code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' def get_masked_lm_array(SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Tuple = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Tuple = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_array(SCREAMING_SNAKE_CASE ): _lowercase : Any = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : List[str] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Dict = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Optional[int] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : List[str] = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : int = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowercase : Optional[int] = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = array.reshape(SCREAMING_SNAKE_CASE ) if "kernel" in name: _lowercase : Union[str, Any] = array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE ) print(F"""Loading model based on config from {config_path}...""" ) _lowercase : List[Any] = BertConfig.from_json_file(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = BertForMaskedLM(SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowercase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _lowercase : BertSelfAttention = layer.attention.self _lowercase : Any = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _lowercase : Any = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) _lowercase : Optional[Any] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) _lowercase : Optional[int] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _lowercase : Tuple = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _lowercase : BertSelfOutput = layer.attention.output _lowercase : List[Any] = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _lowercase : str = get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) _lowercase : Union[str, Any] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate _lowercase : BertIntermediate = layer.intermediate _lowercase : Any = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) _lowercase : Optional[Any] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output _lowercase : BertOutput = layer.output _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) _lowercase : int = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_dense/bias' ) _lowercase : Any = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) _lowercase : Optional[int] = get_encoder_layer_array(SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings _lowercase : List[str] = get_encoder_array('_position_embedding_layer/embeddings' ) _lowercase : int = get_encoder_array('_type_embedding_layer/embeddings' ) _lowercase : Union[str, Any] = get_encoder_array('_embedding_norm_layer/gamma' ) _lowercase : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _lowercase : Dict = model.cls.predictions.transform _lowercase : Dict = get_masked_lm_array('dense/kernel' ) _lowercase : Any = get_masked_lm_array('dense/bias' ) _lowercase : Any = get_masked_lm_array('layer_norm/gamma' ) _lowercase : Dict = get_masked_lm_array('layer_norm/beta' ) _lowercase : Optional[Any] = get_masked_lm_array('embedding_table' ) # Pooling _lowercase : str = BertPooler(config=SCREAMING_SNAKE_CASE ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/kernel' ) _lowercase : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) _lowercase : Union[str, Any] = BertForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) UpperCamelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Any = graph self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = len(_lowerCAmelCase ) _lowercase : Tuple = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): if sources is int: _lowercase : Union[str, Any] = [sources] if sinks is int: _lowercase : Dict = [sinks] if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: return _lowercase : Tuple = sources[0] _lowercase : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1: _lowercase : Any = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowercase : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowercase : str = max_input_flow _lowercase : Dict = 0 _lowercase : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowercase : str = max_input_flow _lowercase : List[Any] = size - 1 def __a ( self ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = algorithm(self ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Dict = flow_network _lowercase : List[str] = flow_network.verticesCount _lowercase : Tuple = flow_network.sourceIndex _lowercase : Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowercase : Any = flow_network.graph _lowercase : Optional[Any] = False def __a ( self ): if not self.executed: self._algorithm() _lowercase : str = True def __a ( self ): pass class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) # use this to save your result _lowercase : List[str] = -1 def __a ( self ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] _lowercase : List[Any] = [0] * self.verticies_count _lowercase : Optional[Any] = [0] * self.verticies_count def __a ( self ): _lowercase : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowercase : Dict = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowercase : Tuple = 0 while i < len(_lowerCAmelCase ): _lowercase : List[str] = vertices_list[i] _lowercase : Union[str, Any] = self.heights[vertex_index] self.process_vertex(_lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) ) _lowercase : Any = 0 else: i += 1 _lowercase : Any = sum(self.preflow[self.source_index] ) def __a ( self , _lowerCAmelCase ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCAmelCase , _lowerCAmelCase ) self.relabel(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowercase : str = self.heights[to_index] if min_height is not None: _lowercase : List[str] = min_height + 1 if __name__ == "__main__": UpperCamelCase = [0] UpperCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
704
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase = None UpperCamelCase = { "7B": 11_008, "13B": 13_824, "30B": 17_920, "65B": 22_016, "70B": 28_672, } UpperCamelCase = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=256 ) -> Union[str, Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> int: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , 'tmp' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Dict = read_json(os.path.join(SCREAMING_SNAKE_CASE , 'params.json' ) ) _lowercase : List[Any] = NUM_SHARDS[model_size] _lowercase : Optional[int] = params['n_layers'] _lowercase : Optional[int] = params['n_heads'] _lowercase : List[Any] = n_heads // num_shards _lowercase : Any = params['dim'] _lowercase : Union[str, Any] = dim // n_heads _lowercase : Optional[int] = 10_000.0 _lowercase : int = 1.0 / (base ** (torch.arange(0 , SCREAMING_SNAKE_CASE , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowercase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowercase : Any = n_heads_per_shard // num_key_value_heads _lowercase : str = dim // num_key_value_heads else: # compatibility with other checkpoints _lowercase : Optional[int] = n_heads _lowercase : Tuple = n_heads_per_shard _lowercase : Tuple = dim # permute for sliced rotary def permute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=n_heads , SCREAMING_SNAKE_CASE=dim , SCREAMING_SNAKE_CASE=dim ): return w.view(SCREAMING_SNAKE_CASE , dima // n_heads // 2 , 2 , SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowercase : Optional[int] = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowercase : Union[str, Any] = [ torch.load(os.path.join(SCREAMING_SNAKE_CASE , F"""consolidated.{i:02d}.pth""" ) , map_location='cpu' ) for i in range(SCREAMING_SNAKE_CASE ) ] _lowercase : int = 0 _lowercase : Optional[int] = {'weight_map': {}} for layer_i in range(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : List[str] = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowercase : Tuple = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _lowercase : List[Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Any = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _lowercase : Dict = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : str = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : int = inv_freq for k, v in state_dict.items(): _lowercase : Optional[int] = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : Optional[Any] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowercase : Optional[Any] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ), } for k, v in state_dict.items(): _lowercase : Any = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Write configs _lowercase : List[Any] = {'total_size': param_count * 2} write_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin.index.json' ) ) _lowercase : Dict = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowercase : Dict = params['multiple_of'] if 'multiple_of' in params else 256 _lowercase : int = LlamaConfig( hidden_size=SCREAMING_SNAKE_CASE , intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=SCREAMING_SNAKE_CASE , ) config.save_pretrained(SCREAMING_SNAKE_CASE ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowercase : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , low_cpu_mem_usage=SCREAMING_SNAKE_CASE ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(SCREAMING_SNAKE_CASE , safe_serialization=SCREAMING_SNAKE_CASE ) shutil.rmtree(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: # Initialize the tokenizer based on the `spm` model _lowercase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _lowercase : List[str] = tokenizer_class(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=SCREAMING_SNAKE_CASE , help='Whether or not to save using `safetensors`.' ) _lowercase : List[str] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowercase : Optional[int] = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> str: _lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: for i in range(config.num_hidden_layers ): _lowercase : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase : List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowercase : str = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowercase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _lowercase : int = in_proj_bias[: config.hidden_size] _lowercase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _lowercase : int = in_proj_bias[-config.hidden_size :] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : int = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : str = val @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Dict = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : List[Any] = False _lowercase : List[str] = False if "vqa" in checkpoint_url: _lowercase : Any = True _lowercase : int = 3_129 _lowercase : str = 'huggingface/label-files' _lowercase : int = 'vqa2-id2label.json' _lowercase : Optional[int] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Any = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : List[Any] = idalabel _lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} _lowercase : List[Any] = ViltForQuestionAnswering(SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: _lowercase : Optional[Any] = True _lowercase : int = 2 _lowercase : Union[str, Any] = {0: 'False', 1: 'True'} _lowercase : List[Any] = {v: k for k, v in config.idalabel.items()} _lowercase : int = 3 _lowercase : List[Any] = ViltForImagesAndTextClassification(SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: _lowercase : Tuple = True _lowercase : Dict = ViltForImageAndTextRetrieval(SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: _lowercase : List[Any] = True _lowercase : str = ViltForMaskedLM(SCREAMING_SNAKE_CASE ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowercase : Dict = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] _lowercase : Union[str, Any] = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: _lowercase : Optional[Any] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowercase : Optional[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(SCREAMING_SNAKE_CASE ) # Define processor _lowercase : Dict = ViltImageProcessor(size=384 ) _lowercase : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowercase : Any = ViltProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: _lowercase : Tuple = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) _lowercase : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) _lowercase : int = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _lowercase : Dict = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : int = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : Dict = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowercase : Optional[int] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=SCREAMING_SNAKE_CASE ).raw ) if mlm_model: _lowercase : str = 'a bunch of [MASK] laying on a [MASK].' else: _lowercase : Optional[int] = 'How many cats are there?' _lowercase : Dict = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors='pt' ) _lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: _lowercase : Dict = torch.Size([1, 11, 30_522] ) _lowercase : List[Any] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify masked token prediction equals "cats" _lowercase : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowercase : Dict = torch.Size([1, 3_129] ) _lowercase : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify vqa prediction equals "2" _lowercase : Optional[int] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowercase : Optional[Any] = torch.Size([1, 2] ) _lowercase : str = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
708
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model _lowercase : int = RemBertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print('Building PyTorch model from configuration: {}'.format(str(SCREAMING_SNAKE_CASE ) ) ) _lowercase : int = RemBertModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_rembert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print('Save PyTorch model to {}'.format(SCREAMING_SNAKE_CASE ) ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
711
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase = 500_000 UpperCamelCase , UpperCamelCase = os.path.split(__file__) UpperCamelCase = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[str] = dataset.map(**SCREAMING_SNAKE_CASE ) @get_duration def __magic_name__ ( SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : List[str] = dataset.filter(**SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> int: _lowercase : List[str] = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : int = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _lowercase : Any = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE , num_examples=SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE ) def tokenize(SCREAMING_SNAKE_CASE ): return tokenizer(examples['text'] ) _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE ) _lowercase : int = map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) _lowercase : str = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='numpy' ): _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='pandas' ): _lowercase : Union[str, Any] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='torch' , columns='numbers' ): _lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _lowercase : Any = map(SCREAMING_SNAKE_CASE , function=lambda SCREAMING_SNAKE_CASE : None , batched=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = map(SCREAMING_SNAKE_CASE , function=SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) _lowercase : Tuple = filter(SCREAMING_SNAKE_CASE ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowercase : str = flax_key_tuple[:-1] + ('weight',) _lowercase : Tuple = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ): # linear layer _lowercase : str = flax_key_tuple[:-1] + ('weight',) _lowercase : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowercase : int = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: if "metadata" in layer: _lowercase : List[Any] = layer.split('metadata' ) _lowercase : int = ''.join(split_layer[0] )[:-1] _lowercase : List[str] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: _lowercase : Union[str, Any] = layer.split('kvstore' ) _lowercase : List[Any] = ''.join(split_layer[0] )[:-1] _lowercase : Tuple = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: _lowercase : int = layer.split('/' ) _lowercase : Dict = '/'.join(split_layer[:-1] ) _lowercase : Union[str, Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowercase : Dict = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _lowercase : Dict = 'file' else: _lowercase : Union[str, Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : str = rename_keys(SCREAMING_SNAKE_CASE ) _lowercase : Dict = {} for k, v in current_block.items(): _lowercase : str = v _lowercase : Optional[Any] = new_current_block torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ) -> str: _lowercase : Union[str, Any] = convert_file_size_to_int(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = [] _lowercase : int = {} _lowercase : Optional[int] = 0 _lowercase : Dict = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: _lowercase : List[str] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] _lowercase : Union[str, Any] = flatten_dict(SCREAMING_SNAKE_CASE , sep='/' ) _lowercase : Any = {} for layer in checkpoint_info.keys(): _lowercase : Optional[Any] = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: _lowercase : Any = content else: _lowercase : Union[str, Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowercase : int = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowercase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE ) _lowercase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowercase : List[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , SCREAMING_SNAKE_CASE ) _lowercase : Tuple = '/'.join(SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowercase : int = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowercase : Union[str, Any] = {} _lowercase : Optional[int] = 0 _lowercase : Tuple = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowercase : Tuple = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowercase : Any = {} _lowercase : List[Any] = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Union[str, Any] = weights_name.replace( '.bin' , F"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d} _lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = shard for key in shard: _lowercase : Tuple = shard_file # Add the metadata _lowercase : Dict = {'total_size': total_size} _lowercase : Optional[int] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: _lowercase : Dict = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __magic_name__ ( ) -> List[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowercase : Optional[Any] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) _lowercase : Optional[int] = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) _lowercase : Optional[Any] = TaTokenizer.from_pretrained('t5-small' ) _lowercase : int = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' _lowercase : str = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids _lowercase : int = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
714
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="attention" ) -> Optional[Any]: _lowercase : List[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _lowercase : Optional[int] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _lowercase : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _lowercase : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowercase : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _lowercase : Union[str, Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: if split_mlp_wi: _lowercase : Dict = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _lowercase : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _lowercase : List[str] = (wi_a, wi_a) else: _lowercase : int = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _lowercase : str = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __magic_name__ ( SCREAMING_SNAKE_CASE , *, SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> str: _lowercase : List[Any] = traverse_util.flatten_dict(variables['target'] ) _lowercase : str = {'/'.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowercase : Dict = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = collections.OrderedDict() # Shared embeddings. _lowercase : Any = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowercase : Any = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'pre_attention_layer_norm' ) _lowercase : Tuple = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'attention' ) _lowercase : Tuple = layer_norm _lowercase : Any = k.T _lowercase : List[str] = o.T _lowercase : Dict = q.T _lowercase : List[Any] = v.T # Block i, layer 1 (MLP). _lowercase : List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , 'pre_mlp_layer_norm' ) _lowercase : Optional[Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' , SCREAMING_SNAKE_CASE ) _lowercase : Dict = layer_norm if split_mlp_wi: _lowercase : Optional[Any] = wi[0].T _lowercase : Optional[int] = wi[1].T else: _lowercase : Any = wi.T _lowercase : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowercase : Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'encoder' ).T _lowercase : Dict = old['encoder/encoder_norm/scale'] if not scalable_attention: _lowercase : Union[str, Any] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , 'encoder' ).T _lowercase : Tuple = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). _lowercase : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_self_attention_layer_norm' ) _lowercase : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'self_attention' ) _lowercase : Union[str, Any] = layer_norm _lowercase : Union[str, Any] = k.T _lowercase : Union[str, Any] = o.T _lowercase : List[str] = q.T _lowercase : List[str] = v.T # Block i, layer 1 (Cross Attention). _lowercase : Any = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_cross_attention_layer_norm' ) _lowercase : List[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'encoder_decoder_attention' ) _lowercase : Dict = layer_norm _lowercase : Tuple = k.T _lowercase : Optional[Any] = o.T _lowercase : List[Any] = q.T _lowercase : Any = v.T # Block i, layer 2 (MLP). _lowercase : Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , 'pre_mlp_layer_norm' ) _lowercase : Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' , SCREAMING_SNAKE_CASE ) _lowercase : Dict = layer_norm if split_mlp_wi: _lowercase : Union[str, Any] = wi[0].T _lowercase : Optional[int] = wi[1].T else: _lowercase : Any = wi.T _lowercase : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowercase : List[Any] = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'decoder' ).T _lowercase : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowercase : str = old['decoder/logits_dense/kernel'].T return new def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowercase : Any = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowercase : str = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _lowercase : Dict = state_dict['shared.weight'] return state_dict def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : str = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE , scalable_attention=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: _lowercase : Optional[int] = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowercase : Optional[Any] = UMTaEncoderModel(SCREAMING_SNAKE_CASE ) else: _lowercase : Optional[int] = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('Done' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = OpenAIGPTTokenizer _UpperCamelCase : Optional[Any] = OpenAIGPTTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : List[str] = False def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowercase : Dict = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : List[str] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase ): return "lower newer", "lower newer" def __a ( self ): _lowercase : Any = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowercase : str = 'lower' _lowercase : Optional[int] = ['low', 'er</w>'] _lowercase : Any = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = tokens + ['<unk>'] _lowercase : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self , _lowerCAmelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # Simple input _lowercase : Any = 'This is a simple input' _lowercase : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : Dict = ('This is a simple input', 'This is a pair') _lowercase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) def __a ( self ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase_ ( __snake_case ): pass
716
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase = logging.getLogger(__name__) class lowerCAmelCase_ ( __snake_case ): def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): _lowercase : Optional[int] = self.layer[current_layer](_lowerCAmelCase , _lowerCAmelCase , head_mask[current_layer] ) _lowercase : Optional[int] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __snake_case , ) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Optional[Any] = BertEncoderWithPabee(_lowerCAmelCase ) self.init_weights() _lowercase : str = 0 _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = 0 def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = threshold def __a ( self , _lowerCAmelCase ): _lowercase : Any = patience def __a ( self ): _lowercase : Any = 0 _lowercase : List[Any] = 0 def __a ( self ): _lowercase : List[Any] = self.inference_layers_num / self.inference_instances_num _lowercase : Optional[Any] = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_lowerCAmelCase ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _lowercase : Dict = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Optional[Any] = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if token_type_ids is None: _lowercase : Optional[Any] = torch.zeros(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _lowercase : Tuple = encoder_hidden_states.size() _lowercase : Any = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _lowercase : Tuple = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) _lowercase : Union[str, Any] = self.invert_attention_mask(_lowerCAmelCase ) else: _lowercase : Tuple = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : List[str] = self.get_head_mask(_lowerCAmelCase , self.config.num_hidden_layers ) _lowercase : Optional[int] = self.embeddings( input_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase ) _lowercase : Optional[int] = embedding_output if self.training: _lowercase : Any = [] for i in range(self.config.num_hidden_layers ): _lowercase : List[Any] = self.encoder.adaptive_forward( _lowerCAmelCase , current_layer=_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowercase : Any = self.pooler(_lowerCAmelCase ) _lowercase : int = output_layers[i](output_dropout(_lowerCAmelCase ) ) res.append(_lowerCAmelCase ) elif self.patience == 0: # Use all layers for inference _lowercase : Union[str, Any] = self.encoder( _lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowercase : Union[str, Any] = self.pooler(encoder_outputs[0] ) _lowercase : Dict = [output_layers[self.config.num_hidden_layers - 1](_lowerCAmelCase )] else: _lowercase : Any = 0 _lowercase : Tuple = None _lowercase : Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _lowercase : Any = self.encoder.adaptive_forward( _lowerCAmelCase , current_layer=_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowercase : Dict = self.pooler(_lowerCAmelCase ) _lowercase : int = output_layers[i](_lowerCAmelCase ) if regression: _lowercase : Optional[int] = logits.detach() if patient_result is not None: _lowercase : Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _lowercase : Optional[Any] = 0 else: _lowercase : int = logits.detach().argmax(dim=1 ) if patient_result is not None: _lowercase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowerCAmelCase ) ): patient_counter += 1 else: _lowercase : Dict = 0 _lowercase : List[str] = logits if patient_counter == self.patience: break _lowercase : Union[str, Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __snake_case , ) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) _lowercase : Tuple = config.num_labels _lowercase : List[str] = BertModelWithPabee(_lowerCAmelCase ) _lowercase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Tuple = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = self.bert( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _lowercase : List[str] = (logits[-1],) if labels is not None: _lowercase : Union[str, Any] = None _lowercase : Optional[int] = 0 for ix, logits_item in enumerate(_lowerCAmelCase ): if self.num_labels == 1: # We are doing regression _lowercase : List[Any] = MSELoss() _lowercase : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Tuple = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _lowercase : List[str] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _lowercase : str = (total_loss / total_weights,) + outputs return outputs
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
UpperCamelCase = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : List[str] = from_type.lower().strip('s' ) _lowercase : Optional[Any] = to_type.lower().strip('s' ) _lowercase : int = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = UNIT_SYMBOL.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if from_sanitized not in METRIC_CONVERSION: _lowercase : Any = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if to_sanitized not in METRIC_CONVERSION: _lowercase : Dict = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = METRIC_CONVERSION[from_sanitized] _lowercase : Any = METRIC_CONVERSION[to_sanitized] _lowercase : str = 1 if from_exponent > to_exponent: _lowercase : str = from_exponent - to_exponent else: _lowercase : str = -(to_exponent - from_exponent) return value * pow(10 , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy""" def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __a ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 4, 6_4, 6_4) , _lowerCAmelCase=False ): _lowercase : List[str] = jnp.bfloataa if fpaa else jnp.floataa _lowercase : Dict = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def __a ( self , _lowerCAmelCase=False , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): _lowercase : List[Any] = jnp.bfloataa if fpaa else jnp.floataa _lowercase : int = 'bf16' if fpaa else None _lowercase : List[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def __a ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 7_7, 7_6_8) , _lowerCAmelCase=False ): _lowercase : str = jnp.bfloataa if fpaa else jnp.floataa _lowercase : List[str] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase ) _lowercase : Tuple = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowercase : List[Any] = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowercase : str = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape _lowercase : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowercase : Any = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase ) _lowercase : str = self.get_latents(_lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_lowerCAmelCase ) _lowercase : Tuple = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_lowerCAmelCase ) _lowercase : Dict = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape _lowercase : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _lowercase : Optional[int] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
719
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
0
import math from datetime import datetime, timedelta def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> datetime: _lowercase : Any = year % 19 _lowercase : Tuple = year % 4 _lowercase : Tuple = year % 7 _lowercase : Any = math.floor(year / 100 ) _lowercase : int = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _lowercase : int = leap_day_inhibits / 4 _lowercase : List[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _lowercase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _lowercase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _lowercase : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): UpperCamelCase = "will be" if year > datetime.now().year else "was" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) _lowercase : str = tokenizer('Hello there' , return_tensors='tf' ).input_ids _lowercase : str = tokenizer('Hi I am' , return_tensors='tf' ).input_ids _lowercase : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ).loss _lowercase : Union[str, Any] = -tf.math.reduce_mean(_lowerCAmelCase ).numpy() _lowercase : Dict = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
721
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
0
import os import time import numpy as np import onnxruntime as ort UpperCamelCase = "1" UpperCamelCase = "0" UpperCamelCase = "1" UpperCamelCase = ort.SessionOptions() UpperCamelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") UpperCamelCase = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCamelCase = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) UpperCamelCase = ort.RunOptions() UpperCamelCase = 128 UpperCamelCase = 1 UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") UpperCamelCase = time.time() UpperCamelCase = 2_000 UpperCamelCase = {} for iter in range(max_iters): UpperCamelCase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1_000 / max_iters))
700
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
701
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
0
import argparse from collections import defaultdict import yaml UpperCamelCase = "docs/source/en/_toctree.yml" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : List[Any] = defaultdict(SCREAMING_SNAKE_CASE ) _lowercase : str = [] _lowercase : int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = new_doc_list _lowercase : Dict = [key for key, value in counts.items() if value > 1] _lowercase : str = [] for duplicate_key in duplicates: _lowercase : int = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowercase : Union[str, Any] = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(SCREAMING_SNAKE_CASE ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(SCREAMING_SNAKE_CASE ) # Sort return overview_doc def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: _lowercase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : str = content[api_idx]['sections'] # Then to the model doc _lowercase : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowercase : Tuple = api_doc[scheduler_idx]['sections'] _lowercase : Tuple = clean_doc_toc(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = False if new_scheduler_doc != scheduler_doc: _lowercase : Union[str, Any] = True if overwrite: _lowercase : Dict = new_scheduler_doc if diff: if overwrite: _lowercase : Optional[int] = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __magic_name__ ( SCREAMING_SNAKE_CASE=False ) -> Dict: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: _lowercase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : Dict = content[api_idx]['sections'] # Then to the model doc _lowercase : int = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowercase : Tuple = False _lowercase : Optional[Any] = api_doc[pipeline_idx]['sections'] _lowercase : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowercase : int = pipeline_doc['section'] _lowercase : Optional[int] = clean_doc_toc(SCREAMING_SNAKE_CASE ) if overwrite: _lowercase : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(SCREAMING_SNAKE_CASE ) # sort overall pipeline doc _lowercase : Dict = clean_doc_toc(SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: _lowercase : Optional[Any] = True if overwrite: _lowercase : int = new_pipeline_docs if diff: if overwrite: _lowercase : Tuple = api_doc with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE , allow_unicode=SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__snake_case ): _UpperCamelCase : Optional[Any] = ["torch", "torchsde"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(self , ['torch', 'torchsde'] ) @classmethod def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def __a ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): requires_backends(cls , ['torch', 'torchsde'] )
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Tuple = CpmAntTokenizer _UpperCamelCase : List[Any] = False def __a ( self ): super().setUp() _lowercase : Optional[int] = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] _lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __a ( self ): _lowercase : Tuple = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) _lowercase : Optional[Any] = '今天天气真好!' _lowercase : str = ['今天', '天气', '真', '好', '!'] _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Tuple = '今天天气真好!' _lowercase : int = [tokenizer.bos_token] + tokens _lowercase : Union[str, Any] = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) _lowercase : Tuple = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
704
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ViTFeatureExtractor"] UpperCamelCase = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
0
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : list[dict] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(_lowerCAmelCase ) self.set_fail_transitions() def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __a ( self , _lowerCAmelCase ): _lowercase : str = 0 for character in keyword: _lowercase : Optional[Any] = self.find_next_state(_lowerCAmelCase , _lowerCAmelCase ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowercase : Optional[Any] = len(self.adlist ) - 1 else: _lowercase : Any = next_state self.adlist[current_state]["output"].append(_lowerCAmelCase ) def __a ( self ): _lowercase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCAmelCase ) _lowercase : Optional[int] = 0 while q: _lowercase : Optional[int] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCAmelCase ) _lowercase : int = self.adlist[r]['fail_state'] while ( self.find_next_state(_lowerCAmelCase , self.adlist[child]['value'] ) is None and state != 0 ): _lowercase : Tuple = self.adlist[state]['fail_state'] _lowercase : Dict = self.find_next_state( _lowerCAmelCase , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: _lowercase : List[Any] = 0 _lowercase : Union[str, Any] = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def __a ( self , _lowerCAmelCase ): _lowercase : dict = {} # returns a dict with keywords and list of its occurrences _lowercase : Any = 0 for i in range(len(_lowerCAmelCase ) ): while ( self.find_next_state(_lowerCAmelCase , string[i] ) is None and current_state != 0 ): _lowercase : List[Any] = self.adlist[current_state]['fail_state'] _lowercase : Union[str, Any] = self.find_next_state(_lowerCAmelCase , string[i] ) if next_state is None: _lowercase : Any = 0 else: _lowercase : List[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowercase : Tuple = [] result[key].append(i - len(_lowerCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCamelCase = "Create a default config file for Accelerate with only a few flags set." def __magic_name__ ( SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE = default_json_config_file , SCREAMING_SNAKE_CASE = False ) -> str: _lowercase : str = Path(SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False _lowercase : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) _lowercase : List[str] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _lowercase : Any = torch.cuda.device_count() _lowercase : Union[str, Any] = num_gpus _lowercase : Tuple = False if num_gpus > 1: _lowercase : str = 'MULTI_GPU' else: _lowercase : Optional[Any] = 'NO' elif is_xpu_available() and use_xpu: _lowercase : int = torch.xpu.device_count() _lowercase : int = num_xpus _lowercase : Optional[Any] = False if num_xpus > 1: _lowercase : Union[str, Any] = 'MULTI_XPU' else: _lowercase : Optional[int] = 'NO' elif is_npu_available(): _lowercase : Optional[Any] = torch.npu.device_count() _lowercase : Optional[Any] = num_npus _lowercase : Union[str, Any] = False if num_npus > 1: _lowercase : Union[str, Any] = 'MULTI_NPU' else: _lowercase : int = 'NO' else: _lowercase : List[Any] = 0 _lowercase : Any = True _lowercase : Union[str, Any] = 1 _lowercase : List[Any] = 'NO' _lowercase : Tuple = ClusterConfig(**SCREAMING_SNAKE_CASE ) config.to_json_file(SCREAMING_SNAKE_CASE ) return path def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Union[str, Any] = parser.add_parser('default' , parents=SCREAMING_SNAKE_CASE , help=SCREAMING_SNAKE_CASE , formatter_class=SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
708
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: def merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(SCREAMING_SNAKE_CASE ) <= 1: return collection _lowercase : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "transfo-xl" _UpperCamelCase : Any = ["mems"] _UpperCamelCase : Tuple = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=2_6_7_7_3_5 , _lowerCAmelCase=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=1_6 , _lowerCAmelCase=6_4 , _lowerCAmelCase=4_0_9_6 , _lowerCAmelCase=4 , _lowerCAmelCase=False , _lowerCAmelCase=1_8 , _lowerCAmelCase=1_6_0_0 , _lowerCAmelCase=1_0_0_0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=-1 , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="normal" , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.01 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , **_lowerCAmelCase , ): _lowercase : List[str] = vocab_size _lowercase : Any = [] self.cutoffs.extend(_lowerCAmelCase ) if proj_share_all_but_first: _lowercase : Any = [False] + [True] * len(self.cutoffs ) else: _lowercase : List[str] = [False] + [False] * len(self.cutoffs ) _lowercase : List[str] = d_model _lowercase : List[str] = d_embed _lowercase : List[str] = d_head _lowercase : List[str] = d_inner _lowercase : Optional[Any] = div_val _lowercase : str = pre_lnorm _lowercase : List[Any] = n_layer _lowercase : List[str] = n_head _lowercase : Union[str, Any] = mem_len _lowercase : List[str] = same_length _lowercase : str = attn_type _lowercase : List[Any] = clamp_len _lowercase : List[str] = sample_softmax _lowercase : Union[str, Any] = adaptive _lowercase : List[Any] = dropout _lowercase : List[Any] = dropatt _lowercase : str = untie_r _lowercase : Optional[int] = init _lowercase : List[Any] = init_range _lowercase : str = proj_init_std _lowercase : int = init_std _lowercase : Any = layer_norm_epsilon super().__init__(eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __a ( self , _lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
710
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self , _lowerCAmelCase=3_2 ): set_seed(0 ) _lowercase : Dict = UNetaDModel(sample_size=_lowerCAmelCase , in_channels=3 , out_channels=3 ) _lowercase : List[Any] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def __a ( self ): _lowercase : Union[str, Any] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_lowerCAmelCase , ) _lowercase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _lowercase : Optional[Any] = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(_lowerCAmelCase ) for _ in range(4 )] _lowercase : Any = [torch.randn((4, 3, 3_2, 3_2) ).to(_lowerCAmelCase ) for _ in range(4 )] _lowercase : Optional[Any] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(_lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler _lowercase : Optional[int] = self.get_model_optimizer(resolution=3_2 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : Any = model(_lowerCAmelCase , timesteps[i] ).sample _lowercase : Union[str, Any] = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _lowercase : int = self.get_model_optimizer(resolution=3_2 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : Dict = model(_lowerCAmelCase , timesteps[i] ).sample _lowercase : Optional[Any] = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
711
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Tuple = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase : List[Any] = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCamelCase : Optional[int] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] _UpperCamelCase : Any = DistilBertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : List[str] = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Optional[int] = do_lower_case _lowercase : Union[str, Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : List[Any] = normalizer_class(**_lowerCAmelCase ) _lowercase : Dict = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Optional[int] = [self.sep_token_id] _lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Union[str, Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): _lowercase : List[Any] = parent _lowercase : int = batch_size _lowercase : Union[str, Any] = image_size _lowercase : str = num_channels _lowercase : Dict = embeddings_size _lowercase : Any = hidden_sizes _lowercase : Union[str, Any] = depths _lowercase : List[str] = is_training _lowercase : int = use_labels _lowercase : Optional[int] = hidden_act _lowercase : Optional[Any] = num_labels _lowercase : List[Any] = scope _lowercase : List[str] = len(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[int] = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : str = self.get_config() return config, pixel_values, labels def __a ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFResNetModel(config=_lowerCAmelCase ) _lowercase : Tuple = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : List[str] = TFResNetForImageClassification(_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ): _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase : int = config_and_inputs _lowercase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCamelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : List[str] = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : Any = TFResNetModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __a ( self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __a ( self ): pass def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[Any] = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : str = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : str = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase : Dict = layer_type _lowercase : Tuple = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFResNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self ): _lowercase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowercase : Any = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='tf' ) # forward pass _lowercase : str = model(**_lowerCAmelCase ) # verify the logits _lowercase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : List[str] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1E-4 ) )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: print('moving disk from' , SCREAMING_SNAKE_CASE , 'to' , SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : Optional[int] = int(input('Height of hanoi: ' ).strip() ) move_tower(SCREAMING_SNAKE_CASE , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
714
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : List[Any] = tmp_path / 'cache' _lowercase : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Union[str, Any] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[int] = tmp_path / 'cache' _lowercase : List[Any] = {'text': 'string'} _lowercase : Any = features.copy() if features else default_expected_features _lowercase : Any = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : str = TextDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : str = tmp_path / 'cache' _lowercase : Optional[Any] = {'text': 'string'} _lowercase : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Any = [text_path] _lowercase : Any = tmp_path / 'cache' _lowercase : Tuple = {'text': 'string'} _lowercase : List[str] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=("train",) ) -> str: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: _lowercase : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : List[str] = tmp_path / 'cache' _lowercase : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Union[str, Any] = TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Any = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowercase : str = {'text': 'string'} _lowercase : Optional[int] = features.copy() if features else default_expected_features _lowercase : Dict = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : str = TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if split: _lowercase : int = {split: text_path} else: _lowercase : Any = 'train' _lowercase : Optional[Any] = {'train': text_path, 'test': text_path} _lowercase : List[str] = tmp_path / 'cache' _lowercase : Any = {'text': 'string'} _lowercase : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
716
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase_ : def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _lowercase : Union[str, Any] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : Optional[Any] = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowercase : Union[str, Any] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : List[str] = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowercase : Optional[int] = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowercase : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowercase : str = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowercase : Dict = after_output[0] _lowercase : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : Optional[int] = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowercase : Optional[Any] = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowercase : Dict = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : List[str] = to_atuple(vision_model.config.image_size ) _lowercase : Any = to_atuple(vision_model.config.patch_size ) _lowercase : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowercase : int = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): pt_model.to(_lowerCAmelCase ) pt_model.eval() # prepare inputs _lowercase : Optional[int] = inputs_dict _lowercase : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : str = pt_model(**_lowerCAmelCase ).to_tuple() _lowercase : int = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _lowercase : List[str] = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _lowercase : Dict = VisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) pt_model_loaded.to(_lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[int] = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCAmelCase , pt_output_loaded.numpy() , 4E-2 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = VisionTextDualEncoderModel(_lowerCAmelCase ) _lowercase : int = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _lowercase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _lowercase : Any = fx_state self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = VisionTextDualEncoderModel(_lowerCAmelCase ) _lowercase : str = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) _lowercase : str = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @is_pt_flax_cross_test def __a ( self ): _lowercase : Optional[int] = self.prepare_config_and_inputs() _lowercase : Optional[Any] = config_inputs_dict.pop('vision_config' ) _lowercase : List[Any] = config_inputs_dict.pop('text_config' ) _lowercase : Any = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.check_equivalence_flax_to_pt(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @slow def __a ( self ): _lowercase : Dict = self.get_pretrained_model_and_inputs() _lowercase : str = model_a(**_lowerCAmelCase ) _lowercase : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) _lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowercase : List[Any] = model_a(**_lowerCAmelCase ) _lowercase : List[Any] = after_outputs[0] _lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): def __a ( self ): _lowercase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , ) _lowercase : Optional[Any] = 1_3 _lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowercase : Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _lowercase : Dict = random_attention_mask([batch_size, 4] ) _lowercase : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = FlaxViTModel(_lowerCAmelCase ) _lowercase : Optional[int] = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def __a ( self ): _lowercase : Dict = FlaxViTModelTester(self ) _lowercase : int = FlaxBertModelTester(self ) _lowercase : Optional[int] = vit_model_tester.prepare_config_and_inputs() _lowercase : Tuple = bert_model_tester.prepare_config_and_inputs() _lowercase : List[str] = vision_config_and_inputs _lowercase : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): def __a ( self ): _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCAmelCase , text_from_pt=_lowerCAmelCase , ) _lowercase : Optional[Any] = 1_3 _lowercase : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _lowercase : Any = random_attention_mask([batch_size, 4] ) _lowercase : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = FlaxCLIPVisionModel(_lowerCAmelCase ) _lowercase : Dict = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def __a ( self ): _lowercase : int = FlaxCLIPVisionModelTester(self ) _lowercase : Any = FlaxBertModelTester(self ) _lowercase : List[Any] = clip_model_tester.prepare_config_and_inputs() _lowercase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowercase : Dict = vision_config_and_inputs _lowercase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) _lowercase : Any = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : int = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ) _lowercase : int = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowercase : int = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) )
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): _UpperCamelCase : Optional[datasets.Features] = None class lowerCAmelCase_ ( datasets.ArrowBasedBuilder ): _UpperCamelCase : int = PandasConfig def __a ( self ): return datasets.DatasetInfo(features=self.config.features ) def __a ( self , _lowerCAmelCase ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowercase : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): _lowercase : Dict = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowercase : Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowercase : str = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowercase : Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , _lowerCAmelCase ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase : List[str] = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , _lowerCAmelCase ): for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , 'rb' ) as f: _lowercase : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) ) yield i, self._cast_table(_lowerCAmelCase )
719
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( __snake_case ): @staticmethod @abstractmethod def __a ( _lowerCAmelCase ): raise NotImplementedError() @abstractmethod def __a ( self ): raise NotImplementedError()
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Tuple = create_tensor(SCREAMING_SNAKE_CASE ) _lowercase : Dict = gather(SCREAMING_SNAKE_CASE ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Optional[Any] = [state.process_index] _lowercase : List[str] = gather_object(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == state.num_processes, F"""{gathered_obj}, {len(SCREAMING_SNAKE_CASE )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[Any] = create_tensor(SCREAMING_SNAKE_CASE ) _lowercase : str = broadcast(SCREAMING_SNAKE_CASE ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: _lowercase : List[Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: _lowercase : Dict = torch.arange(state.num_processes ).to(state.device ) _lowercase : Optional[int] = pad_across_processes(SCREAMING_SNAKE_CASE ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: # For now runs on only two processes if state.num_processes != 2: return _lowercase : int = create_tensor(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = reduce(SCREAMING_SNAKE_CASE , 'sum' ) _lowercase : Any = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), F"""{reduced_tensor} != {truth_tensor}""" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: # For now runs on only two processes if state.num_processes != 2: return _lowercase : Union[str, Any] = create_tensor(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = reduce(SCREAMING_SNAKE_CASE , 'mean' ) _lowercase : Dict = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), F"""{reduced_tensor} != {truth_tensor}""" def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: # For xla_spawn (TPUs) main() def __magic_name__ ( ) -> List[Any]: _lowercase : str = PartialState() state.print(F"""State: {state}""" ) state.print('testing gather' ) test_gather(SCREAMING_SNAKE_CASE ) state.print('testing gather_object' ) test_gather_object(SCREAMING_SNAKE_CASE ) state.print('testing broadcast' ) test_broadcast(SCREAMING_SNAKE_CASE ) state.print('testing pad_across_processes' ) test_pad_across_processes(SCREAMING_SNAKE_CASE ) state.print('testing reduce_sum' ) test_reduce_sum(SCREAMING_SNAKE_CASE ) state.print('testing reduce_mean' ) test_reduce_mean(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
721
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
0
import warnings from .generation import TFGenerationMixin class lowerCAmelCase_ ( __snake_case ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , __snake_case , )
700
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="pt" ) -> List[Any]: _lowercase : Optional[int] = {'add_prefix_space': True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(' ' ) else {} _lowercase : Optional[Any] = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE , padding='max_length' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: _lowercase : Tuple = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="train" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="" , ): super().__init__() _lowercase : int = Path(_lowerCAmelCase ).joinpath(type_path + '.source' ) _lowercase : Tuple = Path(_lowerCAmelCase ).joinpath(type_path + '.target' ) _lowercase : int = self.get_char_lens(self.src_file ) _lowercase : int = max_source_length _lowercase : int = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowercase : Optional[int] = tokenizer _lowercase : Union[str, Any] = prefix if n_obs is not None: _lowercase : Optional[Any] = self.src_lens[:n_obs] _lowercase : List[Any] = src_lang _lowercase : Dict = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , _lowerCAmelCase ): _lowercase : Optional[int] = index + 1 # linecache starts at 1 _lowercase : int = self.prefix + linecache.getline(str(self.src_file ) , _lowerCAmelCase ).rstrip('\n' ) _lowercase : Optional[int] = linecache.getline(str(self.tgt_file ) , _lowerCAmelCase ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowercase : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer ) _lowercase : Dict = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer _lowercase : Any = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_source_length , 'right' ) _lowercase : Union[str, Any] = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_target_length , 'right' ) _lowercase : List[str] = source_inputs['input_ids'].squeeze() _lowercase : Tuple = target_inputs['input_ids'].squeeze() _lowercase : Tuple = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __a ( _lowerCAmelCase ): return [len(_lowerCAmelCase ) for x in Path(_lowerCAmelCase ).open().readlines()] def __a ( self , _lowerCAmelCase ): _lowercase : Dict = torch.stack([x['input_ids'] for x in batch] ) _lowercase : Any = torch.stack([x['attention_mask'] for x in batch] ) _lowercase : List[Any] = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowercase : Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowercase : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowercase : Tuple = trim_batch(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = trim_batch(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowercase : int = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCamelCase = getLogger(__name__) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _lowercase : List[str] = get_git_info() save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'git_log.json' ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=4 , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: with open(SCREAMING_SNAKE_CASE ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Dict: _lowercase : Tuple = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = { 'repo_id': str(SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List: return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'wb' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: def remove_articles(SCREAMING_SNAKE_CASE ): return re.sub(R'\b(a|an|the)\b' , ' ' , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE ): _lowercase : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : int = normalize_answer(SCREAMING_SNAKE_CASE ).split() _lowercase : str = normalize_answer(SCREAMING_SNAKE_CASE ).split() _lowercase : Optional[int] = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = sum(common.values() ) if num_same == 0: return 0 _lowercase : Union[str, Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) _lowercase : Dict = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) _lowercase : str = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: em /= len(SCREAMING_SNAKE_CASE ) return {"em": em} def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: return model_prefix.startswith('rag' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowercase : int = 'dropout_rate' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue _lowercase : Optional[Any] = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return hparams, config
701
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off UpperCamelCase = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] _UpperCamelCase : Union[str, Any] = NllbTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False , **_lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it _lowercase : Any = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token _lowercase : Any = legacy_behaviour super().__init__( vocab_file=_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , legacy_behaviour=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Tuple = vocab_file _lowercase : Optional[int] = False if not self.vocab_file else True _lowercase : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowercase : Dict = { lang_code: self.convert_tokens_to_ids(_lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowercase : Any = src_lang if src_lang is not None else 'eng_Latn' _lowercase : Any = self.convert_tokens_to_ids(self._src_lang ) _lowercase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __a ( self ): return self._src_lang @src_lang.setter def __a ( self , _lowerCAmelCase ): _lowercase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowercase : Dict = src_lang _lowercase : Any = self(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Any = self.convert_tokens_to_ids(_lowerCAmelCase ) _lowercase : List[Any] = tgt_lang_id return inputs def __a ( self , _lowerCAmelCase , _lowerCAmelCase = "eng_Latn" , _lowerCAmelCase = None , _lowerCAmelCase = "fra_Latn" , **_lowerCAmelCase , ): _lowercase : Dict = src_lang _lowercase : Dict = tgt_lang return super().prepare_seqaseq_batch(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) def __a ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __a ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = self.convert_tokens_to_ids(_lowerCAmelCase ) if self.legacy_behaviour: _lowercase : Optional[Any] = [] _lowercase : str = [self.eos_token_id, self.cur_lang_code] else: _lowercase : int = [self.cur_lang_code] _lowercase : Optional[int] = [self.eos_token_id] _lowercase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) _lowercase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowercase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = self.convert_tokens_to_ids(_lowerCAmelCase ) if self.legacy_behaviour: _lowercase : str = [] _lowercase : int = [self.eos_token_id, self.cur_lang_code] else: _lowercase : Optional[Any] = [self.cur_lang_code] _lowercase : Optional[Any] = [self.eos_token_id] _lowercase : int = self.convert_ids_to_tokens(self.prefix_tokens ) _lowercase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowercase : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _lowercase : Union[str, Any] = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: '''simple docstring''' _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _lowercase : str = model _lowercase : str = kwargs.get('model_save_dir' , _lowerCAmelCase ) _lowercase : int = kwargs.get('latest_model_name' , _lowerCAmelCase ) def __call__( self , **_lowerCAmelCase ): _lowercase : int = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def __a ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _lowercase : Dict = 'CPUExecutionProvider' return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase ): _lowercase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowercase : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _lowercase : Any = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowercase : Optional[int] = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): _lowercase : Optional[Any] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def __a ( self , _lowerCAmelCase , **_lowerCAmelCase , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): _lowercase : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) _lowercase : List[str] = Path(_lowerCAmelCase ) # load model from hub else: # download model _lowercase : List[Any] = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) _lowercase : List[Any] = Path(_lowerCAmelCase ).parent _lowercase : Tuple = Path(_lowerCAmelCase ).name _lowercase : Any = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Optional[int] = None if len(str(_lowerCAmelCase ).split('@' ) ) == 2: _lowercase : int = model_id.split('@' ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
704
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
0
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0.999 , SCREAMING_SNAKE_CASE="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : Optional[int] = [] for i in range(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = i / num_diffusion_timesteps _lowercase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE ) / alpha_bar_fn(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class lowerCAmelCase_ ( __snake_case , __snake_case ): _UpperCamelCase : Optional[int] = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_0_0_0 , _lowerCAmelCase = 0.00_01 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('set_alpha_to_one' , _lowerCAmelCase ) is not None: _lowercase : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : Optional[int] = kwargs['set_alpha_to_one'] if trained_betas is not None: _lowercase : List[Any] = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : int = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Union[str, Any] = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Optional[int] = 1.0 - self.betas _lowercase : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowercase : Tuple = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowercase : Optional[int] = 1.0 # setable values _lowercase : str = None _lowercase : str = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) _lowercase : Optional[Any] = num_inference_steps _lowercase : Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowercase : Optional[Any] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowercase : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowercase : List[str] = self.alphas_cumprod[timestep] _lowercase : int = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowercase : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowercase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowercase : int = model_output elif self.config.prediction_type == "sample": _lowercase : Optional[int] = model_output _lowercase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowercase : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowercase : Union[str, Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowercase : List[str] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[str] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
0
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = "▁" UpperCamelCase = {"vocab_file": "prophetnet.tokenizer"} UpperCamelCase = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } UpperCamelCase = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } UpperCamelCase = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as reader: _lowercase : List[str] = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = token.rstrip('\n' ) _lowercase : List[str] = index return vocab class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise _lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) _lowercase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _lowercase : Tuple = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(1_0 ): _lowercase : Union[str, Any] = F"""[unused{i}]""" _lowercase : Dict = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _lowercase : Optional[Any] = 1_2 _lowercase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_lowerCAmelCase ) def __getstate__( self ): _lowercase : Tuple = self.__dict__.copy() _lowercase : Optional[int] = None return state def __setstate__( self , _lowerCAmelCase ): _lowercase : Optional[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase : List[Any] = {} _lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + [1] return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self ): return len(self.sp_model ) + self.fairseq_offset def __a ( self ): _lowercase : Any = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Optional[Any] = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , _lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , _lowerCAmelCase ): _lowercase : int = ''.join(_lowerCAmelCase ).replace(_lowerCAmelCase , ' ' ).strip() return out_string def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , 'wb' ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] _lowercase : Tuple = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0.02 , _lowerCAmelCase="divided_space_time" , _lowerCAmelCase=None , ): _lowercase : Optional[int] = parent _lowercase : str = batch_size _lowercase : Optional[Any] = image_size _lowercase : Dict = num_channels _lowercase : Tuple = patch_size _lowercase : Any = num_frames _lowercase : str = is_training _lowercase : Optional[int] = use_labels _lowercase : Optional[Any] = hidden_size _lowercase : List[str] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Dict = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : List[Any] = attention_type _lowercase : str = initializer_range _lowercase : Union[str, Any] = scope _lowercase : int = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowercase : List[str] = (image_size // patch_size) ** 2 _lowercase : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def __a ( self ): _lowercase : Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self ): _lowercase : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowercase : Dict = self.num_labels return config def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TimesformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TimesformerForVideoClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Optional[int] = model(_lowerCAmelCase ) # verify the logits shape _lowercase : int = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : int = config_and_inputs _lowercase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCamelCase : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : List[Any] = False def __a ( self ): _lowercase : int = TimesformerModelTester(self ) _lowercase : List[str] = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def __a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def __a ( self ): pass def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(_lowerCAmelCase ) _lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Tuple = [*signature.parameters.keys()] _lowercase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = TimesformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __a ( self ): if not self.has_attentions: pass else: _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = True for model_class in self.all_model_classes: _lowercase : int = self.model_tester.seq_length _lowercase : Optional[Any] = self.model_tester.num_frames _lowercase : Dict = True _lowercase : List[str] = False _lowercase : List[str] = True _lowercase : Any = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase : str = True _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Dict = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowercase : str = len(_lowerCAmelCase ) # Check attention is always last and order is fine _lowercase : Optional[Any] = True _lowercase : Union[str, Any] = True _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) _lowercase : Dict = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Any = outputs.hidden_states _lowercase : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) _lowercase : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Union[str, Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : Dict = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowercase : Union[str, Any] = np.load(SCREAMING_SNAKE_CASE ) return list(SCREAMING_SNAKE_CASE ) @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self ): _lowercase : List[Any] = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( _lowerCAmelCase ) _lowercase : Optional[int] = self.default_image_processor _lowercase : Dict = prepare_video() _lowercase : Optional[Any] = image_processor(video[:8] , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**_lowerCAmelCase ) # verify the logits _lowercase : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : List[str] = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
708
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["DPTFeatureExtractor"] UpperCamelCase = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[list[int]]: _lowercase : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , [] , SCREAMING_SNAKE_CASE ) return result def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE , level - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_list.pop() def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = 4 UpperCamelCase = 2 UpperCamelCase = generate_all_combinations(n, k) print_all_state(total_list)
710
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : Tuple = tempfile.mkdtemp() _lowercase : Any = BlipImageProcessor() _lowercase : List[Any] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowercase : List[str] = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _lowercase : Dict = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __a ( self , **_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def __a ( self , **_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def __a ( self , **_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def __a ( self ): shutil.rmtree(self.tmpdirname ) def __a ( self ): _lowercase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowercase : str = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ): _lowercase : List[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowercase : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowercase : Tuple = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) _lowercase : List[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.get_image_processor() _lowercase : Dict = self.get_tokenizer() _lowercase : Optional[Any] = self.get_qformer_tokenizer() _lowercase : Dict = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Union[str, Any] = image_processor(_lowerCAmelCase , return_tensors='np' ) _lowercase : Any = processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ): _lowercase : Optional[int] = self.get_image_processor() _lowercase : str = self.get_tokenizer() _lowercase : Optional[Any] = self.get_qformer_tokenizer() _lowercase : Optional[int] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) _lowercase : Optional[int] = 'lower newer' _lowercase : str = processor(text=_lowerCAmelCase ) _lowercase : Optional[int] = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) _lowercase : Optional[Any] = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def __a ( self ): _lowercase : List[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Dict = self.get_qformer_tokenizer() _lowercase : Optional[Any] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) _lowercase : Optional[int] = 'lower newer' _lowercase : Any = self.prepare_image_inputs() _lowercase : int = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def __a ( self ): _lowercase : Any = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Dict = self.get_qformer_tokenizer() _lowercase : List[str] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) _lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : List[str] = processor.batch_decode(_lowerCAmelCase ) _lowercase : List[str] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : Tuple = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : str = self.get_qformer_tokenizer() _lowercase : List[Any] = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) _lowercase : Optional[Any] = 'lower newer' _lowercase : int = self.prepare_image_inputs() _lowercase : Union[str, Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
import requests def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: _lowercase : Union[str, Any] = {'Content-Type': 'application/json'} _lowercase : Dict = requests.post(SCREAMING_SNAKE_CASE , json={'text': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: _lowercase : Union[str, Any] = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' UpperCamelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] UpperCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
714
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase = "__DUMMY_TRANSFORMERS_USER__" UpperCamelCase = "Dummy User" UpperCamelCase = "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" UpperCamelCase = "https://hub-ci.huggingface.co" UpperCamelCase = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" UpperCamelCase = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" UpperCamelCase = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Tuple: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def __magic_name__ ( ) -> str: return HfApi(endpoint=SCREAMING_SNAKE_CASE ) @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE ) @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[str]: def _cleanup_repo(SCREAMING_SNAKE_CASE ): hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Optional[Any] = F"""repo_txt_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: _lowercase : Optional[Any] = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}""" _lowercase : Union[str, Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Optional[int] = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}""" _lowercase : List[str] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return hf_private_dataset_repo_zipped_img_data_
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=1_8 , _lowerCAmelCase=3_0 , _lowerCAmelCase=4_0_0 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=False , ): _lowercase : str = size if size is not None else {'height': 2_0, 'width': 2_0} _lowercase : str = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} _lowercase : Union[str, Any] = parent _lowercase : Dict = batch_size _lowercase : str = num_channels _lowercase : int = image_size _lowercase : Union[str, Any] = min_resolution _lowercase : int = max_resolution _lowercase : Optional[Any] = do_resize _lowercase : List[str] = size _lowercase : int = do_center_crop _lowercase : Dict = crop_size _lowercase : Optional[Any] = do_normalize _lowercase : str = image_mean _lowercase : Optional[int] = image_std _lowercase : Union[str, Any] = do_reduce_labels def __a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __magic_name__ ( ) -> int: _lowercase : Dict = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase : Tuple = Image.open(dataset[0]['file'] ) _lowercase : List[str] = Image.open(dataset[1]['file'] ) return image, map def __magic_name__ ( ) -> Optional[Any]: _lowercase : Dict = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase : Optional[int] = Image.open(ds[0]['file'] ) _lowercase : Union[str, Any] = Image.open(ds[1]['file'] ) _lowercase : List[str] = Image.open(ds[2]['file'] ) _lowercase : Optional[Any] = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = BeitImageProcessor if is_vision_available() else None def __a ( self ): _lowercase : Union[str, Any] = BeitImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): _lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) def __a ( self ): _lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_0, 'width': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) _lowercase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=_lowerCAmelCase ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCAmelCase ) def __a ( self ): pass def __a ( self ): # Initialize image_processing _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowercase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : Any = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __a ( self ): # Initialize image_processing _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : Dict = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __a ( self ): # Initialize image_processing _lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowercase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase : List[str] = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __a ( self ): # Initialize image_processing _lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) _lowercase : Any = [] for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowercase : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched _lowercase : int = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test not batched input (PIL images) _lowercase : Optional[Any] = prepare_semantic_single_inputs() _lowercase : Any = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched input (PIL images) _lowercase : Tuple = prepare_semantic_batch_inputs() _lowercase : Optional[Any] = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) def __a ( self ): # Initialize image_processing _lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase : int = prepare_semantic_single_inputs() _lowercase : Dict = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_5_0 ) _lowercase : Optional[Any] = True _lowercase : str = image_processing(_lowerCAmelCase , _lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 )
716
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: return abs(SCREAMING_SNAKE_CASE ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowercase : int = y, x % y return abs(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> List[Any]: try: _lowercase : int = input('Enter two integers separated by comma (,): ' ).split(',' ) _lowercase : Union[str, Any] = int(nums[0] ) _lowercase : int = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: if "://" in dataset_path: _lowercase : Optional[Any] = dataset_path.split('://' )[1] return dataset_path def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Dict = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowercase : List[Any] = None _lowercase : Union[str, Any] = None _lowercase : List[Any] = threading.Lock()
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
import socket def __magic_name__ ( ) -> str: _lowercase : Union[str, Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowercase : str = socket.gethostname() _lowercase : List[Any] = 12_312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowercase : Dict = sock.recv(1_024 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
719
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = "pix2struct_text_model" _UpperCamelCase : List[str] = ["past_key_values"] _UpperCamelCase : Optional[int] = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=5_0_2_4_4 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=0 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : int = d_kv _lowercase : Dict = d_ff _lowercase : Tuple = num_layers _lowercase : str = num_heads _lowercase : Tuple = relative_attention_num_buckets _lowercase : str = relative_attention_max_distance _lowercase : Optional[Any] = dropout_rate _lowercase : Optional[int] = layer_norm_epsilon _lowercase : Tuple = initializer_factor _lowercase : Tuple = use_cache _lowercase : Optional[Any] = eos_token_id _lowercase : List[Any] = decoder_start_token_id # for backwards compatibility _lowercase : Optional[Any] = dense_act_fn super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , is_decoder=_lowerCAmelCase , **_lowerCAmelCase , ) @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase : Dict = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _lowercase : Optional[Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : str = "pix2struct_vision_model" def __init__( self , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=6_4 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase="gelu_new" , _lowerCAmelCase=1E-6 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1E-10 , _lowerCAmelCase=1.0 , _lowerCAmelCase=4_0_9_6 , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) _lowercase : int = hidden_size _lowercase : Dict = patch_embed_hidden_size _lowercase : str = d_ff _lowercase : Any = dropout_rate _lowercase : str = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Tuple = initializer_range _lowercase : Tuple = initializer_factor _lowercase : str = attention_dropout _lowercase : Dict = layer_norm_eps _lowercase : List[Any] = dense_act_fn _lowercase : int = seq_len _lowercase : Optional[int] = relative_attention_num_buckets _lowercase : Any = relative_attention_max_distance _lowercase : Union[str, Any] = d_kv @classmethod def __a ( cls , _lowerCAmelCase , **_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase : Tuple = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": _lowercase : str = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "pix2struct" _UpperCamelCase : Tuple = True def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__(tie_word_embeddings=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) if text_config is None: _lowercase : List[str] = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: _lowercase : List[str] = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) _lowercase : Union[str, Any] = PixaStructTextConfig(**_lowerCAmelCase ) _lowercase : Optional[int] = PixaStructVisionConfig(**_lowerCAmelCase ) _lowercase : Optional[Any] = self.text_config.decoder_start_token_id _lowercase : List[str] = self.text_config.pad_token_id _lowercase : Tuple = self.text_config.eos_token_id _lowercase : Union[str, Any] = initializer_factor _lowercase : Union[str, Any] = initializer_range _lowercase : Any = self.initializer_range _lowercase : str = self.initializer_range _lowercase : List[str] = is_vqa @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = copy.deepcopy(self.__dict__ ) _lowercase : List[Any] = self.text_config.to_dict() _lowercase : Optional[Any] = self.vision_config.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output
721
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
0
from __future__ import annotations UpperCamelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[float]: _lowercase : Tuple = [] _lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): _lowercase : float = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] < arr[j]: _lowercase : Dict = arr[j] break result.append(SCREAMING_SNAKE_CASE ) return result def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[float]: _lowercase : str = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowercase : Optional[int] = inner break result.append(SCREAMING_SNAKE_CASE ) return result def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[float]: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) _lowercase : list[float] = [] _lowercase : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowercase : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
700
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_3 , _lowerCAmelCase=1_6 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=3_0 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=None , ): _lowercase : Union[str, Any] = parent _lowercase : int = batch_size _lowercase : List[str] = decoder_seq_length # For common tests _lowercase : Union[str, Any] = self.decoder_seq_length _lowercase : List[str] = is_training _lowercase : List[str] = use_attention_mask _lowercase : int = use_labels _lowercase : Tuple = vocab_size _lowercase : List[Any] = d_model _lowercase : Any = d_model _lowercase : Optional[int] = decoder_layers _lowercase : List[str] = decoder_layers _lowercase : Union[str, Any] = decoder_ffn_dim _lowercase : Union[str, Any] = decoder_attention_heads _lowercase : Optional[Any] = decoder_attention_heads _lowercase : int = eos_token_id _lowercase : List[Any] = bos_token_id _lowercase : Optional[Any] = pad_token_id _lowercase : int = decoder_start_token_id _lowercase : Any = use_cache _lowercase : Union[str, Any] = max_position_embeddings _lowercase : str = None _lowercase : Optional[Any] = decoder_seq_length _lowercase : Union[str, Any] = 2 _lowercase : Dict = 1 def __a ( self ): _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_attention_mask: _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowercase : Optional[int] = None if self.use_labels: _lowercase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : str = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowercase : Optional[int] = True _lowercase : List[Any] = TrOCRDecoder(config=_lowerCAmelCase ).to(_lowerCAmelCase ).eval() _lowercase : int = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowercase : List[Any] = model(_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowercase : Optional[Any] = model(_lowerCAmelCase ) _lowercase : Tuple = model(_lowerCAmelCase , use_cache=_lowerCAmelCase ) self.parent.assertTrue(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) ) self.parent.assertTrue(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) + 1 ) _lowercase : int = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _lowercase : Dict = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowercase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase : Dict = model(_lowerCAmelCase )['last_hidden_state'] _lowercase : Tuple = model(_lowerCAmelCase , past_key_values=_lowerCAmelCase )['last_hidden_state'] # select random slice _lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase : Any = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowercase : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase : Any = config_and_inputs _lowercase : str = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _UpperCamelCase : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () _UpperCamelCase : str = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False def __a ( self ): _lowercase : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=_lowerCAmelCase ) _lowercase : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowerCAmelCase ) def __a ( self ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __a ( self ): pass
701
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=0.0 , _lowerCAmelCase = None , _lowerCAmelCase = "geglu" , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = "layer_norm" , _lowerCAmelCase = False , ): super().__init__() _lowercase : List[str] = only_cross_attention _lowercase : Any = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _lowercase : str = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _lowercase : List[Any] = AdaLayerNorm(_lowerCAmelCase , _lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _lowercase : str = AdaLayerNormZero(_lowerCAmelCase , _lowerCAmelCase ) else: _lowercase : str = nn.LayerNorm(_lowerCAmelCase , elementwise_affine=_lowerCAmelCase ) _lowercase : str = Attention( query_dim=_lowerCAmelCase , heads=_lowerCAmelCase , dim_head=_lowerCAmelCase , dropout=_lowerCAmelCase , bias=_lowerCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowerCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _lowercase : Any = ( AdaLayerNorm(_lowerCAmelCase , _lowerCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowerCAmelCase , elementwise_affine=_lowerCAmelCase ) ) _lowercase : int = Attention( query_dim=_lowerCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowerCAmelCase , dim_head=_lowerCAmelCase , dropout=_lowerCAmelCase , bias=_lowerCAmelCase , upcast_attention=_lowerCAmelCase , ) # is self-attn if encoder_hidden_states is none else: _lowercase : List[str] = None _lowercase : str = None # 3. Feed-forward _lowercase : List[str] = nn.LayerNorm(_lowerCAmelCase , elementwise_affine=_lowerCAmelCase ) _lowercase : int = FeedForward(_lowerCAmelCase , dropout=_lowerCAmelCase , activation_fn=_lowerCAmelCase , final_dropout=_lowerCAmelCase ) # let chunk size default to None _lowercase : Optional[int] = None _lowercase : List[Any] = 0 def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): # Sets chunk feed-forward _lowercase : str = chunk_size _lowercase : Optional[Any] = dim def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _lowercase : Dict = self.norma(_lowerCAmelCase , _lowerCAmelCase ) elif self.use_ada_layer_norm_zero: _lowercase : Any = self.norma( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hidden_dtype=hidden_states.dtype ) else: _lowercase : Optional[Any] = self.norma(_lowerCAmelCase ) _lowercase : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} _lowercase : Dict = self.attna( _lowerCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) if self.use_ada_layer_norm_zero: _lowercase : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output _lowercase : Dict = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _lowercase : List[Any] = ( self.norma(_lowerCAmelCase , _lowerCAmelCase ) if self.use_ada_layer_norm else self.norma(_lowerCAmelCase ) ) _lowercase : List[Any] = self.attna( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Tuple = attn_output + hidden_states # 3. Feed-forward _lowercase : Tuple = self.norma(_lowerCAmelCase ) if self.use_ada_layer_norm_zero: _lowercase : int = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) _lowercase : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _lowercase : Optional[Any] = torch.cat( [self.ff(_lowerCAmelCase ) for hid_slice in norm_hidden_states.chunk(_lowerCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _lowercase : Union[str, Any] = self.ff(_lowerCAmelCase ) if self.use_ada_layer_norm_zero: _lowercase : str = gate_mlp.unsqueeze(1 ) * ff_output _lowercase : int = ff_output + hidden_states return hidden_states class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = 4 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = "geglu" , _lowerCAmelCase = False , ): super().__init__() _lowercase : Dict = int(dim * mult ) _lowercase : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": _lowercase : Dict = GELU(_lowerCAmelCase , _lowerCAmelCase ) if activation_fn == "gelu-approximate": _lowercase : str = GELU(_lowerCAmelCase , _lowerCAmelCase , approximate='tanh' ) elif activation_fn == "geglu": _lowercase : str = GEGLU(_lowerCAmelCase , _lowerCAmelCase ) elif activation_fn == "geglu-approximate": _lowercase : Optional[Any] = ApproximateGELU(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = nn.ModuleList([] ) # project in self.net.append(_lowerCAmelCase ) # project dropout self.net.append(nn.Dropout(_lowerCAmelCase ) ) # project out self.net.append(nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase ): for module in self.net: _lowercase : Dict = module(_lowerCAmelCase ) return hidden_states class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = "none" ): super().__init__() _lowercase : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = approximate def __a ( self , _lowerCAmelCase ): if gate.device.type != "mps": return F.gelu(_lowerCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __a ( self , _lowerCAmelCase ): _lowercase : List[str] = self.proj(_lowerCAmelCase ) _lowercase : List[Any] = self.gelu(_lowerCAmelCase ) return hidden_states class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() _lowercase : Optional[Any] = nn.Linear(_lowerCAmelCase , dim_out * 2 ) def __a ( self , _lowerCAmelCase ): if gate.device.type != "mps": return F.gelu(_lowerCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.proj(_lowerCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowerCAmelCase ) class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() _lowercase : List[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : str = self.proj(_lowerCAmelCase ) return x * torch.sigmoid(1.7_02 * x ) class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() _lowercase : Dict = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = nn.SiLU() _lowercase : Union[str, Any] = nn.Linear(_lowerCAmelCase , embedding_dim * 2 ) _lowercase : Optional[int] = nn.LayerNorm(_lowerCAmelCase , elementwise_affine=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.linear(self.silu(self.emb(_lowerCAmelCase ) ) ) _lowercase : Optional[Any] = torch.chunk(_lowerCAmelCase , 2 ) _lowercase : Any = self.norm(_lowerCAmelCase ) * (1 + scale) + shift return x class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__() _lowercase : Tuple = CombinedTimestepLabelEmbeddings(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = nn.SiLU() _lowercase : List[Any] = nn.Linear(_lowerCAmelCase , 6 * embedding_dim , bias=_lowerCAmelCase ) _lowercase : int = nn.LayerNorm(_lowerCAmelCase , elementwise_affine=_lowerCAmelCase , eps=1E-6 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Tuple = self.linear(self.silu(self.emb(_lowerCAmelCase , _lowerCAmelCase , hidden_dtype=_lowerCAmelCase ) ) ) _lowercase : Tuple = emb.chunk(6 , dim=1 ) _lowercase : Optional[int] = self.norm(_lowerCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCAmelCase_ ( nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = 1E-5 ): super().__init__() _lowercase : int = num_groups _lowercase : List[str] = eps if act_fn is None: _lowercase : Tuple = None else: _lowercase : List[Any] = get_activation(_lowerCAmelCase ) _lowercase : str = nn.Linear(_lowerCAmelCase , out_dim * 2 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.act: _lowercase : List[Any] = self.act(_lowerCAmelCase ) _lowercase : str = self.linear(_lowerCAmelCase ) _lowercase : int = emb[:, :, None, None] _lowercase : Dict = emb.chunk(2 , dim=1 ) _lowercase : Optional[int] = F.group_norm(_lowerCAmelCase , self.num_groups , eps=self.eps ) _lowercase : List[str] = x * (1 + scale) + shift return x
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
0
# using dfs for finding eulerian path traversal def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: _lowercase : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowercase : Optional[int] = True, True _lowercase : List[Any] = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Any = 0 _lowercase : Optional[int] = -1 for i in range(SCREAMING_SNAKE_CASE ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowercase : Any = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: _lowercase : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowercase : List[Any] = check_circuit_or_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowercase : Any = 1 if check == 2: _lowercase : Optional[int] = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowercase : Union[str, Any] = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Tuple: _lowercase : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowercase : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowercase : int = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowercase : Union[str, Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowercase : List[Any] = { 1: [], 2: [] # all degree is zero } _lowercase : Dict = 10 check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
705
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCamelCase = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __magic_name__ ( ) -> List[str]: _lowercase : List[Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowercase : Tuple = bs[:] _lowercase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 _lowercase : Any = [chr(SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: _lowercase : Any = set() _lowercase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : List[str] = char return pairs class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): _lowercase : Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token _lowercase : Dict = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token _lowercase : Optional[int] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token _lowercase : Union[str, Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token _lowercase : List[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token _lowercase : Tuple = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : Optional[int] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle: _lowercase : Optional[Any] = json.load(_lowerCAmelCase ) _lowercase : Tuple = {v: k for k, v in self.encoder.items()} _lowercase : Optional[int] = errors # how to handle errors in decoding _lowercase : Dict = bytes_to_unicode() _lowercase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle: _lowercase : Optional[Any] = merges_handle.read().split('\n' )[1:-1] _lowercase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Optional[int] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : int = {} _lowercase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : Any = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __a ( self ): return len(self.encoder ) def __a ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , _lowerCAmelCase ): if token in self.cache: return self.cache[token] _lowercase : str = tuple(_lowerCAmelCase ) _lowercase : Tuple = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: _lowercase : Optional[int] = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase : List[Any] = bigram _lowercase : Any = [] _lowercase : Dict = 0 while i < len(_lowerCAmelCase ): try: _lowercase : List[Any] = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Any = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Tuple = tuple(_lowerCAmelCase ) _lowercase : Tuple = new_word if len(_lowerCAmelCase ) == 1: break else: _lowercase : Optional[int] = get_pairs(_lowerCAmelCase ) _lowercase : Tuple = ' '.join(_lowerCAmelCase ) _lowercase : Optional[Any] = word return word def __a ( self , _lowerCAmelCase ): _lowercase : Union[str, Any] = [] for token in re.findall(self.pat , _lowerCAmelCase ): _lowercase : Any = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(' ' ) ) return bpe_tokens def __a ( self , _lowerCAmelCase ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def __a ( self , _lowerCAmelCase ): return self.decoder.get(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = ''.join(_lowerCAmelCase ) _lowercase : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : Union[str, Any] = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' ) _lowercase : Dict = 0 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowercase : Union[str, Any] = token_index writer.write(' '.join(_lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Dict = [self.cls_token_id] _lowercase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Dict = [self.sep_token_id] _lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ): _lowercase : Any = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): _lowercase : Tuple = ' ' + text return (text, kwargs) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase = None , _lowerCAmelCase = None , ): _lowercase : Any = super()._pad( encoded_inputs=_lowerCAmelCase , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: _lowercase : List[str] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowercase : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowercase : List[Any] = len(encoded_inputs['global_attention_mask'] ) != len(_lowerCAmelCase ) if needs_to_be_padded: _lowercase : Union[str, Any] = len(_lowerCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowercase : Dict = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _lowercase : Any = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase = float("nan") class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : List[str] = sys.stdout _lowercase : Dict = open(_lowerCAmelCase , 'a' ) def __getattr__( self , _lowerCAmelCase ): return getattr(self.stdout , _lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): self.stdout.write(_lowerCAmelCase ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , _lowerCAmelCase , 0 , re.M ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: _lowercase : int = [] # deal with critical env vars _lowercase : int = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: _lowercase : Tuple = os.environ.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if val is not None: cmd.append(F"""{key}={val}""" ) # python executable (not always needed if the script is executable) _lowercase : Tuple = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(SCREAMING_SNAKE_CASE ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _lowercase : Any = [] _lowercase : Optional[Any] = '' while len(SCREAMING_SNAKE_CASE ) > 0: current_line += F"""{cmd.pop(0 )} """ if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = '' return "\\\n".join(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # unwrap multi-line input _lowercase : List[str] = re.sub(R'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own _lowercase : int = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir _lowercase : Tuple = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) _lowercase : Optional[int] = subprocess.run(SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE , text=SCREAMING_SNAKE_CASE ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams _lowercase : Any = variation.replace(' ' , '-' ) with open(Path(SCREAMING_SNAKE_CASE ) / F"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(SCREAMING_SNAKE_CASE ) / F"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: _lowercase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Tuple: _lowercase : str = [] _lowercase : List[Any] = [] _lowercase : Any = F"""{id}: {variation:<{longest_variation_len}}""" _lowercase : Union[str, Any] = F"""{preamble}: """ _lowercase : List[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(SCREAMING_SNAKE_CASE ) , desc=SCREAMING_SNAKE_CASE , leave=SCREAMING_SNAKE_CASE ): _lowercase : List[Any] = process_run_single( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : Tuple = single_run_metrics[target_metric_key] if not math.isnan(SCREAMING_SNAKE_CASE ): metrics.append(SCREAMING_SNAKE_CASE ) results.append(SCREAMING_SNAKE_CASE ) outcome += "✓" else: outcome += "✘" _lowercase : Optional[int] = F"""\33[2K\r{outcome}""" if len(SCREAMING_SNAKE_CASE ) > 0: _lowercase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _lowercase : str = round(mean_metrics[target_metric_key] , 2 ) _lowercase : Any = F"""{outcome} {mean_target}""" if len(SCREAMING_SNAKE_CASE ) > 1: results_str += F""" {tuple(round(SCREAMING_SNAKE_CASE , 2 ) for x in results )}""" print(SCREAMING_SNAKE_CASE ) _lowercase : str = variation return mean_metrics else: print(SCREAMING_SNAKE_CASE ) return {variation_key: variation, target_metric_key: nan} def __magic_name__ ( ) -> Optional[Any]: _lowercase : List[str] = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : Dict = pd.DataFrame(SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = 'variation' _lowercase : Union[str, Any] = 'diff_%' _lowercase : Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _lowercase : List[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(SCREAMING_SNAKE_CASE ): # as a fallback, use the minimal value as the sentinel _lowercase : Tuple = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(SCREAMING_SNAKE_CASE ): _lowercase : Any = df.apply( lambda SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns _lowercase : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _lowercase : Tuple = df.reindex(SCREAMING_SNAKE_CASE , axis='columns' ) # reorder cols # capitalize _lowercase : Tuple = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible _lowercase : List[str] = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('_' , '<br>' ) , axis='columns' ) _lowercase : List[str] = df.rename(lambda SCREAMING_SNAKE_CASE : c.replace('_' , '\n' ) , axis='columns' ) _lowercase : int = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=SCREAMING_SNAKE_CASE , floatfmt='.2f' )] print('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( ) -> Tuple: _lowercase : str = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Base cmd' , ) parser.add_argument( '--variations' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , nargs='+' , required=SCREAMING_SNAKE_CASE , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=SCREAMING_SNAKE_CASE , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=SCREAMING_SNAKE_CASE , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=SCREAMING_SNAKE_CASE , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=SCREAMING_SNAKE_CASE , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) _lowercase : Dict = parser.parse_args() _lowercase : List[str] = args.output_dir Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Dict = get_base_command(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # split each dimension into its --foo variations _lowercase : Tuple = [list(map(str.strip , re.split(R'\|' , SCREAMING_SNAKE_CASE ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _lowercase : Any = list(map(str.strip , map(' '.join , itertools.product(*SCREAMING_SNAKE_CASE ) ) ) ) _lowercase : Dict = max(len(SCREAMING_SNAKE_CASE ) for x in variations ) # split wanted keys _lowercase : Optional[int] = args.report_metric_keys.split() # capture prints into a log file for convenience _lowercase : List[str] = F"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(F"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(F"""and this script's output is also piped into {report_fn}""" ) _lowercase : int = Tee(SCREAMING_SNAKE_CASE ) print(F"""\n*** Running {len(SCREAMING_SNAKE_CASE )} benchmarks:""" ) print(F"""Base command: {' '.join(SCREAMING_SNAKE_CASE )}""" ) _lowercase : Tuple = 'variation' _lowercase : Dict = [] for id, variation in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc='Total completion: ' , leave=SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.repeat_times , SCREAMING_SNAKE_CASE , args.verbose , ) ) process_results(SCREAMING_SNAKE_CASE , args.target_metric_key , SCREAMING_SNAKE_CASE , args.base_variation , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCamelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : _UpperCamelCase : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) _UpperCamelCase : bool = field( default=__snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) _UpperCamelCase : Optional[int] = field( default=__snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCamelCase : Optional[int] = field( default=__snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _UpperCamelCase : Optional[int] = field( default=__snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCAmelCase_ : _UpperCamelCase : str = field( default=__snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase : str = field( default=__snake_case , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Train language if it is different from the evaluation language."} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCamelCase : Optional[bool] = field( default=__snake_case , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCamelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __magic_name__ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowercase : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase : int = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowercase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _lowercase : Dict = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowercase : List[str] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : Optional[Any] = train_dataset.features['label'].names if training_args.do_eval: _lowercase : List[str] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : Any = eval_dataset.features['label'].names if training_args.do_predict: _lowercase : Union[str, Any] = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[str] = predict_dataset.features['label'].names # Labels _lowercase : Any = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _lowercase : Any = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase : Tuple = False def preprocess_function(SCREAMING_SNAKE_CASE ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length , truncation=SCREAMING_SNAKE_CASE , ) if training_args.do_train: if data_args.max_train_samples is not None: _lowercase : Tuple = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) _lowercase : Optional[int] = train_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowercase : Optional[Any] = train_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowercase : str = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) _lowercase : Union[str, Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowercase : Optional[Any] = eval_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _lowercase : Optional[int] = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_predict_samples ) _lowercase : str = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _lowercase : Any = predict_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _lowercase : Dict = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE ) else p.predictions _lowercase : List[str] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase : Union[str, Any] = default_data_collator elif training_args.fpaa: _lowercase : List[Any] = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) else: _lowercase : List[str] = None # Initialize our Trainer _lowercase : List[Any] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: _lowercase : Tuple = None if training_args.resume_from_checkpoint is not None: _lowercase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : str = last_checkpoint _lowercase : Optional[int] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = train_result.metrics _lowercase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('train' , SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : Dict = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _lowercase : Optional[int] = trainer.predict(SCREAMING_SNAKE_CASE , metric_key_prefix='predict' ) _lowercase : Optional[int] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE ) ) _lowercase : Tuple = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics('predict' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('predict' , SCREAMING_SNAKE_CASE ) _lowercase : Tuple = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) _lowercase : List[str] = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Union[str, Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
708
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]: _lowercase : Any = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]: _lowercase : List[Any] = [] for d in reversed(SCREAMING_SNAKE_CASE ): idx.append(flat_idx % d ) _lowercase : List[Any] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE ) ) @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE ) -> None: _lowercase : Tuple = True for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowercase : str = -1 * (i + 1) l[reversed_idx] &= tally _lowercase : Tuple = l[reversed_idx] if start_edges is None: _lowercase : str = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE ) if end_edges is None: _lowercase : Tuple = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] reduce_edge_list(SCREAMING_SNAKE_CASE ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowercase : List[Tuple[slice, ...]] = [] _lowercase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE , s + 1 ) ) else: break _lowercase : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE ) _lowercase : Any = len(SCREAMING_SNAKE_CASE ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowercase : Union[str, Any] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowercase : Tuple = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowercase : Union[str, Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> torch.Tensor: _lowercase : Optional[int] = t.shape[:no_batch_dims] _lowercase : List[Any] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # _get_minimal_slice_set is inclusive _lowercase : Optional[Any] = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE ) ) # Get an ordered list of slices to perform _lowercase : Optional[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _lowercase : str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ) -> Any: if not (len(SCREAMING_SNAKE_CASE ) > 0): raise ValueError('Must provide at least one input' ) _lowercase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE )] _lowercase : List[str] = tuple([max(SCREAMING_SNAKE_CASE ) for s in zip(*SCREAMING_SNAKE_CASE )] ) def _prep_inputs(SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowercase : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowercase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowercase : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowercase : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE ) _lowercase : int = None if _out is not None: _lowercase : List[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowercase : List[str] = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowercase : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowercase : Any = 0 _lowercase : Union[str, Any] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE ): # Chunk the input if not low_mem: _lowercase : Optional[Any] = _select_chunk else: _lowercase : Tuple = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE , flat_end=min(SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE ) , ) _lowercase : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Run the layer on the chunk _lowercase : int = layer(**SCREAMING_SNAKE_CASE ) # Allocate space for the output if out is None: _lowercase : Any = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assign(SCREAMING_SNAKE_CASE , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowercase : Union[str, Any] = da[k] assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for xa, xa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowercase : str = xa elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowercase : Union[str, Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _lowercase : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) return out class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase = 5_1_2 , ): _lowercase : List[Any] = max_chunk_size _lowercase : Optional[int] = None _lowercase : Optional[tuple] = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowercase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _lowercase : Dict = [c for c in candidates if c > min_chunk_size] _lowercase : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*_lowerCAmelCase , chunk_size=_lowerCAmelCase ) return True except RuntimeError: return False _lowercase : Union[str, Any] = 0 _lowercase : Any = len(_lowerCAmelCase ) - 1 while i > min_viable_chunk_size_index: _lowercase : Optional[int] = test_chunk_size(candidates[i] ) if not viable: _lowercase : List[Any] = (min_viable_chunk_size_index + i) // 2 else: _lowercase : Optional[int] = i _lowercase : Optional[int] = (i + len(_lowerCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = True for aa, aa in zip(_lowerCAmelCase , _lowerCAmelCase ): assert type(_lowerCAmelCase ) == type(_lowerCAmelCase ) if isinstance(_lowerCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] _lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_lowerCAmelCase , _lowerCAmelCase ) else: consistent &= aa == aa return consistent def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowercase : Tuple = True _lowercase : tuple = tree_map(lambda _lowerCAmelCase : a.shape if isinstance(_lowerCAmelCase , torch.Tensor ) else a , _lowerCAmelCase , _lowerCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_lowerCAmelCase ) _lowercase : Tuple = self._compare_arg_caches(self.cached_arg_data , _lowerCAmelCase ) else: # Otherwise, we can reuse the precomputed value _lowercase : Union[str, Any] = False if not consistent: _lowercase : List[str] = self._determine_favorable_chunk_size( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) _lowercase : int = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : Optional[Any] = inspect.getfile(accelerate.test_utils ) _lowercase : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowercase : Tuple = test_metrics @require_cpu def __a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __a ( self ): self.test_metrics.main() @require_multi_gpu def __a ( self ): print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowercase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() )
710
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase_ ( __snake_case ): @require_torch def __a ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Optional[int] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network _lowercase : Any = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _lowercase : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Dict = '1' _lowercase : str = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : str = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network _lowercase : int = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _lowercase : Optional[Any] = self.get_env() _lowercase : List[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowercase : List[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _lowercase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _lowercase : str = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _lowercase : List[str] = self.get_env() _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network _lowercase : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[int] = '1' _lowercase : List[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def __a ( self ): _lowercase : Optional[int] = '\nfrom transformers import pipeline\n ' _lowercase : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _lowercase : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _lowercase : Optional[Any] = self.get_env() _lowercase : List[str] = '1' _lowercase : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def __a ( self ): _lowercase : int = '\nfrom transformers import AutoModel\n ' _lowercase : Tuple = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _lowercase : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _lowercase : Optional[int] = self.get_env() _lowercase : List[str] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[Any] = '1' _lowercase : Optional[Any] = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
711
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from decimal import Decimal, getcontext from math import ceil, factorial def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) _lowercase : List[Any] = precision _lowercase : Optional[Any] = ceil(precision / 14 ) _lowercase : Dict = 426_880 * Decimal(10_005 ).sqrt() _lowercase : str = 1 _lowercase : List[Any] = 13_591_409 _lowercase : str = Decimal(SCREAMING_SNAKE_CASE ) for k in range(1 , SCREAMING_SNAKE_CASE ): _lowercase : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase : Dict = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCamelCase = getLogger(__name__) UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="summarization" , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Dict: _lowercase : Union[str, Any] = Path(SCREAMING_SNAKE_CASE ).open('w' , encoding='utf-8' ) _lowercase : Tuple = str(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) if fpaa: _lowercase : Tuple = model.half() _lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowercase : int = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if prefix is None: _lowercase : int = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ): _lowercase : Dict = [prefix + text for text in examples_chunk] _lowercase : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE , padding='longest' ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowercase : Any = int(time.time() - start_time ) # seconds _lowercase : str = len(SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __magic_name__ ( ) -> str: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __magic_name__ ( SCREAMING_SNAKE_CASE=True ) -> str: _lowercase : Any = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE , default=8 , required=SCREAMING_SNAKE_CASE , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE , default=-1 , required=SCREAMING_SNAKE_CASE , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowercase : Dict = parser.parse_known_args() _lowercase : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) _lowercase : Tuple = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowercase : Dict = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowercase : Optional[Any] = generate_summaries_or_translations( SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores _lowercase : Any = calculate_bleu if 'translation' in args.task else calculate_rouge _lowercase : int = [x.rstrip() for x in open(args.save_path ).readlines()] _lowercase : Union[str, Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE )] _lowercase : dict = score_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) scores.update(SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE ) if args.info: _lowercase : str = args.info if verbose: print(SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if "model" in orig_key: _lowercase : Optional[int] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: _lowercase : Optional[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: _lowercase : Dict = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: _lowercase : Optional[Any] = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: _lowercase : Optional[Any] = orig_key.split('.' )[0].split('_' )[-1] _lowercase : int = orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: _lowercase : Union[str, Any] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: _lowercase : Any = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: _lowercase : Dict = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: _lowercase : Optional[int] = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: _lowercase : List[str] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: _lowercase : Optional[int] = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: _lowercase : Any = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: _lowercase : List[str] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: _lowercase : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: _lowercase : List[Any] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: _lowercase : str = 'yoso.' + orig_key return orig_key def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: for key in orig_state_dict.copy().keys(): _lowercase : Dict = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if ("pooler" in key) or ("sen_class" in key): continue else: _lowercase : Tuple = val _lowercase : Union[str, Any] = orig_state_dict['cls.predictions.decoder.bias'] _lowercase : int = torch.arange(SCREAMING_SNAKE_CASE ).expand((1, -1) ) + 2 return orig_state_dict def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : List[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' )['model_state_dict'] _lowercase : Any = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = YosoForMaskedLM(SCREAMING_SNAKE_CASE ) _lowercase : str = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE ) print(model.load_state_dict(SCREAMING_SNAKE_CASE ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = 0 while number > 0: _lowercase : List[Any] = number % 10 sum_of_digits += last_digit _lowercase : str = number // 10 # Removing the last_digit from the given number return sum_of_digits def __magic_name__ ( SCREAMING_SNAKE_CASE = 100 ) -> int: _lowercase : Optional[Any] = factorial(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = split_and_add(SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
716
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = GPTaTokenizer _UpperCamelCase : List[Any] = GPTaTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : int = {"add_prefix_space": True} _UpperCamelCase : Union[str, Any] = False def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowercase : Tuple = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : Any = {'unk_token': '<unk>'} _lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def __a ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : int = 'lower newer' _lowercase : Dict = 'lower newer' return input_text, output_text def __a ( self ): _lowercase : List[str] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase : Any = 'lower newer' _lowercase : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Tuple = tokenizer.tokenize(_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = tokens + [tokenizer.unk_token] _lowercase : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): if not self.test_rust_tokenizer: return _lowercase : Optional[int] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer(add_prefix_space=_lowerCAmelCase ) _lowercase : List[str] = 'lower newer' # Testing tokenization _lowercase : List[str] = tokenizer.tokenize(_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : Union[str, Any] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing conversion to ids without special tokens _lowercase : List[str] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : Optional[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing conversion to ids with special tokens _lowercase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_lowerCAmelCase ) _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _lowercase : str = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Testing the unknown token _lowercase : List[str] = tokens + [rust_tokenizer.unk_token] _lowercase : Any = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __a ( self , _lowerCAmelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # Simple input _lowercase : Any = 'This is a simple input' _lowercase : Optional[int] = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : Optional[int] = ('This is a simple input', 'This is a pair') _lowercase : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) def __a ( self ): _lowercase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowercase : List[str] = 'This is a simple input' _lowercase : Union[str, Any] = ['This is a simple input looooooooong', 'This is a simple input'] _lowercase : List[Any] = ('This is a simple input', 'This is a pair') _lowercase : Tuple = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowercase : List[Any] = tokenizer.pad_token_id _lowercase : Optional[int] = tokenizer(_lowerCAmelCase , padding='max_length' , max_length=3_0 , return_tensors='np' ) _lowercase : Union[str, Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncate=_lowerCAmelCase , return_tensors='np' ) _lowercase : Tuple = tokenizer(*_lowerCAmelCase , padding='max_length' , max_length=6_0 , return_tensors='np' ) _lowercase : Any = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncate=_lowerCAmelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __a ( self ): _lowercase : Tuple = '$$$' _lowercase : str = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCAmelCase , add_bos_token=_lowerCAmelCase ) _lowercase : int = 'This is a simple input' _lowercase : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : List[Any] = tokenizer.bos_token_id _lowercase : Union[str, Any] = tokenizer(_lowerCAmelCase ) _lowercase : int = tokenizer(_lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowercase : Optional[int] = tokenizer.decode(out_s.input_ids ) _lowercase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __a ( self ): pass def __a ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented _lowercase : List[str] = [self.get_tokenizer(do_lower_case=_lowerCAmelCase , add_bos_token=_lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Tuple = 'Encode this.' _lowercase : Any = 'This one too please.' _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) encoded_sequence += tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : str = tokenizer.encode_plus( _lowerCAmelCase , _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , ) _lowercase : int = encoded_sequence_dict['input_ids'] _lowercase : Optional[int] = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) _lowercase : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_lowerCAmelCase ) ] _lowercase : int = [x for x in filtered_sequence if x is not None] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowercase : Tuple = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_lowerCAmelCase ) _lowercase : Any = 'A photo of a cat' _lowercase : List[str] = tokenizer.encode( _lowerCAmelCase , ) self.assertEqual(_lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('test_opt' ) _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('./test_opt' ) _lowercase : Tuple = tokenizer.encode( _lowerCAmelCase , ) self.assertEqual(_lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def __a ( self ): _lowercase : str = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=_lowerCAmelCase ) _lowercase : str = 'A photo of a cat' _lowercase : Union[str, Any] = tokenizer.encode( _lowerCAmelCase , ) # Same as above self.assertEqual(_lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def __a ( self ): _lowercase : int = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_lowerCAmelCase ) _lowercase : Dict = 'bos' _lowercase : List[Any] = tokenizer.get_vocab()['bos'] _lowercase : str = 'A photo of a cat' _lowercase : Tuple = tokenizer.encode( _lowerCAmelCase , ) # We changed the bos token self.assertEqual(_lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('./tok' ) _lowercase : Optional[int] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) _lowercase : Optional[Any] = tokenizer.encode( _lowerCAmelCase , ) self.assertEqual(_lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_ : def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return None class lowerCAmelCase_ : def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return None class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : str = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCAmelCase , 'tf' , 1_2 , **_lowerCAmelCase ) @require_torch @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowerCAmelCase , 'pt' , 1_2 , **_lowerCAmelCase ) @require_torch @slow def __a ( self ): from transformers import BertModel _lowercase : str = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_lowerCAmelCase ) ) vocab_file.flush() _lowercase : Optional[int] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowercase : str = BertModel(BertConfig(vocab_size=len(_lowerCAmelCase ) ) ) model.save_pretrained(_lowerCAmelCase ) self._test_export(_lowerCAmelCase , 'pt' , 1_2 , _lowerCAmelCase ) @require_tf @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowercase : Union[str, Any] = self._test_export(_lowerCAmelCase , 'tf' , 1_2 , **_lowerCAmelCase ) _lowercase : Union[str, Any] = quantize(Path(_lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def __a ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowercase : str = self._test_export(_lowerCAmelCase , 'pt' , 1_2 , **_lowerCAmelCase ) _lowercase : List[Any] = quantize(_lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): try: # Compute path with TemporaryDirectory() as tempdir: _lowercase : Tuple = Path(_lowerCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) return path except Exception as e: self.fail(_lowerCAmelCase ) @require_torch @require_tokenizers @slow def __a ( self ): from transformers import BertModel _lowercase : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowercase : Dict = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCAmelCase , _lowerCAmelCase , 'pt' ) @require_tf @require_tokenizers @slow def __a ( self ): from transformers import TFBertModel _lowercase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowercase : str = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_lowerCAmelCase , _lowerCAmelCase , 'tf' ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = FeatureExtractionPipeline(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Any = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _lowercase : Any = infer_shapes(_lowerCAmelCase , _lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def __a ( self ): _lowercase : Tuple = ['input_ids', 'attention_mask', 'token_type_ids'] _lowercase : List[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _lowercase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , _lowerCAmelCase , _lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_lowerCAmelCase ) , set(_lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_lowerCAmelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowercase : List[str] = ensure_valid_input(FuncNonContiguousArgs() , _lowerCAmelCase , _lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def __a ( self ): _lowercase : Any = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
719
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = "philschmid/bart-large-cnn-samsum" _UpperCamelCase : List[str] = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) _UpperCamelCase : str = "summarizer" _UpperCamelCase : Any = AutoTokenizer _UpperCamelCase : int = AutoModelForSeqaSeqLM _UpperCamelCase : Optional[Any] = ["text"] _UpperCamelCase : List[Any] = ["text"] def __a ( self , _lowerCAmelCase ): return self.pre_processor(_lowerCAmelCase , return_tensors='pt' , truncation=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return self.model.generate(**_lowerCAmelCase )[0] def __a ( self , _lowerCAmelCase ): return self.pre_processor.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "autoformer" _UpperCamelCase : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "student_t" , _lowerCAmelCase = "nll" , _lowerCAmelCase = 1 , _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 6_4 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_2 , _lowerCAmelCase = 3_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 1_0_0 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase=True , _lowerCAmelCase = 1_0 , _lowerCAmelCase = 2_5 , _lowerCAmelCase = 3 , **_lowerCAmelCase , ): # time series specific configuration _lowercase : str = prediction_length _lowercase : List[Any] = context_length if context_length is not None else prediction_length _lowercase : Union[str, Any] = distribution_output _lowercase : Optional[Any] = loss _lowercase : Optional[int] = input_size _lowercase : List[Any] = num_time_features _lowercase : Optional[int] = lags_sequence _lowercase : Tuple = scaling _lowercase : Any = num_dynamic_real_features _lowercase : Dict = num_static_real_features _lowercase : List[str] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _lowercase : Any = cardinality else: _lowercase : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _lowercase : Union[str, Any] = embedding_dimension else: _lowercase : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _lowercase : str = num_parallel_samples # Transformer architecture configuration _lowercase : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features _lowercase : str = d_model _lowercase : Optional[int] = encoder_attention_heads _lowercase : List[str] = decoder_attention_heads _lowercase : List[Any] = encoder_ffn_dim _lowercase : Optional[Any] = decoder_ffn_dim _lowercase : str = encoder_layers _lowercase : Union[str, Any] = decoder_layers _lowercase : List[str] = dropout _lowercase : str = attention_dropout _lowercase : Dict = activation_dropout _lowercase : int = encoder_layerdrop _lowercase : Tuple = decoder_layerdrop _lowercase : Union[str, Any] = activation_function _lowercase : Tuple = init_std _lowercase : Dict = use_cache # Autoformer _lowercase : Tuple = label_length _lowercase : str = moving_average _lowercase : List[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
721
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> List[str]: return sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[column] ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=float('inf' ) ) -> List[Any]: for i in range(points_counts - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): _lowercase : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowercase : int = current_dis return min_dis def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=float('inf' ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , SCREAMING_SNAKE_CASE ): for j in range(max(0 , i - 6 ) , SCREAMING_SNAKE_CASE ): _lowercase : Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowercase : Dict = current_dis return min_dis def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # recursion _lowercase : Tuple = points_counts // 2 _lowercase : Any = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE , points_sorted_on_y[:mid] , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE , points_sorted_on_y[mid:] , points_counts - mid ) _lowercase : Tuple = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = dis_between_closest_in_strip( SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: _lowercase : int = column_based_sort(SCREAMING_SNAKE_CASE , column=0 ) _lowercase : Dict = column_based_sort(SCREAMING_SNAKE_CASE , column=1 ) return ( closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** 0.5 if __name__ == "__main__": UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
700
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase ): _lowercase : Any = num_of_nodes _lowercase : list[list[int]] = [] _lowercase : dict[int, int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , _lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase : Optional[int] = self.find_component(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: _lowercase : str = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: _lowercase : Any = self.find_component(_lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCAmelCase ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = 0 _lowercase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowercase : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase : List[str] = edge _lowercase : Union[str, Any] = self.m_component[u] _lowercase : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase , _lowercase , _lowercase : int = edge _lowercase : Optional[int] = self.m_component[u] _lowercase : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _lowercase : str = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def __magic_name__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
677
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCamelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
701
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowercase ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
702
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = ["input_features", "is_longer"] def __init__( self , _lowerCAmelCase=6_4 , _lowerCAmelCase=4_8_0_0_0 , _lowerCAmelCase=4_8_0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=1_0_2_4 , _lowerCAmelCase=0.0 , _lowerCAmelCase=False , _lowerCAmelCase = 0 , _lowerCAmelCase = 1_4_0_0_0 , _lowerCAmelCase = None , _lowerCAmelCase = "fusion" , _lowerCAmelCase = "repeatpad" , **_lowerCAmelCase , ): super().__init__( feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Optional[Any] = top_db _lowercase : List[Any] = truncation _lowercase : Tuple = padding _lowercase : Optional[int] = fft_window_size _lowercase : Tuple = (fft_window_size >> 1) + 1 _lowercase : Optional[Any] = hop_length _lowercase : List[Any] = max_length_s _lowercase : Optional[Any] = max_length_s * sampling_rate _lowercase : Optional[int] = sampling_rate _lowercase : Union[str, Any] = frequency_min _lowercase : List[Any] = frequency_max _lowercase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm=_lowerCAmelCase , mel_scale='htk' , ) _lowercase : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowerCAmelCase , min_frequency=_lowerCAmelCase , max_frequency=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def __a ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Dict = spectrogram( _lowerCAmelCase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowerCAmelCase , log_mel='dB' , ) return log_mel_spectrogram.T def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] # randomly choose index for each part _lowercase : Optional[Any] = np.random.choice(ranges[0] ) _lowercase : Dict = np.random.choice(ranges[1] ) _lowercase : Tuple = np.random.choice(ranges[2] ) _lowercase : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] _lowercase : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _lowercase : Any = torch.tensor(mel[None, None, :] ) _lowercase : Any = torch.nn.functional.interpolate( _lowerCAmelCase , size=[chunk_frames, 6_4] , mode='bilinear' , align_corners=_lowerCAmelCase ) _lowercase : Union[str, Any] = mel_shrink[0][0].numpy() _lowercase : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Optional[Any] = len(_lowerCAmelCase ) - max_length _lowercase : List[Any] = np.random.randint(0 , overflow + 1 ) _lowercase : List[Any] = waveform[idx : idx + max_length] _lowercase : List[Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : Optional[Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) _lowercase : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : Optional[int] = False else: _lowercase : Optional[Any] = self._random_mel_fusion(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _lowercase : Union[str, Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : Optional[int] = int(max_length / len(_lowerCAmelCase ) ) _lowercase : List[Any] = np.stack(np.tile(_lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Dict = int(max_length / len(_lowerCAmelCase ) ) _lowercase : Optional[Any] = np.stack(np.tile(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Tuple = np.pad(_lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : Union[str, Any] = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters ) _lowercase : Union[str, Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : Tuple = self._np_extract_fbank_features(_lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): _lowercase : Optional[Any] = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : int = isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Union[str, Any] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): _lowercase : Union[str, Any] = np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : Optional[int] = [np.asarray(_lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : List[Any] = [ self._get_input_mel(_lowerCAmelCase , max_length if max_length else self.nb_max_samples , _lowerCAmelCase , _lowerCAmelCase ) for waveform in raw_speech ] _lowercase : Any = [] _lowercase : Tuple = [] for mel, longer in padded_inputs: input_mel.append(_lowerCAmelCase ) is_longer.append(_lowerCAmelCase ) if truncation == "fusion" and sum(_lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : int = np.random.randint(0 , len(_lowerCAmelCase ) ) _lowercase : Union[str, Any] = True if isinstance(input_mel[0] , _lowerCAmelCase ): _lowercase : Optional[int] = [np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : str = [[longer] for longer in is_longer] _lowercase : List[str] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Tuple = BatchFeature(_lowerCAmelCase ) if return_tensors is not None: _lowercase : str = input_features.convert_to_tensors(_lowerCAmelCase ) return input_features
703
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "maskformer" _UpperCamelCase : str = {"hidden_size": "mask_feature_size"} _UpperCamelCase : int = ["resnet", "swin"] _UpperCamelCase : List[Any] = ["detr"] def __init__( self , _lowerCAmelCase = 2_5_6 , _lowerCAmelCase = 2_5_6 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = 20.0 , _lowerCAmelCase = None , **_lowerCAmelCase , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowercase : Optional[Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = backbone_config.pop('model_type' ) _lowercase : Any = CONFIG_MAPPING[backbone_model_type] _lowercase : Any = config_class.from_dict(_lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowercase : str = DetrConfig() else: # verify that the decoder is supported _lowercase : Dict = ( decoder_config.pop('model_type' ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {','.join(self.decoders_supported )}""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = CONFIG_MAPPING[decoder_type] _lowercase : Union[str, Any] = config_class.from_dict(_lowerCAmelCase ) _lowercase : Optional[Any] = backbone_config _lowercase : str = decoder_config # main feature dimension for the model _lowercase : str = fpn_feature_size _lowercase : Optional[Any] = mask_feature_size # initializer _lowercase : str = init_std _lowercase : Optional[Any] = init_xavier_std # Hungarian matcher && loss _lowercase : Tuple = cross_entropy_weight _lowercase : Union[str, Any] = dice_weight _lowercase : Optional[Any] = mask_weight _lowercase : int = use_auxiliary_loss _lowercase : Optional[int] = no_object_weight _lowercase : Union[str, Any] = output_auxiliary_logits _lowercase : Optional[int] = self.decoder_config.encoder_attention_heads _lowercase : Optional[int] = self.decoder_config.num_hidden_layers super().__init__(**_lowerCAmelCase ) @classmethod def __a ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): return cls( backbone_config=_lowerCAmelCase , decoder_config=_lowerCAmelCase , **_lowerCAmelCase , ) def __a ( self ): _lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) _lowercase : str = self.backbone_config.to_dict() _lowercase : Union[str, Any] = self.decoder_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output
704
import qiskit def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> qiskit.result.counts.Counts: _lowercase : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowercase : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowercase : Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
677
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = "wav2vec2" def __init__( self , _lowerCAmelCase=3_2 , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="group" , _lowerCAmelCase="gelu" , _lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=1_6 , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=0.05 , _lowerCAmelCase=1_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0 , _lowerCAmelCase=3_2_0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0_0 , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=0.1 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=2_5_6 , _lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowercase : Union[str, Any] = hidden_size _lowercase : str = feat_extract_norm _lowercase : Tuple = feat_extract_activation _lowercase : Optional[Any] = list(_lowerCAmelCase ) _lowercase : Union[str, Any] = list(_lowerCAmelCase ) _lowercase : Union[str, Any] = list(_lowerCAmelCase ) _lowercase : Tuple = conv_bias _lowercase : Dict = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : Union[str, Any] = len(self.conv_dim ) _lowercase : Tuple = num_hidden_layers _lowercase : List[Any] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = num_attention_heads _lowercase : Union[str, Any] = hidden_dropout _lowercase : List[Any] = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : List[str] = feat_proj_dropout _lowercase : Any = final_dropout _lowercase : Optional[int] = layerdrop _lowercase : Optional[int] = layer_norm_eps _lowercase : Tuple = initializer_range _lowercase : Tuple = vocab_size _lowercase : Dict = do_stable_layer_norm _lowercase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : List[str] = apply_spec_augment _lowercase : Union[str, Any] = mask_time_prob _lowercase : List[str] = mask_time_length _lowercase : int = mask_time_min_masks _lowercase : List[Any] = mask_feature_prob _lowercase : Optional[int] = mask_feature_length _lowercase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : Dict = num_codevectors_per_group _lowercase : List[str] = num_codevector_groups _lowercase : Optional[int] = contrastive_logits_temperature _lowercase : int = feat_quantizer_dropout _lowercase : List[Any] = num_negatives _lowercase : Any = codevector_dim _lowercase : str = proj_codevector_dim _lowercase : List[str] = diversity_loss_weight # ctc loss _lowercase : Optional[Any] = ctc_loss_reduction _lowercase : Any = ctc_zero_infinity # adapter _lowercase : Optional[int] = add_adapter _lowercase : int = adapter_kernel_size _lowercase : Tuple = adapter_stride _lowercase : Optional[int] = num_adapter_layers _lowercase : str = output_hidden_size or hidden_size _lowercase : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase : Dict = list(_lowerCAmelCase ) _lowercase : Any = list(_lowerCAmelCase ) _lowercase : Optional[int] = list(_lowerCAmelCase ) _lowercase : List[str] = xvector_output_dim @property def __a ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
705
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Dict: if attention_mask is None: _lowercase : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowercase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowercase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , ): _lowercase : List[str] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : Tuple = use_labels _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Any = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = eos_token_id _lowercase : int = pad_token_id _lowercase : Tuple = bos_token_id _lowercase : List[Any] = initializer_range def __a ( self ): _lowercase : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : List[str] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = 2_0 _lowercase : List[Any] = model_class_name(_lowerCAmelCase ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : int = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) _lowercase : List[Any] = model.decode(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = 2_0 _lowercase : Any = model_class_name(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : List[str] = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) _lowercase : Dict = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) _lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : Tuple = 99 def __a ( self ): _lowercase : Dict = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _lowercase : Union[str, Any] = input_ids.shape[0] _lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __a ( self ): _lowercase , _lowercase , _lowercase : int = self._get_config_and_data() _lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Union[str, Any] = lm_model(input_ids=_lowerCAmelCase ) _lowercase : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _lowercase : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCAmelCase ) _lowercase : Optional[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[int] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _lowercase : Dict = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) _lowercase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _lowercase : Union[str, Any] = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() _lowercase : Dict = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase , __snake_case ): _UpperCamelCase : int = True _UpperCamelCase : Any = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : Any = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __a ( self ): _lowercase : List[str] = FlaxBlenderbotSmallModelTester(self ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : Any = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : int = model_class(_lowerCAmelCase ) _lowercase : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : List[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): _lowercase : Dict = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Any = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ): for model_class_name in self.all_model_classes: _lowercase : Dict = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : Any = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : int = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
677
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCamelCase = threading.Lock() UpperCamelCase = None UpperCamelCase = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCamelCase = logging.WARNING UpperCamelCase = True def __magic_name__ ( ) -> Dict: _lowercase : Dict = os.getenv('TRANSFORMERS_VERBOSITY' , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def __magic_name__ ( ) -> str: return __name__.split('.' )[0] def __magic_name__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def __magic_name__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowercase : str = logging.StreamHandler() # Set sys.stderr as stream. _lowercase : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _lowercase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowercase : Any = False def __magic_name__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return _lowercase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowercase : Any = None def __magic_name__ ( ) -> str: return log_levels def __magic_name__ ( SCREAMING_SNAKE_CASE = None ) -> logging.Logger: if name is None: _lowercase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> List[str]: return set_verbosity(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Tuple: return set_verbosity(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> str: return set_verbosity(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Optional[int]: return set_verbosity(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __magic_name__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> None: _configure_library_root_logger() _lowercase : Optional[int] = False def __magic_name__ ( ) -> None: _configure_library_root_logger() _lowercase : Any = True def __magic_name__ ( ) -> None: _lowercase : Tuple = _get_library_root_logger().handlers for handler in handlers: _lowercase : Dict = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> None: _lowercase : Optional[int] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : List[str] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = warning_once class lowerCAmelCase_ : def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument _lowercase : str = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _lowerCAmelCase ): def empty_fn(*_lowerCAmelCase , **_lowerCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return class lowerCAmelCase_ : def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): if _tqdm_active: return tqdm_lib.tqdm(*_lowerCAmelCase , **_lowerCAmelCase ) else: return EmptyTqdm(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): _lowercase : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCamelCase = _tqdm_cls() def __magic_name__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def __magic_name__ ( ) -> Optional[int]: global _tqdm_active _lowercase : List[Any] = True hf_hub_utils.enable_progress_bars() def __magic_name__ ( ) -> Dict: global _tqdm_active _lowercase : List[Any] = False hf_hub_utils.disable_progress_bars()
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Dict = "longformer" def __init__( self , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 0 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_0_5_2_2 , _lowerCAmelCase = 7_6_8 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 1_2 , _lowerCAmelCase = 3_0_7_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = 1E-12 , _lowerCAmelCase = False , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[int] = attention_window _lowercase : str = sep_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : List[Any] = eos_token_id _lowercase : Optional[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : List[str] = onnx_export class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = "default" , _lowerCAmelCase = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : str = True @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __a ( self ): _lowercase : Optional[int] = super().outputs if self.task == "default": _lowercase : List[str] = {0: 'batch'} return outputs @property def __a ( self ): return 1E-4 @property def __a ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ): _lowercase : int = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : str = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Any = 1 return inputs
677
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "roformer" def __init__( self , _lowerCAmelCase=5_0_0_0_0 , _lowerCAmelCase=None , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_5_3_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Dict = vocab_size _lowercase : int = hidden_size if embedding_size is None else embedding_size _lowercase : Tuple = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : List[Any] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : int = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : Optional[Any] = rotary_value _lowercase : Tuple = use_cache class lowerCAmelCase_ ( __snake_case ): @property def __a ( self ): if self.task == "multiple-choice": _lowercase : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
707
from __future__ import annotations def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
677
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCamelCase = { "gpt-neox-20b": 2_048, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase="<|endoftext|>" , _lowerCAmelCase=False , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: _lowercase : Union[str, Any] = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) _lowercase : int = add_prefix_space _lowercase : List[str] = pre_tok_class(**_lowerCAmelCase ) _lowercase : Optional[Any] = add_prefix_space def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Optional[Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: _lowercase : List[str] = input_ids[-self.model_max_length :] return input_ids
708
import math def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 ) -> list: _lowercase : List[str] = end or len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : Dict = i _lowercase : str = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowercase : Optional[Any] = array[temp_index - 1] temp_index -= 1 _lowercase : Optional[Any] = temp_index_value return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: # Max Heap _lowercase : List[str] = index _lowercase : List[str] = 2 * index + 1 # Left Node _lowercase : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowercase : Any = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowercase : str = right_index if largest != index: _lowercase , _lowercase : List[str] = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _lowercase , _lowercase : List[Any] = array[0], array[i] heapify(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return array def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : Optional[Any] = low _lowercase : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowercase , _lowercase : Tuple = array[j], array[i] i += 1 def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list: if len(SCREAMING_SNAKE_CASE ) == 0: return array _lowercase : List[str] = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE ) ) ) _lowercase : str = 16 return intro_sort(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE ) max_depth -= 1 _lowercase : int = median_of_a(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _lowercase : str = partition(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) intro_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = p return insertion_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("Enter numbers separated by a comma : ").strip() UpperCamelCase = [float(item) for item in user_input.split(",")] print(sort(unsorted))
677
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: return " ".join( ''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
709
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
710
from collections.abc import Sequence def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float: _lowercase : Optional[Any] = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = result * x + coeff return result if __name__ == "__main__": UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
677
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=1_8 , _lowerCAmelCase=3_0 , _lowerCAmelCase=4_0_0 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ): _lowercase : Dict = size if size is not None else {'height': 1_8, 'width': 1_8} _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : List[Any] = num_channels _lowercase : int = image_size _lowercase : Tuple = min_resolution _lowercase : Any = max_resolution _lowercase : Tuple = do_resize _lowercase : Union[str, Any] = size _lowercase : List[str] = do_normalize def __a ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : str = ImageGPTImageProcessor if is_vision_available() else None def __a ( self ): _lowercase : Any = ImageGPTImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'clusters' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) def __a ( self ): _lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) _lowercase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def __a ( self ): _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) _lowercase : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Optional[int] = os.path.join(_lowerCAmelCase , 'image_processor.json' ) image_processor_first.to_json_file(_lowerCAmelCase ) _lowercase : Any = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() _lowercase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def __a ( self ): _lowercase : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() _lowercase : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip('ImageGPT requires clusters at initialization' ) def __a ( self ): pass def __magic_name__ ( ) -> Tuple: _lowercase : str = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) _lowercase : List[str] = Image.open(dataset[4]['file'] ) _lowercase : Optional[Any] = Image.open(dataset[5]['file'] ) _lowercase : List[Any] = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : int = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) _lowercase : List[Any] = prepare_images() # test non-batched _lowercase : Tuple = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) _lowercase : Union[str, Any] = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched _lowercase : List[str] = image_processing(_lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) _lowercase : Dict = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
711
from __future__ import annotations class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=None ): _lowercase : int = data _lowercase : Union[str, Any] = None def __repr__( self ): _lowercase : Dict = [] _lowercase : Tuple = self while temp: string_rep.append(F"""{temp.data}""" ) _lowercase : Optional[Any] = temp.next return "->".join(_lowerCAmelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : List[Any] = current.next return head def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> None: if head_node is not None and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print_reverse(head_node.next ) print(head_node.data ) def __magic_name__ ( ) -> List[str]: from doctest import testmod testmod() _lowercase : int = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(SCREAMING_SNAKE_CASE ) print('Elements in Reverse:' ) print_reverse(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( SCREAMING_SNAKE_CASE = "" ) -> dict[str, float]: _lowercase : Any = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _lowercase : List[str] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowercase : str = soup.find_all('td' , attrs='titleColumn' ) _lowercase : List[str] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) } def __magic_name__ ( SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) -> None: _lowercase : int = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: _lowercase : Dict = csv.writer(SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , _lowerCAmelCase=None , **_lowerCAmelCase ): super().__init__(features=_lowerCAmelCase ) _lowercase : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def __a ( self , _lowerCAmelCase ): import torch if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and column: if all( isinstance(_lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCAmelCase ) return column def __a ( self , _lowerCAmelCase ): import torch if isinstance(_lowerCAmelCase , (str, bytes, type(_lowerCAmelCase )) ): return value elif isinstance(_lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowercase : int = {} if isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _lowercase : str = {'dtype': torch.intaa} elif isinstance(_lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowercase : Optional[Any] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowercase : Tuple = np.asarray(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __a ( self , _lowerCAmelCase ): import torch # support for torch, tf, jax etc. if hasattr(_lowerCAmelCase , '__array__' ) and not isinstance(_lowerCAmelCase , torch.Tensor ): _lowercase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(_lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return map_nested(self._recursive_tensorize , _lowerCAmelCase , map_list=_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = self.numpy_arrow_extractor().extract_row(_lowerCAmelCase ) _lowercase : Tuple = self.python_features_decoder.decode_row(_lowerCAmelCase ) return self.recursive_tensorize(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.numpy_arrow_extractor().extract_column(_lowerCAmelCase ) _lowercase : List[str] = self.python_features_decoder.decode_column(_lowerCAmelCase , pa_table.column_names[0] ) _lowercase : Any = self.recursive_tensorize(_lowerCAmelCase ) _lowercase : List[Any] = self._consolidate(_lowerCAmelCase ) return column def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.numpy_arrow_extractor().extract_batch(_lowerCAmelCase ) _lowercase : Optional[Any] = self.python_features_decoder.decode_batch(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.recursive_tensorize(_lowerCAmelCase ) for column_name in batch: _lowercase : List[Any] = self._consolidate(batch[column_name] ) return batch
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : Dict = do_lower_case _lowercase : Optional[Any] = strip_accents _lowercase : Any = tokenize_chinese_chars _lowercase : Tuple = normalizer_class(**_lowerCAmelCase ) _lowercase : Union[str, Any] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : str = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Any = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
677
0