optional[Any] = int(items[0] )
_lowercase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_lowercase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_lowercase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_lowercase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_lowercase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
if config_path is not None:
_lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertConfig()
if is_finetuned:
if dict_path:
_lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowercase : Dict = target_dict.pad_index
_lowercase : Dict = target_dict.bos_index
_lowercase : Tuple = target_dict.eos_index
_lowercase : List[Any] = len(target_dict.symbols )
_lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE )
_lowercase : int = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , )
_lowercase : str = True if config.feat_extract_norm == 'layer' else False
_lowercase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
_lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE )
if is_finetuned:
_lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
_lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_lowercase : int = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 677 | 0 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
UpperCamelCase = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
UpperCamelCase = {
"jukebox": 512,
}
class lowerCAmelCase_ ( __lowerCAmelCase ):
_UpperCamelCase : int = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Tuple = PRETRAINED_LYRIC_TOKENS_SIZES
_UpperCamelCase : Tuple = ['''input_ids''', '''attention_mask''']
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=["v3", "v2", "v2"] , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=5 , _lowerCAmelCase="<|endoftext|>" , **_lowerCAmelCase , ):
_lowercase : Tuple = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token
super().__init__(
unk_token=lowerCAmelCase_ , n_genres=lowerCAmelCase_ , version=lowerCAmelCase_ , max_n_lyric_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , )
_lowercase : Union[str, Any] = version
_lowercase : List[str] = max_n_lyric_tokens
_lowercase : Tuple = n_genres
with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle:
_lowercase : Union[str, Any] = json.load(lowerCAmelCase_ )
with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle:
_lowercase : Dict = json.load(lowerCAmelCase_ )
with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle:
_lowercase : Optional[Any] = json.load(lowerCAmelCase_ )
_lowercase : Union[str, Any] = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 7_9:
_lowercase : Optional[int] = oov.replace(r'\-\'' , r'\-+\'' )
_lowercase : Optional[int] = regex.compile(lowerCAmelCase_ )
_lowercase : str = {v: k for k, v in self.artists_encoder.items()}
_lowercase : Tuple = {v: k for k, v in self.genres_encoder.items()}
_lowercase : Tuple = {v: k for k, v in self.lyrics_encoder.items()}
@property
def __a ( self ):
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def __a ( self ):
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = [self.artists_encoder.get(lowerCAmelCase_ , 0 ) for artist in list_artists]
for genres in range(len(lowerCAmelCase_ ) ):
_lowercase : Dict = [self.genres_encoder.get(lowerCAmelCase_ , 0 ) for genre in list_genres[genres]]
_lowercase : int = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
_lowercase : Any = [[self.lyrics_encoder.get(lowerCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def __a ( self , _lowerCAmelCase ):
return list(lowerCAmelCase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : Tuple = self.prepare_for_tokenization(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Tuple = self._tokenize(lowerCAmelCase_ )
return artist, genre, lyrics
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ):
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
_lowercase : Tuple = artists[idx].lower()
_lowercase : Tuple = [genres[idx].lower()]
else:
_lowercase : Union[str, Any] = self._normalize(artists[idx] ) + '.v2'
_lowercase : Optional[Any] = [
self._normalize(lowerCAmelCase_ ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
_lowercase : int = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
_lowercase : Any = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
_lowercase : Optional[int] = {vocab[index]: index + 1 for index in range(len(lowerCAmelCase_ ) )}
_lowercase : Optional[Any] = 0
_lowercase : List[Any] = len(lowerCAmelCase_ ) + 1
_lowercase : Tuple = self.vocab
_lowercase : int = {v: k for k, v in self.vocab.items()}
_lowercase : Union[str, Any] = ''
else:
_lowercase : Any = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
_lowercase : List[str] = self._run_strip_accents(lowerCAmelCase_ )
_lowercase : Optional[Any] = lyrics.replace('\\' , '\n' )
_lowercase : int = self.out_of_vocab.sub('' , lowerCAmelCase_ ), [], []
return artists, genres, lyrics
def __a ( self , _lowerCAmelCase ):
_lowercase : Union[str, Any] = unicodedata.normalize('NFD' , lowerCAmelCase_ )
_lowercase : int = []
for char in text:
_lowercase : int = unicodedata.category(lowerCAmelCase_ )
if cat == "Mn":
continue
output.append(lowerCAmelCase_ )
return "".join(lowerCAmelCase_ )
def __a ( self , _lowerCAmelCase ):
_lowercase : Union[str, Any] = (
[chr(lowerCAmelCase_ ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(lowerCAmelCase_ ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(lowerCAmelCase_ ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
_lowercase : int = frozenset(lowerCAmelCase_ )
_lowercase : List[Any] = re.compile(r'_+' )
_lowercase : Any = ''.join([c if c in accepted else '_' for c in text.lower()] )
_lowercase : Dict = pattern.sub('_' , lowerCAmelCase_ ).strip('_' )
return text
def __a ( self , _lowerCAmelCase ):
return " ".join(lowerCAmelCase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ):
# Convert to TensorType
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_lowercase : int = TensorType(lowerCAmelCase_ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
_lowercase : Optional[int] = tf.constant
_lowercase : int = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
_lowercase : List[Any] = torch.tensor
_lowercase : List[str] = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
_lowercase : int = jnp.array
_lowercase : List[str] = _is_jax
else:
_lowercase : Tuple = np.asarray
_lowercase : Dict = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
_lowercase : List[str] = [inputs]
if not is_tensor(lowerCAmelCase_ ):
_lowercase : Tuple = as_tensor(lowerCAmelCase_ )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase="pt" ):
_lowercase : Tuple = [0, 0, 0]
_lowercase : Optional[int] = [artist] * len(self.version )
_lowercase : str = [genres] * len(self.version )
_lowercase , _lowercase , _lowercase : Union[str, Any] = self.tokenize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase , _lowercase , _lowercase : Optional[Any] = self._convert_token_to_id(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Dict = [-INFINITY] * len(full_tokens[-1] )
_lowercase : str = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowerCAmelCase_ )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowercase : Optional[Any] = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=lowerCAmelCase_ ) )
_lowercase : Optional[Any] = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=lowerCAmelCase_ ) )
_lowercase : Tuple = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowerCAmelCase_ ) )
return (artists_file, genres_file, lyrics_file)
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.artists_decoder.get(lowerCAmelCase_ )
_lowercase : List[str] = [self.genres_decoder.get(lowerCAmelCase_ ) for genre in genres_index]
_lowercase : List[Any] = [self.lyrics_decoder.get(lowerCAmelCase_ ) for character in lyric_index]
return artist, genres, lyrics
| 717 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ):
_lowercase : List[str] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : str = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_input_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Optional[Any] = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : str = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = num_labels
_lowercase : List[str] = num_choices
_lowercase : Dict = scope
_lowercase : List[Any] = range_bbox
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowercase : List[str] = bbox[i, j, 3]
_lowercase : Optional[int] = bbox[i, j, 1]
_lowercase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowercase : Dict = bbox[i, j, 2]
_lowercase : Dict = bbox[i, j, 0]
_lowercase : int = t
_lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Union[str, Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : str = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Any = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase )
_lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = self.num_labels
_lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_labels
_lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[Any] = config_and_inputs
_lowercase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Union[str, Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = 10
def __a ( self ):
_lowercase : Optional[int] = TFLayoutLMModelTester(self )
_lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def __a ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
_lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
_lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
_lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
_lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
_lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the sequence output on [0, :3, :3]
_lowercase : Optional[Any] = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) )
# test the pooled output on [1, :3]
_lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
_lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Any = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
_lowercase : List[Any] = outputs.loss
_lowercase : Any = (2,)
self.assertEqual(loss.shape , _lowerCAmelCase )
# test the shape of the logits
_lowercase : str = outputs.logits
_lowercase : Dict = (2, 2)
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Dict = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Dict = outputs.logits
_lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Any = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
| 677 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> tuple:
return (data["data"], data["target"])
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray:
_lowercase : Any = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Predict target for test data
_lowercase : Union[str, Any] = xgb.predict(SCREAMING_SNAKE_CASE )
_lowercase : str = predictions.reshape(len(SCREAMING_SNAKE_CASE ) , 1 )
return predictions
def __magic_name__ ( ) -> None:
_lowercase : List[str] = fetch_california_housing()
_lowercase : Optional[int] = data_handling(SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = train_test_split(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 )
_lowercase : Tuple = xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Error printing
print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" )
print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 718 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : List[str] = logging.get_logger()
# the current default level is logging.WARNING
_lowercase : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = logging.get_verbosity()
_lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : Tuple = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase )
_lowercase : Optional[Any] = logging.log_levels[env_level_str]
_lowercase : Dict = logging.get_verbosity()
self.assertEqual(
_lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_lowercase : Any = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
_lowercase : Tuple = logging.logging.getLogger()
with CaptureLogger(_lowerCAmelCase ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def __a ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
_lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : List[str] = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
def __magic_name__ ( ) -> List[str]:
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 677 | 0 |
import string
import numpy
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE )
class lowerCAmelCase_ :
_UpperCamelCase : Optional[int] = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
_UpperCamelCase : Tuple = numpy.vectorize(lambda __snake_case : x % 36 )
_UpperCamelCase : List[str] = numpy.vectorize(SCREAMING_SNAKE_CASE__ )
def __init__( self , _lowerCAmelCase ):
_lowercase : Dict = self.modulus(snake_case__ ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
_lowercase : Tuple = encrypt_key.shape[0]
def __a ( self , _lowerCAmelCase ):
return self.key_string.index(snake_case__ )
def __a ( self , _lowerCAmelCase ):
return self.key_string[round(snake_case__ )]
def __a ( self ):
_lowercase : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_lowercase : List[Any] = det % len(self.key_string )
_lowercase : Dict = len(self.key_string )
if greatest_common_divisor(snake_case__ , len(self.key_string ) ) != 1:
_lowercase : Optional[Any] = (
F"""determinant modular {req_l} of encryption key({det}) """
F"""is not co prime w.r.t {req_l}.\nTry another key."""
)
raise ValueError(snake_case__ )
def __a ( self , _lowerCAmelCase ):
_lowercase : List[str] = [char for char in text.upper() if char in self.key_string]
_lowercase : str = chars[-1]
while len(snake_case__ ) % self.break_key != 0:
chars.append(snake_case__ )
return "".join(snake_case__ )
def __a ( self , _lowerCAmelCase ):
_lowercase : Any = self.process_text(text.upper() )
_lowercase : Tuple = ""
for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ):
_lowercase : Optional[int] = text[i : i + self.break_key]
_lowercase : List[str] = [self.replace_letters(snake_case__ ) for char in batch]
_lowercase : Optional[int] = numpy.array([vec] ).T
_lowercase : List[str] = self.modulus(self.encrypt_key.dot(snake_case__ ) ).T.tolist()[
0
]
_lowercase : List[str] = "".join(
self.replace_digits(snake_case__ ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def __a ( self ):
_lowercase : int = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_lowercase : Optional[Any] = det % len(self.key_string )
_lowercase : Dict = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
_lowercase : Tuple = i
break
_lowercase : List[str] = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(snake_case__ ) )
def __a ( self , _lowerCAmelCase ):
_lowercase : str = self.make_decrypt_key()
_lowercase : int = self.process_text(text.upper() )
_lowercase : Union[str, Any] = ""
for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ):
_lowercase : Optional[Any] = text[i : i + self.break_key]
_lowercase : Union[str, Any] = [self.replace_letters(snake_case__ ) for char in batch]
_lowercase : Optional[int] = numpy.array([vec] ).T
_lowercase : Union[str, Any] = self.modulus(decrypt_key.dot(snake_case__ ) ).T.tolist()[0]
_lowercase : Optional[int] = "".join(
self.replace_digits(snake_case__ ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def __magic_name__ ( ) -> None:
_lowercase : Optional[int] = int(input('Enter the order of the encryption key: ' ) )
_lowercase : Tuple = []
print('Enter each row of the encryption key with space separated integers' )
for _ in range(SCREAMING_SNAKE_CASE ):
_lowercase : Optional[Any] = [int(SCREAMING_SNAKE_CASE ) for x in input().split()]
hill_matrix.append(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = HillCipher(numpy.array(SCREAMING_SNAKE_CASE ) )
print('Would you like to encrypt or decrypt some text? (1 or 2)' )
_lowercase : List[Any] = input('\n1. Encrypt\n2. Decrypt\n' )
if option == "1":
_lowercase : Optional[int] = input('What text would you like to encrypt?: ' )
print('Your encrypted text is:' )
print(hc.encrypt(SCREAMING_SNAKE_CASE ) )
elif option == "2":
_lowercase : Dict = input('What text would you like to decrypt?: ' )
print('Your decrypted text is:' )
print(hc.decrypt(SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 719 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase = "pt"
elif is_tf_available():
UpperCamelCase = "tf"
else:
UpperCamelCase = "jax"
class lowerCAmelCase_ ( __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = PerceiverTokenizer
_UpperCamelCase : str = False
def __a ( self ):
super().setUp()
_lowercase : List[Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def __a ( self , **_lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_lowercase : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
_lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) )
_lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowercase : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowercase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowercase : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowercase : List[Any] = ' ' + output_txt
_lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __a ( self ):
_lowercase : Dict = self.perceiver_tokenizer
_lowercase : Optional[Any] = 'Unicode €.'
_lowercase : str = tokenizer(_lowerCAmelCase )
_lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' )
_lowercase : Union[str, Any] = tokenizer('e è é ê ë' )
_lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : int = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def __a ( self ):
_lowercase : List[str] = self.perceiver_tokenizer
_lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
_lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
_lowercase : int = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def __a ( self ):
_lowercase : List[Any] = self.perceiver_tokenizer
_lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _lowerCAmelCase )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertNotIn('decoder_input_ids' , _lowerCAmelCase )
self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.perceiver_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : Optional[int] = tokenizer(
text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
def __a ( self ):
# safety check on max_len default value so we are sure the test works
_lowercase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_lowercase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
_lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[str] = tempfile.mkdtemp()
_lowercase : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Any = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : List[str] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(_lowerCAmelCase )
_lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
_lowercase : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : Optional[int] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __a ( self ):
_lowercase : str = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '�' )
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
_lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 677 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
UpperCamelCase = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377,
1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211,
4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786,
11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791,
17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409,
34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361
]
UpperCamelCase = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627,
3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647,
7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793,
14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675,
22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865,
42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362
]
class lowerCAmelCase_ ( __lowerCamelCase ):
_UpperCamelCase : Union[str, Any] = "whisper"
_UpperCamelCase : str = ["past_key_values"]
_UpperCamelCase : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , _lowerCAmelCase=5_1_8_6_5 , _lowerCAmelCase=8_0 , _lowerCAmelCase=6 , _lowerCAmelCase=4 , _lowerCAmelCase=6 , _lowerCAmelCase=4 , _lowerCAmelCase=1_5_3_6 , _lowerCAmelCase=1_5_3_6 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=5_0_2_5_7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=False , _lowerCAmelCase=1_5_0_0 , _lowerCAmelCase=4_4_8 , _lowerCAmelCase=5_0_2_5_6 , _lowerCAmelCase=5_0_2_5_6 , _lowerCAmelCase=5_0_2_5_6 , _lowerCAmelCase=None , _lowerCAmelCase=[2_2_0, 5_0_2_5_6] , _lowerCAmelCase=False , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=False , _lowerCAmelCase=0.05 , _lowerCAmelCase=1_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0 , _lowerCAmelCase=7 , **_lowerCAmelCase , ):
_lowercase : Dict = vocab_size
_lowercase : str = num_mel_bins
_lowercase : Dict = d_model
_lowercase : int = encoder_layers
_lowercase : Dict = encoder_attention_heads
_lowercase : List[Any] = decoder_layers
_lowercase : Optional[Any] = decoder_attention_heads
_lowercase : Union[str, Any] = decoder_ffn_dim
_lowercase : List[Any] = encoder_ffn_dim
_lowercase : str = dropout
_lowercase : Any = attention_dropout
_lowercase : int = activation_dropout
_lowercase : List[Any] = activation_function
_lowercase : Tuple = init_std
_lowercase : str = encoder_layerdrop
_lowercase : Optional[int] = decoder_layerdrop
_lowercase : List[Any] = use_cache
_lowercase : List[Any] = encoder_layers
_lowercase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
_lowercase : Union[str, Any] = max_source_positions
_lowercase : Optional[Any] = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
_lowercase : str = classifier_proj_size
_lowercase : List[str] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowercase : str = apply_spec_augment
_lowercase : str = mask_time_prob
_lowercase : Dict = mask_time_length
_lowercase : Tuple = mask_time_min_masks
_lowercase : Tuple = mask_feature_prob
_lowercase : str = mask_feature_length
_lowercase : Optional[int] = mask_feature_min_masks
_lowercase : Any = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class lowerCAmelCase_ ( __lowerCamelCase ):
@property
def __a ( self ):
_lowercase : Optional[Any] = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
_lowercase : Union[str, Any] = {0: 'batch'}
else:
_lowercase : List[Any] = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='inputs' )
return common_inputs
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 2_2_0_5_0 , _lowerCAmelCase = 5.0 , _lowerCAmelCase = 2_2_0 , ):
_lowercase : Dict = OrderedDict()
_lowercase : Optional[int] = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
_lowercase : int = encoder_inputs['input_features'].shape[2]
_lowercase : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length
_lowercase : List[Any] = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_lowercase : Tuple = encoder_inputs.pop('input_features' )
_lowercase : Union[str, Any] = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
_lowercase : Optional[Any] = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def __a ( self ):
return 1E-3
| 720 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class lowerCAmelCase_ ( _snake_case ):
_UpperCamelCase : List[str] = """gptj"""
_UpperCamelCase : Dict = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , _lowerCAmelCase=5_0_4_0_0 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=4_0_9_6 , _lowerCAmelCase=2_8 , _lowerCAmelCase=1_6 , _lowerCAmelCase=6_4 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=5_0_2_5_6 , _lowerCAmelCase=5_0_2_5_6 , _lowerCAmelCase=False , **_lowerCAmelCase , ):
_lowercase : int = vocab_size
_lowercase : Union[str, Any] = n_positions
_lowercase : int = n_embd
_lowercase : int = n_layer
_lowercase : str = n_head
_lowercase : Tuple = n_inner
_lowercase : Union[str, Any] = rotary_dim
_lowercase : List[Any] = activation_function
_lowercase : Dict = resid_pdrop
_lowercase : Optional[Any] = embd_pdrop
_lowercase : int = attn_pdrop
_lowercase : Any = layer_norm_epsilon
_lowercase : Optional[int] = initializer_range
_lowercase : int = use_cache
_lowercase : Any = bos_token_id
_lowercase : List[Any] = eos_token_id
super().__init__(
bos_token_id=snake_case_ , eos_token_id=snake_case_ , tie_word_embeddings=snake_case_ , **snake_case_ )
class lowerCAmelCase_ ( _snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None , _lowerCAmelCase = False , ):
super().__init__(snake_case_ , task=snake_case_ , patching_specs=snake_case_ , use_past=snake_case_ )
if not getattr(self._config , 'pad_token_id' , snake_case_ ):
# TODO: how to do that better?
_lowercase : List[Any] = 0
@property
def __a ( self ):
_lowercase : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(snake_case_ , direction='inputs' )
_lowercase : Union[str, Any] = {0: "batch", 1: "past_sequence + sequence"}
else:
_lowercase : Optional[Any] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def __a ( self ):
return self._config.n_layer
@property
def __a ( self ):
return self._config.n_head
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : List[Any] = super(snake_case_ , self ).generate_dummy_inputs(
snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ )
# We need to order the input in the way they appears in the forward()
_lowercase : Optional[Any] = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
_lowercase : List[str] = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_lowercase : Tuple = seqlen + 2
_lowercase : Tuple = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_lowercase : str = [
(torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers )
]
_lowercase : List[Any] = common_inputs["attention_mask"]
if self.use_past:
_lowercase : int = ordered_inputs["attention_mask"].dtype
_lowercase : Optional[Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 )
return ordered_inputs
@property
def __a ( self ):
return 1_3
| 721 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Tuple = "ClapFeatureExtractor"
_UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowercase : Any = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowercase : Union[str, Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __a ( self ):
_lowercase : Dict = self.tokenizer.model_input_names
_lowercase : Any = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 677 | 0 |
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : Dict = parent
_lowercase : str = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : List[str] = is_training
_lowercase : List[Any] = use_input_mask
_lowercase : Union[str, Any] = use_token_type_ids
_lowercase : Optional[Any] = use_labels
_lowercase : Tuple = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : List[Any] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : int = intermediate_size
_lowercase : Union[str, Any] = hidden_act
_lowercase : Dict = hidden_dropout_prob
_lowercase : List[Any] = attention_probs_dropout_prob
_lowercase : Union[str, Any] = max_position_embeddings
_lowercase : Optional[int] = type_vocab_size
_lowercase : Dict = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : str = num_labels
_lowercase : int = num_choices
_lowercase : Dict = scope
def __a ( self ):
_lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : List[Any] = None
if self.use_input_mask:
_lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Dict = None
_lowercase : List[Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self ):
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = NystromformerModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
_lowercase : Any = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )
_lowercase : Any = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = NystromformerForMaskedLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = NystromformerForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : int = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_labels
_lowercase : Any = NystromformerForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.num_labels
_lowercase : Optional[Any] = NystromformerForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_choices
_lowercase : List[str] = NystromformerForMultipleChoice(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
_lowercase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : Union[str, Any] = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self ):
_lowercase : Dict = self.prepare_config_and_inputs()
(
_lowercase
) : Union[str, Any] = config_and_inputs
_lowercase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowercase__ , lowercase__ , unittest.TestCase ):
_UpperCamelCase : List[Any] = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
_UpperCamelCase : int = (
{
"feature-extraction": NystromformerModel,
"fill-mask": NystromformerForMaskedLM,
"question-answering": NystromformerForQuestionAnswering,
"text-classification": NystromformerForSequenceClassification,
"token-classification": NystromformerForTokenClassification,
"zero-shot": NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase : int = False
_UpperCamelCase : List[str] = False
def __a ( self ):
_lowercase : List[Any] = NystromformerModelTester(self )
_lowercase : Tuple = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowercase : Dict = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ )
@slow
def __a ( self ):
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = NystromformerModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Dict = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' )
_lowercase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
_lowercase : Tuple = model(UpperCAmelCase__ )[0]
_lowercase : int = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape , UpperCAmelCase__ )
_lowercase : Dict = torch.tensor(
[[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
@slow
def __a ( self ):
_lowercase : Optional[int] = '''the [MASK] of Belgium is Brussels'''
_lowercase : Dict = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' )
_lowercase : Optional[int] = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' )
_lowercase : List[Any] = tokenizer(UpperCAmelCase__ , return_tensors='pt' )
with torch.no_grad():
_lowercase : Optional[int] = model(encoding.input_ids ).logits
_lowercase : Tuple = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(UpperCAmelCase__ ) , 'capital' )
| 700 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = num_of_nodes
_lowercase : list[list[int]] = []
_lowercase : dict[int, int] = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
self.m_edges.append([u_node, v_node, weight] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowercase : Optional[int] = self.find_component(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if component_size[u_node] <= component_size[v_node]:
_lowercase : str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
_lowercase : Any = self.find_component(_lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = []
_lowercase : Optional[Any] = 0
_lowercase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowercase : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowercase , _lowercase , _lowercase : List[str] = edge
_lowercase : Union[str, Any] = self.m_component[u]
_lowercase : Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowercase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : int = edge
_lowercase : Optional[int] = self.m_component[u]
_lowercase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
_lowercase : str = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json",
"uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json",
"uclanlp/visualbert-vqa-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json",
"uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json",
"uclanlp/visualbert-vcr-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"
),
"uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json",
"uclanlp/visualbert-nlvr2-coco-pre": (
"https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowerCAmelCase_ ( __UpperCAmelCase ):
_UpperCamelCase : str = "visual_bert"
def __init__( self , _lowerCAmelCase=3_0_5_2_2 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
_lowercase : Optional[int] = vocab_size
_lowercase : int = max_position_embeddings
_lowercase : int = hidden_size
_lowercase : Optional[Any] = visual_embedding_dim
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : List[Any] = intermediate_size
_lowercase : Dict = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Tuple = initializer_range
_lowercase : Optional[Any] = type_vocab_size
_lowercase : Tuple = layer_norm_eps
_lowercase : Tuple = bypass_transformer
_lowercase : List[str] = special_visual_initialize
| 701 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = {}
_lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids']
_lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
UpperCamelCase = HfArgumentParser(PretokenizationArguments)
UpperCamelCase = parser.parse_args()
if args.num_workers is None:
UpperCamelCase = multiprocessing.cpu_count()
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCamelCase = time.time()
UpperCamelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
UpperCamelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 677 | 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : Optional[Any] = '''ylacombe/bark-small'''
_lowercase : int = tempfile.mkdtemp()
_lowercase : List[Any] = '''en_speaker_1'''
_lowercase : List[str] = '''This is a test string'''
_lowercase : Optional[int] = '''speaker_embeddings_path.json'''
_lowercase : Any = '''speaker_embeddings'''
def __a ( self , **_lowerCAmelCase ):
return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCamelCase )
def __a ( self ):
shutil.rmtree(self.tmpdirname )
def __a ( self ):
_lowercase : str = self.get_tokenizer()
_lowercase : Dict = BarkProcessor(tokenizer=__lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
_lowercase : str = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __a ( self ):
_lowercase : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowercase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowercase : int = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __a ( self ):
_lowercase : int = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowercase : Union[str, Any] = 3_5
_lowercase : List[str] = 2
_lowercase : str = 8
_lowercase : Dict = {
'''semantic_prompt''': np.ones(__lowerCamelCase ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowercase : Dict = processor(text=self.input_string , voice_preset=__lowerCamelCase )
_lowercase : Optional[Any] = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowercase : Any = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(__lowerCamelCase , **__lowerCamelCase )
_lowercase : str = processor(text=self.input_string , voice_preset=__lowerCamelCase )
_lowercase : Tuple = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowercase : Optional[int] = processor(text=self.input_string , voice_preset=self.voice_preset )
def __a ( self ):
_lowercase : int = self.get_tokenizer()
_lowercase : Optional[Any] = BarkProcessor(tokenizer=__lowerCamelCase )
_lowercase : List[str] = processor(text=self.input_string )
_lowercase : Optional[int] = tokenizer(
self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 702 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration}
UpperCamelCase = {"facebook/bart-base": BartTokenizer}
def __magic_name__ ( ) -> str:
_lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , )
parser.add_argument(
'--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' )
_lowercase : Optional[Any] = parser.parse_args()
return args
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]:
_lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE )
if model_name in ["facebook/bart-base"]:
_lowercase : Dict = 0
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = 0
return huggingface_model, tokenizer
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
model.eval()
_lowercase : List[Any] = None
_lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) )
with torch.no_grad():
_lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.'
_lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device )
_lowercase : str = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=SCREAMING_SNAKE_CASE , )
logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) )
logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = ort_sess.run(
SCREAMING_SNAKE_CASE , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(SCREAMING_SNAKE_CASE ),
'max_length': np.array(SCREAMING_SNAKE_CASE ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def __magic_name__ ( ) -> Any:
_lowercase : Dict = parse_args()
_lowercase : Union[str, Any] = 5
_lowercase : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_lowercase : Optional[Any] = torch.device(args.device )
_lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(SCREAMING_SNAKE_CASE )
if args.max_length:
_lowercase : Any = args.max_length
if args.num_beams:
_lowercase : List[str] = args.num_beams
if args.output_file_path:
_lowercase : Union[str, Any] = args.output_file_path
else:
_lowercase : Tuple = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
_UpperCamelCase : List[str] = BioGptTokenizer
_UpperCamelCase : List[Any] = False
def __a ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowercase : Optional[int] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
_lowercase : Optional[int] = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
_lowercase : Dict = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
_lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(_lowercase ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(_lowercase ) )
def __a ( self , _lowerCAmelCase ):
_lowercase : str = 'lower newer'
_lowercase : Any = 'lower newer'
return input_text, output_text
def __a ( self ):
_lowercase : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file )
_lowercase : List[str] = 'lower'
_lowercase : Tuple = ['low', 'er</w>']
_lowercase : Optional[int] = tokenizer.tokenize(_lowercase )
self.assertListEqual(_lowercase , _lowercase )
_lowercase : Union[str, Any] = tokens + ['<unk>']
_lowercase : Optional[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
@slow
def __a ( self ):
_lowercase : Optional[Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
_lowercase : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=_lowercase )
_lowercase : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowercase )
_lowercase : Any = tokenizer.build_inputs_with_special_tokens(_lowercase )
_lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 703 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_UpperCamelCase : List[Any] = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : int = False
_UpperCamelCase : Optional[int] = False
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ):
_lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
if return_labels:
if model_class in get_values(_lowerCAmelCase ):
_lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ):
_lowercase : Optional[Any] = parent
_lowercase : str = batch_size
_lowercase : Optional[int] = seq_length
_lowercase : Tuple = is_training
_lowercase : List[Any] = use_input_mask
_lowercase : Optional[Any] = use_token_type_ids
_lowercase : Any = use_labels
_lowercase : str = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Tuple = hidden_act
_lowercase : Dict = hidden_dropout_prob
_lowercase : Optional[int] = attention_probs_dropout_prob
_lowercase : Tuple = max_position_embeddings
_lowercase : List[str] = type_vocab_size
_lowercase : Optional[Any] = type_sequence_label_size
_lowercase : List[Any] = initializer_range
_lowercase : List[str] = num_labels
_lowercase : Union[str, Any] = num_choices
_lowercase : List[str] = scope
_lowercase : Union[str, Any] = embedding_size
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Optional[int] = None
if self.use_input_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Dict = None
_lowercase : Any = None
_lowercase : int = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase )
_lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
_lowercase : Tuple = [input_ids, input_mask]
_lowercase : str = model(_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Optional[int] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase )
_lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = self.num_labels
_lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase )
_lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = self.num_choices
_lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
_lowercase : str = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
_lowercase : Union[str, Any] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = self.num_labels
_lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase )
_lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : List[str] = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
_lowercase : int = model(_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : List[str] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : int = config_and_inputs
_lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def __a ( self ):
_lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self )
_lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase )
def __a ( self ):
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase )
@slow
def __a ( self ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' )
_lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_lowercase : List[str] = model(_lowerCAmelCase )[0]
_lowercase : str = [1, 6, 3_0_5_2_2]
self.assertEqual(output.shape , _lowerCAmelCase )
_lowercase : List[Any] = tf.constant(
[
[
[-4.5_91_95_47, -9.24_82_95, -9.64_52_56],
[-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37],
[-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
| 677 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCamelCase = logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCAmelCase_ ( snake_case__ ):
_UpperCamelCase : Any = ["pixel_values"]
def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 2_5_5 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , **_lowerCAmelCase , ):
super().__init__(**lowercase_ )
_lowercase : List[str] = size if size is not None else {"shortest_edge": 2_2_4}
_lowercase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
_lowercase : List[Any] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
_lowercase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' )
_lowercase : str = do_resize
_lowercase : Dict = size
_lowercase : List[str] = resample
_lowercase : Optional[Any] = do_center_crop
_lowercase : Union[str, Any] = crop_size
_lowercase : List[str] = do_rescale
_lowercase : str = rescale_factor
_lowercase : Optional[Any] = do_normalize
_lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_lowercase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
_lowercase : Optional[int] = do_convert_rgb
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ):
_lowercase : Union[str, Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_lowercase : Tuple = get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ )
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ):
_lowercase : Union[str, Any] = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ):
return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ):
return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ):
_lowercase : Optional[int] = do_resize if do_resize is not None else self.do_resize
_lowercase : Optional[int] = size if size is not None else self.size
_lowercase : List[str] = get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_ )
_lowercase : Tuple = resample if resample is not None else self.resample
_lowercase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size
_lowercase : Optional[int] = get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ )
_lowercase : int = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
_lowercase : List[str] = image_std if image_std is not None else self.image_std
_lowercase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_lowercase : Union[str, Any] = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_lowercase : Any = [convert_to_rgb(lowercase_ ) for image in images]
# All transformations expect numpy arrays.
_lowercase : List[str] = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
_lowercase : List[str] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
if do_center_crop:
_lowercase : Tuple = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images]
if do_rescale:
_lowercase : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images]
if do_normalize:
_lowercase : Optional[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images]
_lowercase : Tuple = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
_lowercase : int = {"pixel_values": images}
return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
| 704 |
import qiskit
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts:
_lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
_lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
_lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = single_qubit_measure(2, 2)
print(f'''Total count for various states are: {counts}''')
| 677 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCamelCase = "platform"
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict:
if attention_mask is None:
_lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ):
_lowercase : List[str] = parent
_lowercase : List[Any] = batch_size
_lowercase : Optional[Any] = seq_length
_lowercase : Optional[Any] = is_training
_lowercase : Tuple = use_labels
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : Tuple = intermediate_size
_lowercase : Any = hidden_act
_lowercase : Optional[Any] = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = eos_token_id
_lowercase : int = pad_token_id
_lowercase : Tuple = bos_token_id
_lowercase : List[Any] = initializer_range
def __a ( self ):
_lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Tuple = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , )
_lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = 2_0
_lowercase : List[Any] = model_class_name(_lowerCAmelCase )
_lowercase : List[Any] = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : int = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : int = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , )
_lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = 2_0
_lowercase : Any = model_class_name(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] )
_lowercase , _lowercase : Optional[int] = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
_lowercase : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowercase : List[Any] = model.decode(
decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
_lowercase : Union[str, Any] = model.decode(
decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , )
_lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase )
_lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Tuple = 99
def __a ( self ):
_lowercase : Dict = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
_lowercase : Union[str, Any] = input_ids.shape[0]
_lowercase : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __a ( self ):
_lowercase , _lowercase , _lowercase : int = self._get_config_and_data()
_lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase )
_lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Union[str, Any] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
_lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase )
_lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa )
_lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa )
_lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase )
_lowercase : Tuple = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , _lowerCAmelCase )
def __a ( self ):
_lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa )
_lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 )
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
_lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_lowerCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ):
_UpperCamelCase : int = True
_UpperCamelCase : Any = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def __a ( self ):
_lowercase : List[str] = FlaxBlenderbotSmallModelTester(self )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def __a ( self ):
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = model_class(_lowerCAmelCase )
@jax.jit
def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ):
return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ):
_lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase : int = model_class(_lowerCAmelCase )
_lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
_lowercase : List[Any] = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
return model.decode(
decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , )
with self.subTest('JIT Enabled' ):
_lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple()
self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) )
for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ):
for model_class_name in self.all_model_classes:
_lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id
_lowercase : int = model(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
| 677 | 0 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 706 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json",
"allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json",
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"
),
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Dict = "longformer"
def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
_lowercase : Optional[int] = attention_window
_lowercase : str = sep_token_id
_lowercase : Optional[Any] = bos_token_id
_lowercase : List[Any] = eos_token_id
_lowercase : Optional[Any] = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Optional[int] = num_attention_heads
_lowercase : List[str] = hidden_act
_lowercase : List[str] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : str = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = layer_norm_eps
_lowercase : List[str] = onnx_export
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowercase : str = True
@property
def __a ( self ):
if self.task == "multiple-choice":
_lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def __a ( self ):
_lowercase : Optional[int] = super().outputs
if self.task == "default":
_lowercase : List[str] = {0: 'batch'}
return outputs
@property
def __a ( self ):
return 1E-4
@property
def __a ( self ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 1_4 )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ):
_lowercase : int = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
_lowercase : str = torch.zeros_like(inputs['input_ids'] )
# make every second token global
_lowercase : Any = 1
return inputs
| 677 | 0 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : Tuple = tmp_path / 'cache'
_lowercase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_lowercase : List[Any] = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
_lowercase : int = tmp_path / 'cache'
_lowercase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
_lowercase : List[Any] = features.copy() if features else default_expected_features
_lowercase : int = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowercase : Union[str, Any] = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
] , )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : str = tmp_path / 'cache'
_lowercase : int = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
_lowercase : List[str] = features.copy() if features else default_expected_features
_lowercase : Optional[int] = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowercase : Optional[int] = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[int] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
_lowercase : List[Any] = features.copy()
_lowercase : str = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowercase : Optional[Any] = tmp_path / 'cache'
_lowercase : int = JsonDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[Any] = tmp_path / 'cache'
_lowercase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
_lowercase : int = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowercase : Union[str, Any] = jsonl_path
elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowercase : Dict = [jsonl_path]
_lowercase : Any = tmp_path / 'cache'
_lowercase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
_lowercase : Union[str, Any] = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> Any:
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for split in splits:
_lowercase : Tuple = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
_lowercase : int = tmp_path / 'cache'
_lowercase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_lowercase : List[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
_lowercase : Optional[int] = tmp_path / 'cache'
_lowercase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
_lowercase : Optional[Any] = features.copy() if features else default_expected_features
_lowercase : Any = (
Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowercase : str = JsonDatasetReader({'train': jsonl_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
if split:
_lowercase : Optional[Any] = {split: jsonl_path}
else:
_lowercase : int = 'train'
_lowercase : Any = {'train': jsonl_path, 'test': jsonl_path}
_lowercase : Dict = tmp_path / 'cache'
_lowercase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
_lowercase : int = JsonDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read()
_check_json_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]:
return json.load(_SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
return [json.loads(_SCREAMING_SNAKE_CASE ) for line in buffer]
class lowerCAmelCase_ :
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase ).write()
buffer.seek(0 )
_lowercase : Optional[int] = load_json_function(__UpperCamelCase )
assert isinstance(__UpperCamelCase , __UpperCamelCase )
assert isinstance(exported_content[0] , __UpperCamelCase )
assert len(__UpperCamelCase ) == 1_0
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase ).write()
buffer.seek(0 )
_lowercase : List[Any] = load_json(__UpperCamelCase )
assert isinstance(__UpperCamelCase , __UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__UpperCamelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(__UpperCamelCase ) == 1_0
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
_lowercase : Any = load_json_function(__UpperCamelCase )
assert isinstance(__UpperCamelCase , __UpperCamelCase )
assert isinstance(exported_content[0] , __UpperCamelCase )
assert len(__UpperCamelCase ) == 1_0
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
_lowercase : Optional[Any] = load_json(__UpperCamelCase )
assert isinstance(__UpperCamelCase , __UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__UpperCamelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(__UpperCamelCase ) == 1_0
def __a ( self , _lowerCAmelCase ):
with pytest.raises(__UpperCamelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = tmp_path_factory.mktemp('data' ) / F"""test.json.{extension}"""
_lowercase : Any = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , compression=__UpperCamelCase ).write()
with fsspec.open(__UpperCamelCase , 'rb' , compression='infer' ) as f:
_lowercase : int = f.read()
with fsspec.open(__UpperCamelCase , 'rb' , compression='infer' ) as f:
_lowercase : Union[str, Any] = f.read()
assert exported_content == original_content
| 707 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool:
return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_ ( metaclass=A_ ):
_UpperCamelCase : Optional[int] = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
requires_backends(self , ['transformers', 'torch', 'note_seq'] )
@classmethod
def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
@classmethod
def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
| 708 |
import math
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list:
_lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
_lowercase : Dict = i
_lowercase : str = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_lowercase : Optional[Any] = array[temp_index - 1]
temp_index -= 1
_lowercase : Optional[Any] = temp_index_value
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap
_lowercase : List[str] = index
_lowercase : List[str] = 2 * index + 1 # Left Node
_lowercase : Union[str, Any] = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_lowercase : Any = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_lowercase : str = right_index
if largest != index:
_lowercase , _lowercase : List[str] = array[largest], array[index]
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
_lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE )
for i in range(n // 2 , -1 , -1 ):
heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(n - 1 , 0 , -1 ):
_lowercase , _lowercase : List[Any] = array[0], array[i]
heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE )
return array
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Optional[Any] = low
_lowercase : Tuple = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_lowercase , _lowercase : Tuple = array[j], array[i]
i += 1
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list:
if len(SCREAMING_SNAKE_CASE ) == 0:
return array
_lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) )
_lowercase : str = 16
return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(SCREAMING_SNAKE_CASE )
max_depth -= 1
_lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 )
_lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = p
return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input("Enter numbers separated by a comma : ").strip()
UpperCamelCase = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 677 | 0 |
from __future__ import annotations
UpperCamelCase = "#"
class lowerCAmelCase_ :
def __init__( self ):
_lowercase : dict = {}
def __a ( self , _lowerCAmelCase ):
_lowercase : Any = self._trie
for char in text:
if char not in trie:
_lowercase : Tuple = {}
_lowercase : str = trie[char]
_lowercase : List[str] = True
def __a ( self , _lowerCAmelCase ):
_lowercase : Dict = self._trie
for char in prefix:
if char in trie:
_lowercase : Optional[int] = trie[char]
else:
return []
return self._elements(UpperCamelCase__ )
def __a ( self , _lowerCAmelCase ):
_lowercase : int = []
for c, v in d.items():
_lowercase : Tuple = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )]
result.extend(UpperCamelCase__ )
return tuple(UpperCamelCase__ )
UpperCamelCase = Trie()
UpperCamelCase = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
_lowercase : Tuple = trie.find_word(lowerCAmelCase__ )
return tuple(string + word for word in suffixes )
def __magic_name__ ( ) -> int:
print(autocomplete_using_trie('de' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 709 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["CLIPFeatureExtractor"]
UpperCamelCase = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : str = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
_lowercase : Optional[Any] = 128
elif "12-12" in model_name:
_lowercase : Optional[int] = 12
_lowercase : str = 12
elif "14-14" in model_name:
_lowercase : List[str] = 14
_lowercase : Union[str, Any] = 14
elif "16-16" in model_name:
_lowercase : List[str] = 16
_lowercase : Union[str, Any] = 16
else:
raise ValueError('Model not supported' )
_lowercase : int = 'huggingface/label-files'
if "speech-commands" in model_name:
_lowercase : List[str] = 35
_lowercase : Union[str, Any] = 'speech-commands-v2-id2label.json'
else:
_lowercase : Optional[Any] = 527
_lowercase : Tuple = 'audioset-id2label.json'
_lowercase : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
_lowercase : Dict = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
_lowercase : Tuple = idalabel
_lowercase : List[Any] = {v: k for k, v in idalabel.items()}
return config
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str:
if "module.v" in name:
_lowercase : Optional[Any] = name.replace('module.v' , 'audio_spectrogram_transformer' )
if "cls_token" in name:
_lowercase : int = name.replace('cls_token' , 'embeddings.cls_token' )
if "dist_token" in name:
_lowercase : Any = name.replace('dist_token' , 'embeddings.distillation_token' )
if "pos_embed" in name:
_lowercase : List[Any] = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
_lowercase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
# transformer blocks
if "blocks" in name:
_lowercase : List[Any] = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
_lowercase : Tuple = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_lowercase : Union[str, Any] = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_lowercase : Union[str, Any] = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : int = name.replace('mlp.fc2' , 'output.dense' )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
_lowercase : Optional[int] = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' )
# classifier head
if "module.mlp_head.0" in name:
_lowercase : int = name.replace('module.mlp_head.0' , 'classifier.layernorm' )
if "module.mlp_head.1" in name:
_lowercase : Optional[int] = name.replace('module.mlp_head.1' , 'classifier.dense' )
return name
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
for key in orig_state_dict.copy().keys():
_lowercase : str = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if "qkv" in key:
_lowercase : str = key.split('.' )
_lowercase : Optional[Any] = int(key_split[3] )
_lowercase : Optional[Any] = config.hidden_size
if "weight" in key:
_lowercase : Dict = val[:dim, :]
_lowercase : List[Any] = val[dim : dim * 2, :]
_lowercase : Dict = val[-dim:, :]
else:
_lowercase : List[str] = val[:dim]
_lowercase : Optional[int] = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
else:
_lowercase : Dict = val
return orig_state_dict
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
_lowercase : str = [
'module.v.head.weight',
'module.v.head.bias',
'module.v.head_dist.weight',
'module.v.head_dist.bias',
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
_lowercase : List[Any] = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE )
_lowercase : Tuple = {
'ast-finetuned-audioset-10-10-0.4593': (
'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.450': (
'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448': (
'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1'
),
'ast-finetuned-audioset-10-10-0.448-v2': (
'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1'
),
'ast-finetuned-audioset-12-12-0.447': (
'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1'
),
'ast-finetuned-audioset-14-14-0.443': (
'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1'
),
'ast-finetuned-audioset-16-16-0.442': (
'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1'
),
'ast-finetuned-speech-commands-v2': (
'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1'
),
}
# load original state_dict
_lowercase : int = model_name_to_url[model_name]
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )
# remove some keys
remove_keys(SCREAMING_SNAKE_CASE )
# rename some keys
_lowercase : Tuple = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# load 🤗 model
_lowercase : Tuple = ASTForAudioClassification(SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
_lowercase : List[str] = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978
_lowercase : Dict = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526
_lowercase : Union[str, Any] = 1_024 if 'speech-commands' not in model_name else 128
_lowercase : Any = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE )
if "speech-commands" in model_name:
_lowercase : int = load_dataset('speech_commands' , 'v0.02' , split='validation' )
_lowercase : Optional[int] = dataset[0]['audio']['array']
else:
_lowercase : List[str] = hf_hub_download(
repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , )
_lowercase , _lowercase : str = torchaudio.load(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = waveform.squeeze().numpy()
_lowercase : Optional[int] = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=16_000 , return_tensors='pt' )
# forward pass
_lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE )
_lowercase : Dict = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
_lowercase : Any = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
_lowercase : int = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
_lowercase : Tuple = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
_lowercase : int = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
_lowercase : Union[str, Any] = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
_lowercase : List[str] = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
_lowercase : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
_lowercase : Union[str, Any] = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError('Unknown model name' )
if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ):
raise ValueError('Logits don\'t match' )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print('Pushing model and feature extractor to the hub...' )
model.push_to_hub(F"""MIT/{model_name}""" )
feature_extractor.push_to_hub(F"""MIT/{model_name}""" )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you\'d like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCamelCase = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 710 |
from collections.abc import Sequence
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
_lowercase : Optional[Any] = 0.0
for coeff in reversed(SCREAMING_SNAKE_CASE ):
_lowercase : Optional[int] = result * x + coeff
return result
if __name__ == "__main__":
UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0)
UpperCamelCase = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 677 | 0 |
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Tuple = inspect.getfile(accelerate.test_utils )
_UpperCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] )
_UpperCamelCase : List[str] = ['''accelerate''', '''launch''']
_UpperCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate'''
_UpperCamelCase : Optional[Any] = '''default_config.yaml'''
_UpperCamelCase : int = config_folder / config_file
_UpperCamelCase : Any = config_folder / '''_default_config.yaml'''
_UpperCamelCase : Optional[int] = Path("tests/test_configs" )
@classmethod
def __a ( cls ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def __a ( cls ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def __a ( self ):
_lowercase : Union[str, Any] = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def __a ( self ):
for config in sorted(self.test_config_path.glob('**/*.yaml' ) ):
with self.subTest(config_file=UpperCamelCase__ ):
execute_subprocess_async(
self.base_cmd + ['--config_file', str(UpperCamelCase__ ), self.test_file_path] , env=os.environ.copy() )
def __a ( self ):
execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() )
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : Dict = '''test-tpu'''
_UpperCamelCase : Tuple = '''us-central1-a'''
_UpperCamelCase : Optional[Any] = '''ls'''
_UpperCamelCase : List[str] = ['''accelerate''', '''tpu-config''']
_UpperCamelCase : Dict = '''cd /usr/share'''
_UpperCamelCase : int = '''tests/test_samples/test_command_file.sh'''
_UpperCamelCase : List[Any] = '''Running gcloud compute tpus tpu-vm ssh'''
def __a ( self ):
_lowercase : int = run_command(
self.cmd
+ ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Dict = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command',
self.command,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Union[str, Any] = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=UpperCamelCase__ )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Tuple = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : int = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--command',
self.command,
'--command',
'echo \"Hello World\"',
'--debug',
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Tuple = run_command(
self.cmd
+ ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : int = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command_file',
self.command_file,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Optional[int] = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCamelCase__ , )
def __a ( self ):
_lowercase : Any = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--install_accelerate',
'--accelerate_version',
'12.0.0',
'--debug',
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , UpperCamelCase__ , )
| 711 |
from __future__ import annotations
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase=None ):
_lowercase : int = data
_lowercase : Union[str, Any] = None
def __repr__( self ):
_lowercase : Dict = []
_lowercase : Tuple = self
while temp:
string_rep.append(F"""{temp.data}""" )
_lowercase : Optional[Any] = temp.next
return "->".join(_lowerCAmelCase )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any:
if not elements_list:
raise Exception('The Elements List is empty' )
_lowercase : Union[str, Any] = Node(elements_list[0] )
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
_lowercase : Optional[int] = Node(elements_list[i] )
_lowercase : List[Any] = current.next
return head
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None:
if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
print_reverse(head_node.next )
print(head_node.data )
def __magic_name__ ( ) -> List[str]:
from doctest import testmod
testmod()
_lowercase : int = make_linked_list([14, 52, 14, 12, 43] )
print('Linked List:' )
print(SCREAMING_SNAKE_CASE )
print('Elements in Reverse:' )
print_reverse(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = jnp.ones((batch_size, length) ) / length
return scores
def __a ( self ):
_lowercase : List[str] = None
_lowercase : Tuple = 2_0
_lowercase : Tuple = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase_ )
# tweak scores to not be uniform anymore
_lowercase : Optional[Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
_lowercase : Optional[int] = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
_lowercase : str = jax.nn.softmax(lowerCAmelCase_ , axis=-1 )
_lowercase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowercase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 )
_lowercase : List[str] = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase_ , scores.copy() , cur_len=lowerCAmelCase_ ) , axis=-1 )
_lowercase : int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase_ , scores.copy() , cur_len=lowerCAmelCase_ ) , axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) )
self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() )
def __a ( self ):
_lowercase : Tuple = None
_lowercase : Tuple = 1_0
_lowercase : str = 2
# create ramp distribution
_lowercase : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy()
_lowercase : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size
_lowercase : Dict = FlaxTopKLogitsWarper(3 )
_lowercase : Optional[Any] = top_k_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
_lowercase : int = 5
_lowercase : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 )
_lowercase : Any = np.broadcast_to(np.arange(lowerCAmelCase_ )[None, :] , (batch_size, length) ).copy()
_lowercase : Dict = top_k_warp_safety_check(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] )
def __a ( self ):
_lowercase : List[str] = None
_lowercase : Any = 1_0
_lowercase : List[str] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
_lowercase : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
_lowercase : Optional[int] = FlaxTopPLogitsWarper(0.8 )
_lowercase : List[Any] = np.exp(top_p_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
_lowercase : Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) )
# check edge cases with negative and extreme logits
_lowercase : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
_lowercase : Optional[int] = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
_lowercase : Tuple = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 )
_lowercase : Dict = top_p_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] )
def __a ( self ):
_lowercase : Dict = 2_0
_lowercase : List[str] = 4
_lowercase : List[Any] = 0
_lowercase : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=lowerCAmelCase_ )
# check that min length is applied at length 5
_lowercase : str = ids_tensor((batch_size, 2_0) , vocab_size=2_0 )
_lowercase : Tuple = 5
_lowercase : int = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : str = min_dist_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] )
# check that min length is not applied anymore at length 15
_lowercase : int = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Union[str, Any] = 1_5
_lowercase : Tuple = min_dist_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertFalse(jnp.isinf(lowerCAmelCase_ ).any() )
def __a ( self ):
_lowercase : int = 2_0
_lowercase : int = 4
_lowercase : Any = 0
_lowercase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase_ )
# check that all scores are -inf except the bos_token_id score
_lowercase : Dict = ids_tensor((batch_size, 1) , vocab_size=2_0 )
_lowercase : Dict = 1
_lowercase : str = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Optional[int] = logits_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
_lowercase : Tuple = 3
_lowercase : str = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Any = logits_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertFalse(jnp.isinf(lowerCAmelCase_ ).any() )
def __a ( self ):
_lowercase : Optional[int] = 2_0
_lowercase : Tuple = 4
_lowercase : Tuple = 0
_lowercase : Optional[int] = 5
_lowercase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ )
# check that all scores are -inf except the eos_token_id when max_length is reached
_lowercase : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=2_0 )
_lowercase : Optional[int] = 4
_lowercase : Optional[int] = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Dict = logits_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
_lowercase : List[str] = 3
_lowercase : Any = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Any = logits_processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
self.assertFalse(jnp.isinf(lowerCAmelCase_ ).any() )
def __a ( self ):
_lowercase : Tuple = 4
_lowercase : Dict = 1_0
_lowercase : Any = 1_5
_lowercase : Tuple = 2
_lowercase : str = 1
_lowercase : Optional[Any] = 1_5
# dummy input_ids and scores
_lowercase : Optional[int] = ids_tensor((batch_size, sequence_length) , lowerCAmelCase_ )
_lowercase : Union[str, Any] = input_ids.copy()
_lowercase : str = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : Union[str, Any] = scores.copy()
# instantiate all dist processors
_lowercase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowercase : int = FlaxTopKLogitsWarper(3 )
_lowercase : Dict = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
_lowercase : Tuple = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=lowerCAmelCase_ )
_lowercase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase_ )
_lowercase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ )
_lowercase : Dict = 1_0
# no processor list
_lowercase : Optional[int] = temp_dist_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Optional[Any] = top_k_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Union[str, Any] = top_p_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : str = min_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Union[str, Any] = bos_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : List[str] = eos_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
# with processor list
_lowercase : Any = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
_lowercase : List[str] = processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
# scores should be equal
self.assertTrue(jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
def __a ( self ):
_lowercase : Union[str, Any] = 4
_lowercase : Optional[int] = 1_0
_lowercase : int = 1_5
_lowercase : Any = 2
_lowercase : List[Any] = 1
_lowercase : List[Any] = 1_5
# dummy input_ids and scores
_lowercase : Union[str, Any] = ids_tensor((batch_size, sequence_length) , lowerCAmelCase_ )
_lowercase : Optional[int] = input_ids.copy()
_lowercase : Tuple = self._get_uniform_logits(lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : List[Any] = scores.copy()
# instantiate all dist processors
_lowercase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
_lowercase : int = FlaxTopKLogitsWarper(3 )
_lowercase : str = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
_lowercase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=lowerCAmelCase_ )
_lowercase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase_ )
_lowercase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ )
_lowercase : int = 1_0
# no processor list
def run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Dict = temp_dist_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Union[str, Any] = top_k_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Union[str, Any] = top_p_warp(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Tuple = min_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : List[str] = bos_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
_lowercase : Dict = eos_dist_proc(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
return scores
# with processor list
def run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
_lowercase : Optional[int] = processor(lowerCAmelCase_ , lowerCAmelCase_ , cur_len=lowerCAmelCase_ )
return scores
_lowercase : int = jax.jit(lowerCAmelCase_ )
_lowercase : List[Any] = jax.jit(lowerCAmelCase_ )
_lowercase : Optional[int] = jitted_run_no_processor_list(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_lowercase : str = jitted_run_processor_list(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# scores should be equal
self.assertTrue(jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
| 712 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2)
if __name__ == "__main__":
def __magic_name__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) )
benchmark()
| 677 | 0 |
from __future__ import annotations
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> list[list[str]]:
_lowercase : Optional[Any] = word_bank or []
# create a table
_lowercase : int = len(a_ ) + 1
_lowercase : list[list[list[str]]] = []
for _ in range(a_ ):
table.append([] )
# seed value
_lowercase : Union[str, Any] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(a_ ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(a_ )] == word:
_lowercase : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(a_ )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(a_ )]:
combination.reverse()
return table[len(a_ )]
if __name__ == "__main__":
print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"]))
print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"]))
print(
all_construct(
"hexagonosaurus",
["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"],
)
)
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
UpperCamelCase = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class lowerCAmelCase_ ( unittest.TestCase , _a ):
def __a ( self ):
_lowercase : str = load_tool('text-question-answering' )
self.tool.setup()
_lowercase : Tuple = load_tool('text-question-answering' , remote=_A )
def __a ( self ):
_lowercase : int = self.tool(_A , 'What did Hugging Face do in April 2021?' )
self.assertEqual(_A , 'launched the BigScience Research Workshop' )
def __a ( self ):
_lowercase : Dict = self.remote_tool(_A , 'What did Hugging Face do in April 2021?' )
self.assertEqual(_A , 'launched the BigScience Research Workshop' )
def __a ( self ):
_lowercase : Tuple = self.tool(text=_A , question='What did Hugging Face do in April 2021?' )
self.assertEqual(_A , 'launched the BigScience Research Workshop' )
def __a ( self ):
_lowercase : str = self.remote_tool(text=_A , question='What did Hugging Face do in April 2021?' )
self.assertEqual(_A , 'launched the BigScience Research Workshop' )
| 714 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Any = VOCAB_FILES_NAMES
_UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Tuple = normalizer_class(**_lowerCAmelCase )
_lowercase : Union[str, Any] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : str = [self.sep_token_id]
_lowercase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 677 | 0 |
import argparse
import os
import re
import packaging.version
UpperCamelCase = "examples/"
UpperCamelCase = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase = {
"init": "src/transformers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase = "README.md"
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
with open(UpperCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_lowercase : List[str] = f.read()
_lowercase , _lowercase : Tuple = REPLACE_PATTERNS[pattern]
_lowercase : Any = replace.replace('VERSION' , UpperCAmelCase__ )
_lowercase : Tuple = re_pattern.sub(UpperCAmelCase__ , UpperCAmelCase__ )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(UpperCAmelCase__ )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]:
for folder, directories, fnames in os.walk(UpperCAmelCase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , pattern='examples' )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not patch:
update_version_in_examples(UpperCAmelCase__ )
def __magic_name__ ( ) -> int:
_lowercase : str = '🤗 Transformers currently provides the following architectures'
_lowercase : Tuple = '1. Want to contribute a new model?'
with open(UpperCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_lowercase : Tuple = f.readlines()
# Find the start of the list.
_lowercase : Any = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_lowercase : Dict = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
_lowercase : Any = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase__ )
def __magic_name__ ( ) -> Union[str, Any]:
with open(REPLACE_FILES['init'] , 'r' ) as f:
_lowercase : Optional[int] = f.read()
_lowercase : Optional[Any] = REPLACE_PATTERNS['init'][0].search(UpperCAmelCase__ ).groups()[0]
return packaging.version.parse(UpperCAmelCase__ )
def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> Tuple:
_lowercase : Any = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
_lowercase : int = default_version.base_version
elif patch:
_lowercase : int = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_lowercase : Optional[Any] = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_lowercase : Any = input(F"""Which version are you releasing? [{default_version}]""" )
if len(UpperCAmelCase__ ) == 0:
_lowercase : Optional[int] = default_version
print(F"""Updating version to {version}.""" )
global_version_update(UpperCAmelCase__ , patch=UpperCAmelCase__ )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def __magic_name__ ( ) -> Dict:
_lowercase : Any = get_version()
_lowercase : Any = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_lowercase : Union[str, Any] = current_version.base_version
# Check with the user we got that right.
_lowercase : Optional[Any] = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(UpperCAmelCase__ ) == 0:
_lowercase : List[str] = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(UpperCAmelCase__ )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 715 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( __snake_case ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ):
warnings.warn(
'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use YolosImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 716 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
for attribute in key.split('.' ):
_lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
_lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
_lowercase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
_lowercase : List[str] = value
elif weight_type == "weight_g":
_lowercase : Any = value
elif weight_type == "weight_v":
_lowercase : Tuple = value
elif weight_type == "bias":
_lowercase : List[str] = value
else:
_lowercase : Dict = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Optional[int] = []
_lowercase : Optional[int] = fairseq_model.state_dict()
_lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_lowercase : Dict = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
_lowercase : int = True
else:
for key, mapped_key in MAPPING.items():
_lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned):
_lowercase : Union[str, Any] = True
if "*" in mapped_key:
_lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
_lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
_lowercase : Optional[int] = 'weight_g'
elif "weight_v" in name:
_lowercase : Optional[Any] = 'weight_v'
elif "weight" in name:
_lowercase : str = 'weight'
elif "bias" in name:
_lowercase : Any = 'bias'
else:
_lowercase : str = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
_lowercase : Any = full_name.split('conv_layers.' )[-1]
_lowercase : Any = name.split('.' )
_lowercase : Optional[Any] = int(items[0] )
_lowercase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
_lowercase : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
_lowercase : List[str] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
_lowercase : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
_lowercase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]:
if config_path is not None:
_lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertConfig()
if is_finetuned:
if dict_path:
_lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_lowercase : Dict = target_dict.pad_index
_lowercase : Dict = target_dict.bos_index
_lowercase : Tuple = target_dict.eos_index
_lowercase : List[Any] = len(target_dict.symbols )
_lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) )
return
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE )
_lowercase : int = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , )
_lowercase : str = True if config.feat_extract_norm == 'layer' else False
_lowercase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
_lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE )
else:
_lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE )
if is_finetuned:
_lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
_lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_lowercase : int = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
UpperCamelCase = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 677 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase = {
"""vocab_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"""
),
"""google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""",
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"""
),
"""google/electra-base-generator""": (
"""https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"""
),
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"""
),
},
}
UpperCamelCase = {
"""google/electra-small-generator""": 512,
"""google/electra-base-generator""": 512,
"""google/electra-large-generator""": 512,
"""google/electra-small-discriminator""": 512,
"""google/electra-base-discriminator""": 512,
"""google/electra-large-discriminator""": 512,
}
UpperCamelCase = {
"""google/electra-small-generator""": {"""do_lower_case""": True},
"""google/electra-base-generator""": {"""do_lower_case""": True},
"""google/electra-large-generator""": {"""do_lower_case""": True},
"""google/electra-small-discriminator""": {"""do_lower_case""": True},
"""google/electra-base-discriminator""": {"""do_lower_case""": True},
"""google/electra-large-discriminator""": {"""do_lower_case""": True},
}
class lowerCAmelCase_ ( __UpperCAmelCase ):
_UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES
_UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase : Optional[Any] = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase : str = do_lower_case
_lowercase : List[str] = strip_accents
_lowercase : Union[str, Any] = tokenize_chinese_chars
_lowercase : List[Any] = normalizer_class(**_lowerCAmelCase )
_lowercase : List[str] = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : List[Any] = [self.sep_token_id]
_lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Tuple = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
| 717 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ):
_lowercase : List[str] = parent
_lowercase : Optional[Any] = batch_size
_lowercase : str = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_input_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Optional[Any] = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : str = num_hidden_layers
_lowercase : Tuple = num_attention_heads
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Tuple = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = num_labels
_lowercase : List[str] = num_choices
_lowercase : Dict = scope
_lowercase : List[Any] = range_bbox
def __a ( self ):
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowercase : List[str] = bbox[i, j, 3]
_lowercase : Optional[int] = bbox[i, j, 1]
_lowercase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowercase : Dict = bbox[i, j, 2]
_lowercase : Dict = bbox[i, j, 0]
_lowercase : int = t
_lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
_lowercase : Any = None
if self.use_input_mask:
_lowercase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Tuple = None
if self.use_token_type_ids:
_lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Union[str, Any] = None
_lowercase : List[str] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : str = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : Any = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase )
_lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase )
_lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : str = self.num_labels
_lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase )
_lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Any = self.num_labels
_lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase )
_lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase )
_lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self ):
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : List[Any] = config_and_inputs
_lowercase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Union[str, Any] = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : str = False
_UpperCamelCase : List[str] = True
_UpperCamelCase : Tuple = 10
def __a ( self ):
_lowercase : Optional[int] = TFLayoutLMModelTester(self )
_lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 )
def __a ( self ):
self.config_tester.run_common_tests()
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase )
@slow
def __a ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def __a ( self ):
pass
def __magic_name__ ( ) -> Optional[int]:
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
_lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
_lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
_lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
_lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
_lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
@slow
def __a ( self ):
_lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the sequence output on [0, :3, :3]
_lowercase : Optional[Any] = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) )
# test the pooled output on [1, :3]
_lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) )
@slow
def __a ( self ):
# initialize model with randomly initialized sequence classification head
_lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Any = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
_lowercase : List[Any] = outputs.loss
_lowercase : Any = (2,)
self.assertEqual(loss.shape , _lowerCAmelCase )
# test the shape of the logits
_lowercase : str = outputs.logits
_lowercase : Dict = (2, 2)
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : Dict = model(
input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Dict = outputs.logits
_lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape , _lowerCAmelCase )
@slow
def __a ( self ):
# initialize model with randomly initialized token classification head
_lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs()
# forward pass
_lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )
# test the shape of the logits
_lowercase : Any = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
| 677 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"
),
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"google/electra-small-generator": (
"https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"
),
"google/electra-base-generator": (
"https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"
),
"google/electra-large-generator": (
"https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"
),
"google/electra-small-discriminator": (
"https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"
),
"google/electra-base-discriminator": (
"https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"
),
"google/electra-large-discriminator": (
"https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"google/electra-small-generator": 512,
"google/electra-base-generator": 512,
"google/electra-large-generator": 512,
"google/electra-small-discriminator": 512,
"google/electra-base-discriminator": 512,
"google/electra-large-discriminator": 512,
}
UpperCamelCase = {
"google/electra-small-generator": {"do_lower_case": True},
"google/electra-base-generator": {"do_lower_case": True},
"google/electra-large-generator": {"do_lower_case": True},
"google/electra-small-discriminator": {"do_lower_case": True},
"google/electra-base-discriminator": {"do_lower_case": True},
"google/electra-large-discriminator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __lowerCAmelCase ):
_UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES
_UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : List[str] = ElectraTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , )
_lowercase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowerCamelCase__ ) != do_lower_case
or normalizer_state.get('strip_accents' , lowerCamelCase__ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowerCamelCase__ ) != tokenize_chinese_chars
):
_lowercase : Dict = getattr(lowerCamelCase__ , normalizer_state.pop('type' ) )
_lowercase : Optional[Any] = do_lower_case
_lowercase : int = strip_accents
_lowercase : Any = tokenize_chinese_chars
_lowercase : Optional[int] = normalizer_class(**lowerCamelCase__ )
_lowercase : Dict = do_lower_case
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Union[str, Any] = [self.sep_token_id]
_lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Any = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
| 718 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : List[str] = logging.get_logger()
# the current default level is logging.WARNING
_lowercase : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
def __a ( self ):
_lowercase : List[str] = logging.get_verbosity()
_lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : Tuple = 'Testing 1, 2, 3'
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
# restore to the original level
logging.set_verbosity(_lowerCAmelCase )
@mockenv(TRANSFORMERS_VERBOSITY='error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase )
_lowercase : Optional[Any] = logging.log_levels[env_level_str]
_lowercase : Dict = logging.get_verbosity()
self.assertEqual(
_lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_lowercase : Any = ''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='super-error' )
def __a ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
_lowercase : Tuple = logging.logging.getLogger()
with CaptureLogger(_lowerCAmelCase ) as cl:
# this action activates the env var
logging.get_logger('transformers.models.bart.tokenization_bart' )
self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out )
# no need to restore as nothing was changed
def __a ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
_lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' )
_lowercase : List[str] = 'Testing 1, 2, 3'
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , '' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCAmelCase ) as cl:
logger.warning_advice(_lowerCAmelCase )
self.assertEqual(cl.out , msg + '\n' )
def __magic_name__ ( ) -> List[str]:
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 677 | 0 |
# Algorithm for the pigeonhole sorting
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
_lowercase : Any = min(snake_case_ ) # min() finds the minimum value
_lowercase : Dict = max(snake_case_ ) # max() finds the maximum value
_lowercase : Optional[int] = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
_lowercase : Optional[Any] = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(snake_case_ , snake_case_ ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
_lowercase : Dict = 0
for count in range(snake_case_ ):
while holes[count] > 0:
holes[count] -= 1
_lowercase : List[str] = count + min_val
i += 1
def __magic_name__ ( ) -> int:
_lowercase : List[Any] = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(snake_case_ )
print('Sorted order is:' , ' '.join(snake_case_ ) )
if __name__ == "__main__":
main()
| 719 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
UpperCamelCase = "pt"
elif is_tf_available():
UpperCamelCase = "tf"
else:
UpperCamelCase = "jax"
class lowerCAmelCase_ ( __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = PerceiverTokenizer
_UpperCamelCase : str = False
def __a ( self ):
super().setUp()
_lowercase : List[Any] = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __a ( self ):
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' )
def __a ( self , **_lowerCAmelCase ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_lowercase : Union[str, Any] = []
for i in range(len(_lowerCAmelCase ) ):
try:
_lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) )
_lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) )
if max_length is not None and len(_lowerCAmelCase ) > max_length:
_lowercase : Any = toks[:max_length]
if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0:
while len(_lowerCAmelCase ) < min_length:
_lowercase : Optional[Any] = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Optional[Any] = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
if " " not in output_txt and len(_lowerCAmelCase ) > 1:
_lowercase : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase )
)
if with_prefix_space:
_lowercase : List[Any] = ' ' + output_txt
_lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
return output_txt, output_ids
def __a ( self ):
_lowercase : Dict = self.perceiver_tokenizer
_lowercase : Optional[Any] = 'Unicode €.'
_lowercase : str = tokenizer(_lowerCAmelCase )
_lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' )
_lowercase : Union[str, Any] = tokenizer('e è é ê ë' )
_lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['input_ids'] , _lowerCAmelCase )
# decoding
_lowercase : int = tokenizer.decode(_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' )
def __a ( self ):
_lowercase : List[str] = self.perceiver_tokenizer
_lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
_lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
if FRAMEWORK != "jax":
_lowercase : int = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def __a ( self ):
_lowercase : List[Any] = self.perceiver_tokenizer
_lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , _lowerCAmelCase )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertNotIn('decoder_input_ids' , _lowerCAmelCase )
self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[int] = self.perceiver_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : Optional[int] = tokenizer(
text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
def __a ( self ):
# safety check on max_len default value so we are sure the test works
_lowercase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
_lowercase : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
_lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[str] = tempfile.mkdtemp()
_lowercase : int = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Any = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
_lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase )
_lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
_lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(_lowerCAmelCase )
def __a ( self ):
_lowercase : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : List[str] = json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(_lowerCAmelCase )
_lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )]
_lowercase : str = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : Optional[int] = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[int] = tokenizer_class.from_pretrained(
_lowerCAmelCase , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __a ( self ):
_lowercase : str = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '�' )
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
pass
def __a ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
_lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
| 677 | 0 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
UpperCamelCase = namedtuple("covid_data", "cases deaths recovered")
def __magic_name__ ( SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus/" ) -> Any:
_lowercase : Any = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) )
UpperCamelCase = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 720 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ConditionalDetrFeatureExtractor"]
UpperCamelCase = ["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 677 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
UpperCamelCase = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class lowerCAmelCase_ ( unittest.TestCase ):
_UpperCamelCase : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_UpperCamelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
_UpperCamelCase : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
_UpperCamelCase : str = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : Optional[int] = ZeroShotClassificationPipeline(
model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase ):
_lowercase : List[str] = classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase )]} )
# No kwarg
_lowercase : Optional[int] = classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase )]} )
_lowercase : Tuple = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase )]} )
_lowercase : int = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
_lowercase : Any = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
_lowercase : List[str] = classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(_lowerCAmelCase , {'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
_lowercase : Optional[Any] = classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
_lowerCAmelCase , [
{'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]}
for i in range(1 )
] , )
_lowercase : Union[str, Any] = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
_lowerCAmelCase , [
{'sequence': ANY(_lowerCAmelCase ), 'labels': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], 'scores': [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]}
for i in range(2 )
] , )
with self.assertRaises(_lowerCAmelCase ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(_lowerCAmelCase ):
classifier(_lowerCAmelCase , candidate_labels='politics' )
with self.assertRaises(_lowerCAmelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(_lowerCAmelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels=_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(_lowerCAmelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_lowerCAmelCase , )
self.run_entailment_id(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase ):
_lowercase : Dict = zero_shot_classifier.model.config
_lowercase : Union[str, Any] = config.labelaid
_lowercase : Tuple = zero_shot_classifier.entailment_id
_lowercase : str = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
_lowercase : Dict = {'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
_lowercase : int = {'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
_lowercase : Optional[int] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
_lowercase : str = original_labelaid
self.assertEqual(_lowerCAmelCase , zero_shot_classifier.entailment_id )
@require_torch
def __a ( self ):
_lowercase : List[Any] = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 1_0_0 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def __a ( self ):
_lowercase : Tuple = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
_lowercase : Optional[Any] = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_33, 0.3_33, 0.3_33],
} , )
@require_tf
def __a ( self ):
_lowercase : Dict = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
_lowercase : Any = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_33, 0.3_33, 0.3_33],
} , )
@slow
@require_torch
def __a ( self ):
_lowercase : Optional[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
_lowercase : Optional[int] = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_76, 0.0_15, 0.0_09],
} , )
_lowercase : Optional[int] = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCAmelCase , )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , )
@slow
@require_tf
def __a ( self ):
_lowercase : List[Any] = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
_lowercase : Optional[Any] = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_76, 0.0_15, 0.0_09],
} , )
_lowercase : Tuple = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_lowerCAmelCase , )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , )
| 721 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Tuple = "ClapFeatureExtractor"
_UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase )
def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ):
_lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if audios is not None:
_lowercase : Any = self.feature_extractor(
_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )
if text is not None and audios is not None:
_lowercase : Union[str, Any] = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase )
def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
@property
def __a ( self ):
_lowercase : Dict = self.tokenizer.model_input_names
_lowercase : Any = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 677 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700 |
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : Any = num_of_nodes
_lowercase : list[list[int]] = []
_lowercase : dict[int, int] = {}
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
self.m_edges.append([u_node, v_node, weight] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def __a ( self , _lowerCAmelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
_lowercase : Optional[int] = self.find_component(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if component_size[u_node] <= component_size[v_node]:
_lowercase : str = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
_lowercase : Any = self.find_component(_lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowerCAmelCase )
def __a ( self ):
_lowercase : Any = []
_lowercase : Optional[Any] = 0
_lowercase : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
_lowercase : str = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
_lowercase , _lowercase , _lowercase : List[str] = edge
_lowercase : Union[str, Any] = self.m_component[u]
_lowercase : Union[str, Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
_lowercase : str = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
_lowercase , _lowercase , _lowercase : int = edge
_lowercase : Optional[int] = self.m_component[u]
_lowercase : Optional[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
_lowercase : str = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def __magic_name__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 677 | 0 |
import os
from datetime import datetime as dt
from github import Github
UpperCamelCase = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def __magic_name__ ( ) -> List[Any]:
_lowercase : Tuple = Github(os.environ['GITHUB_TOKEN'] )
_lowercase : Dict = g.get_repo('huggingface/diffusers' )
_lowercase : int = repo.get_issues(state='open' )
for issue in open_issues:
_lowercase : Optional[Any] = sorted(issue.get_comments() , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 701 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]:
_lowercase : Tuple = {}
_lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids']
_lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
UpperCamelCase = HfArgumentParser(PretokenizationArguments)
UpperCamelCase = parser.parse_args()
if args.num_workers is None:
UpperCamelCase = multiprocessing.cpu_count()
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
UpperCamelCase = time.time()
UpperCamelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
UpperCamelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
UpperCamelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 677 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
UpperCamelCase = {
"junnyu/roformer_chinese_small": 1_536,
"junnyu/roformer_chinese_base": 1_536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
UpperCamelCase = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class lowerCAmelCase_ ( __snake_case ):
_UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES
_UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
_UpperCamelCase : Union[str, Any] = RoFormerTokenizer
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , )
_lowercase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case
or pre_tok_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents
):
_lowercase : Any = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) )
_lowercase : Union[str, Any] = do_lower_case
_lowercase : Optional[int] = strip_accents
_lowercase : int = pre_tok_class(**_lowerCAmelCase )
_lowercase : Tuple = do_lower_case
def __getstate__( self ):
_lowercase : Tuple = self.__dict__.copy()
_lowercase : str = BertPreTokenizer()
return state
def __setstate__( self , _lowerCAmelCase ):
_lowercase : int = d
_lowercase : Any = self.__dict__['_tokenizer'].get_vocab()
_lowercase : int = PreTokenizer.custom(JiebaPreTokenizer(_lowerCAmelCase ) )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ):
_lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : Optional[Any] = [self.sep_token_id]
_lowercase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ):
_lowercase : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase )
return tuple(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ):
_lowercase : str = BertPreTokenizer()
return super().save_pretrained(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
| 702 |
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration}
UpperCamelCase = {"facebook/bart-base": BartTokenizer}
def __magic_name__ ( ) -> str:
_lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' )
parser.add_argument(
'--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' )
parser.add_argument(
'--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , )
parser.add_argument(
'--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'Number of beams to use for evaluation. This argument will be '
'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'
) , )
parser.add_argument(
'--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , )
parser.add_argument(
'--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , )
parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , )
parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' )
_lowercase : Optional[Any] = parser.parse_args()
return args
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]:
_lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
_lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE )
if model_name in ["facebook/bart-base"]:
_lowercase : Dict = 0
_lowercase : Optional[int] = None
_lowercase : Union[str, Any] = 0
return huggingface_model, tokenizer
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
model.eval()
_lowercase : List[Any] = None
_lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) )
with torch.no_grad():
_lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.'
_lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device )
_lowercase : str = model.generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE , (
inputs['input_ids'],
inputs['attention_mask'],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={
'input_ids': {0: 'batch', 1: 'seq'},
'output_ids': {0: 'batch', 1: 'seq_out'},
} , example_outputs=SCREAMING_SNAKE_CASE , )
logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) )
logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) )
_lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE )
_lowercase : Union[str, Any] = ort_sess.run(
SCREAMING_SNAKE_CASE , {
'input_ids': inputs['input_ids'].cpu().numpy(),
'attention_mask': inputs['attention_mask'].cpu().numpy(),
'num_beams': np.array(SCREAMING_SNAKE_CASE ),
'max_length': np.array(SCREAMING_SNAKE_CASE ),
'decoder_start_token_id': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('Model outputs from torch and ONNX Runtime are similar.' )
logger.info('Success.' )
def __magic_name__ ( ) -> Any:
_lowercase : Dict = parse_args()
_lowercase : Union[str, Any] = 5
_lowercase : Union[str, Any] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_lowercase : Optional[Any] = torch.device(args.device )
_lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE )
if model.config.decoder_start_token_id is None:
raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' )
model.to(SCREAMING_SNAKE_CASE )
if args.max_length:
_lowercase : Any = args.max_length
if args.num_beams:
_lowercase : List[str] = args.num_beams
if args.output_file_path:
_lowercase : Union[str, Any] = args.output_file_path
else:
_lowercase : Tuple = 'BART.onnx'
logger.info('Exporting model to ONNX' )
export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 677 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.