code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_lowerCAmelCase , speech_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def __a ( self , _lowerCAmelCase = "auto" ): if slice_size == "auto": _lowercase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def __a ( self ): self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase=1_6_0_0_0 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_1_2 , _lowerCAmelCase = 5_0 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ): _lowercase : Tuple = self.speech_processor.feature_extractor( _lowerCAmelCase , return_tensors='pt' , sampling_rate=_lowerCAmelCase ).input_features.to(self.device ) _lowercase : List[str] = self.speech_model.generate(_lowerCAmelCase , max_length=4_8_0_0_0_0 ) _lowercase : str = self.speech_processor.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , normalize=_lowerCAmelCase )[ 0 ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = 1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = len(_lowerCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_lowerCAmelCase )}.""" ) # get prompt text embeddings _lowercase : Any = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowercase : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowercase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowercase : int = text_input_ids[:, : self.tokenizer.model_max_length] _lowercase : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowercase : List[Any] = text_embeddings.shape _lowercase : Union[str, Any] = text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) _lowercase : str = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : List[str] if negative_prompt is None: _lowercase : Any = [''] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=""" F""" {type(_lowerCAmelCase )}.""" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _lowercase : List[Any] = negative_prompt _lowercase : List[str] = text_input_ids.shape[-1] _lowercase : Any = self.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='pt' , ) _lowercase : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowercase : List[str] = uncond_embeddings.shape[1] _lowercase : List[Any] = uncond_embeddings.repeat(1 , _lowerCAmelCase , 1 ) _lowercase : Any = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowercase : int = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device='cpu' , dtype=_lowerCAmelCase ).to( self.device ) else: _lowercase : str = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowercase : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowercase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowercase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowercase : Optional[int] = {} if accepts_eta: _lowercase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowercase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowercase : Tuple = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual _lowercase : Optional[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _lowercase : int = noise_pred.chunk(2 ) _lowercase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Union[str, Any] = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = 1 / 0.1_82_15 * latents _lowercase : int = self.vae.decode(_lowerCAmelCase ).sample _lowercase : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowercase : int = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase_ : _UpperCamelCase : int = BlenderbotSmallConfig _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : List[str] = "gelu" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=2_0 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : Dict = seq_length _lowercase : Union[str, Any] = is_training _lowercase : Any = use_labels _lowercase : Any = vocab_size _lowercase : Dict = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : int = eos_token_id _lowercase : Any = pad_token_id _lowercase : Tuple = bos_token_id def __a ( self ): _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase : Tuple = prepare_blenderbot_small_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFBlenderbotSmallModel(config=_lowerCAmelCase ).get_decoder() _lowercase : List[Any] = inputs_dict['input_ids'] _lowercase : Optional[int] = input_ids[:1, :] _lowercase : int = inputs_dict['attention_mask'][:1, :] _lowercase : Dict = inputs_dict['head_mask'] _lowercase : List[Any] = 1 # first forward pass _lowercase : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowercase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase : Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowercase : int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _lowercase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: if attention_mask is None: _lowercase : Dict = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowercase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowercase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : int = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _UpperCamelCase : str = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _UpperCamelCase : Union[str, Any] = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _UpperCamelCase : Dict = True _UpperCamelCase : str = False _UpperCamelCase : Tuple = False def __a ( self ): _lowercase : Optional[int] = TFBlenderbotSmallModelTester(self ) _lowercase : List[str] = ConfigTester(self , config_class=_lowerCAmelCase ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): _UpperCamelCase : str = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] _UpperCamelCase : Tuple = "facebook/blenderbot_small-90M" @cached_property def __a ( self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def __a ( self ): _lowercase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __a ( self ): _lowercase : int = self.tokenizer(self.src_text , return_tensors='tf' ) _lowercase : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) _lowercase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
716
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : List[str] = ["image_processor", "tokenizer"] _UpperCamelCase : Dict = "BlipImageProcessor" _UpperCamelCase : List[str] = "AutoTokenizer" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[Any] = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: _lowercase : str = self.tokenizer _lowercase : Optional[Any] = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values _lowercase : List[Any] = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: _lowercase : Optional[Any] = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: _lowercase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __a ( self ): _lowercase : List[str] = self.tokenizer.model_input_names _lowercase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
718
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : List[str] = logging.get_logger() # the current default level is logging.WARNING _lowercase : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = logging.get_verbosity() _lowercase : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : int = os.getenv('TRANSFORMERS_VERBOSITY' , _lowerCAmelCase ) _lowercase : Optional[Any] = logging.log_levels[env_level_str] _lowercase : Dict = logging.get_verbosity() self.assertEqual( _lowerCAmelCase , _lowerCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _lowercase : Any = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __a ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowercase : Tuple = logging.logging.getLogger() with CaptureLogger(_lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __a ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowercase : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase : List[str] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCAmelCase ) as cl: logger.warning_advice(_lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def __magic_name__ ( ) -> List[str]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
677
0
import re def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: if len(re.findall('[ATCG]' , SCREAMING_SNAKE_CASE ) ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = "pt" elif is_tf_available(): UpperCamelCase = "tf" else: UpperCamelCase = "jax" class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = PerceiverTokenizer _UpperCamelCase : str = False def __a ( self ): super().setUp() _lowercase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __a ( self , **_lowerCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=2_0 , _lowerCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowercase : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): try: _lowercase : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_lowerCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : List[Any] = list(filter(lambda _lowerCAmelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = list(filter(lambda _lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_lowerCAmelCase ) , _lowerCAmelCase ) ) if max_length is not None and len(_lowerCAmelCase ) > max_length: _lowercase : Any = toks[:max_length] if min_length is not None and len(_lowerCAmelCase ) < min_length and len(_lowerCAmelCase ) > 0: while len(_lowerCAmelCase ) < min_length: _lowercase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) if " " not in output_txt and len(_lowerCAmelCase ) > 1: _lowercase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_lowerCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_lowerCAmelCase ) ) if with_prefix_space: _lowercase : List[Any] = ' ' + output_txt _lowercase : Dict = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) return output_txt, output_ids def __a ( self ): _lowercase : Dict = self.perceiver_tokenizer _lowercase : Optional[Any] = 'Unicode €.' _lowercase : str = tokenizer(_lowerCAmelCase ) _lowercase : int = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : List[Any] = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]Unicode €.[SEP]' ) _lowercase : Union[str, Any] = tokenizer('e è é ê ë' ) _lowercase : List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _lowerCAmelCase ) # decoding _lowercase : int = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __a ( self ): _lowercase : List[str] = self.perceiver_tokenizer _lowercase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _lowercase : List[Any] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) if FRAMEWORK != "jax": _lowercase : int = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __a ( self ): _lowercase : List[Any] = self.perceiver_tokenizer _lowercase : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : List[str] = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _lowerCAmelCase ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertNotIn('decoder_input_ids' , _lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.perceiver_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : Optional[int] = tokenizer( text_target=_lowerCAmelCase , max_length=3_2 , padding='max_length' , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __a ( self ): # safety check on max_len default value so we are sure the test works _lowercase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowercase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : Tuple = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Optional[Any] = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[str] = tempfile.mkdtemp() _lowercase : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Any = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Tuple = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) _lowercase : Tuple = tokenizer.__class__.from_pretrained(_lowerCAmelCase ) _lowercase : Tuple = after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowercase : List[Any] = tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : List[str] = json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(_lowerCAmelCase ) _lowercase : Any = [F"""<extra_id_{i}>""" for i in range(1_2_5 )] _lowercase : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_lowerCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[int] = tokenizer_class.from_pretrained( _lowerCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : int = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_lowerCAmelCase )] _lowercase : Tuple = tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __a ( self ): _lowercase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _lowercase : List[str] = self.get_tokenizers(fast=_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowercase : Optional[Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] _lowercase : Optional[Any] = tokenizer.convert_tokens_to_string(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
677
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = BertTokenizer _UpperCamelCase : str = BertTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = filter_non_english def __a ( self ): super().setUp() _lowercase : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = 'UNwant\u00E9d,running' _lowercase : str = 'unwanted, running' return input_text, output_text def __a ( self ): _lowercase : Dict = self.tokenizer_class(self.vocab_file ) _lowercase : Any = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __a ( self ): if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = 'UNwant\u00E9d,running' _lowercase : Optional[Any] = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : str = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Any = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : str = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = self.get_rust_tokenizer() _lowercase : List[Any] = tokenizer.encode(_lowerCAmelCase ) _lowercase : Optional[int] = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # With lower casing _lowercase : Union[str, Any] = self.get_tokenizer(do_lower_case=_lowerCAmelCase ) _lowercase : List[Any] = self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase ) _lowercase : str = 'UNwant\u00E9d,running' _lowercase : str = tokenizer.tokenize(_lowerCAmelCase ) _lowercase : int = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : int = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = self.get_rust_tokenizer() _lowercase : int = tokenizer.encode(_lowerCAmelCase ) _lowercase : Dict = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __a ( self ): _lowercase : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Optional[int] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Dict = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self ): _lowercase : Any = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : Optional[int] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __a ( self ): _lowercase : Union[str, Any] = BasicTokenizer() _lowercase : Optional[int] = 'a\n\'ll !!to?\'d of, can\'t.' _lowercase : str = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self ): _lowercase : int = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowercase : int = {} for i, token in enumerate(_lowerCAmelCase ): _lowercase : str = i _lowercase : int = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __a ( self ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __a ( self ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __a ( self ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __a ( self ): _lowercase : Tuple = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def __a ( self ): _lowercase : List[str] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _lowercase : Any = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase ) _lowercase : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Dict = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowercase : Optional[int] = tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) _lowercase : Optional[Any] = tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , 'do_lower_case' ) else False _lowercase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __a ( self ): _lowercase : int = ['的', '人', '有'] _lowercase : List[str] = ''.join(_lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : List[str] = True _lowercase : str = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Any = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Tuple = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) _lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : int = False _lowercase : int = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowercase : int = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : Dict = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowercase : int = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) _lowercase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". _lowercase : Dict = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase ) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=3_0 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=0.6 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : Tuple = batch_size _lowercase : Optional[int] = image_size _lowercase : Any = patch_size _lowercase : Optional[int] = num_channels _lowercase : Tuple = is_training _lowercase : Optional[int] = use_labels _lowercase : Optional[int] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : List[str] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Any = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Optional[Any] = mask_ratio _lowercase : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowercase : List[Any] = (image_size // patch_size) ** 2 _lowercase : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __a ( self ): _lowercase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = ViTMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Dict = model(_lowerCAmelCase ) _lowercase : List[Any] = (self.image_size // self.patch_size) ** 2 _lowercase : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowercase : List[Any] = 1 _lowercase : List[str] = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : Dict = model(_lowerCAmelCase ) _lowercase : Dict = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase : str = config_and_inputs _lowercase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCamelCase : Tuple = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : List[str] = ViTMAEModelTester(self ) _lowercase : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __a ( self ): pass def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) _lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : str = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) _lowercase : List[str] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowercase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowercase : Tuple = torch.from_numpy(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowercase : List[str] = pt_noise super().check_pt_tf_models(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowercase : Union[str, Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Optional[int] = outputs[0].cpu().numpy() _lowercase : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowercase : Optional[int] = model_class.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) # Make sure we don't have nans _lowercase : Any = after_outputs[0].cpu().numpy() _lowercase : str = 0 _lowercase : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __a ( self ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ): pass @slow def __a ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = ViTMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Optional[int]: _lowercase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __a ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _lowercase : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(_lowerCAmelCase ) _lowercase : str = self.default_image_processor _lowercase : Optional[int] = prepare_img() _lowercase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowercase : List[str] = ViTMAEConfig() _lowercase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowercase : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowercase : Optional[Any] = model(**_lowerCAmelCase , noise=torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) ) # verify the logits _lowercase : Any = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : str = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCAmelCase ) , atol=1E-4 ) )
721
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
0
from __future__ import annotations import os from collections.abc import Mapping a_ : Optional[int] = tuple[int, int] class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A ) -> None: '''simple docstring''' __magic_name__ = vertices __magic_name__ = { (min(A ), max(A )): weight for edge, weight in edges.items() } def __A ( self , A , A ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __magic_name__ = weight def __A ( self ) -> Graph: '''simple docstring''' __magic_name__ = Graph({min(self.vertices )} , {} ) __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 while len(subgraph.vertices ) < len(self.vertices ): __magic_name__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __magic_name__ = edge __magic_name__ = weight subgraph.add_edge(A , A ) return subgraph def _SCREAMING_SNAKE_CASE ( snake_case_ : str = "p107_network.txt" ): __magic_name__ = os.path.abspath(os.path.dirname(snake_case_ ) ) __magic_name__ = os.path.join(snake_case_ , snake_case_ ) __magic_name__ = {} __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 with open(snake_case_ ) as f: __magic_name__ = f.read().strip().split('''\n''' ) __magic_name__ = [line.split(''',''' ) for line in data] for edgea in range(1 , len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": __magic_name__ = int(adjaceny_matrix[edgea][edgea] ) __magic_name__ = Graph(set(range(len(snake_case_ ) ) ) , snake_case_ ) __magic_name__ = graph.prims_algorithm() __magic_name__ = sum(graph.edges.values() ) __magic_name__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
678
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _SCREAMING_SNAKE_CASE ( *snake_case_ : List[str] ): with open(snake_case_ , '''r''' ) as fh: fcntl.flock(snake_case_ , fcntl.LOCK_EX ) try: print(*snake_case_ ) finally: fcntl.flock(snake_case_ , fcntl.LOCK_UN ) a_ : int = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) a_ : List[str] = torch.device('cuda', local_rank) a_ : Union[str, Any] = socket.gethostname() a_ : Optional[Any] = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a_ : Union[str, Any] = dist.get_rank() a_ : List[str] = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
678
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
1
import datasets a_ : List[str] = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' a_ : List[str] = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' a_ : Tuple = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Dict ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __A ( self , A , A ) -> Optional[int]: '''simple docstring''' return {"accuracy": simple_accuracy(A , A )}
678
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __magic_name__ = 128 elif "12-12" in model_name: __magic_name__ = 12 __magic_name__ = 12 elif "14-14" in model_name: __magic_name__ = 14 __magic_name__ = 14 elif "16-16" in model_name: __magic_name__ = 16 __magic_name__ = 16 else: raise ValueError('''Model not supported''' ) __magic_name__ = '''huggingface/label-files''' if "speech-commands" in model_name: __magic_name__ = 35 __magic_name__ = '''speech-commands-v2-id2label.json''' else: __magic_name__ = 527 __magic_name__ = '''audioset-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(snake_case_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): if "module.v" in name: __magic_name__ = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: __magic_name__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: __magic_name__ = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: __magic_name__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __magic_name__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: __magic_name__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __magic_name__ = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: __magic_name__ = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: __magic_name__ = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[int] ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[3] ) __magic_name__ = config.hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[dim : dim * 2, :] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): __magic_name__ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=False ): __magic_name__ = get_audio_spectrogram_transformer_config(snake_case_ ) __magic_name__ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __magic_name__ = model_name_to_url[model_name] __magic_name__ = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' ) # remove some keys remove_keys(snake_case_ ) # rename some keys __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) # load 🤗 model __magic_name__ = ASTForAudioClassification(snake_case_ ) model.eval() model.load_state_dict(snake_case_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __magic_name__ = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 __magic_name__ = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 __magic_name__ = 1024 if '''speech-commands''' not in model_name else 128 __magic_name__ = ASTFeatureExtractor(mean=snake_case_ , std=snake_case_ , max_length=snake_case_ ) if "speech-commands" in model_name: __magic_name__ = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) __magic_name__ = dataset[0]['''audio''']['''array'''] else: __magic_name__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) __magic_name__ , __magic_name__ = torchaudio.load(snake_case_ ) __magic_name__ = waveform.squeeze().numpy() __magic_name__ = feature_extractor(snake_case_ , sampling_rate=1_6000 , return_tensors='''pt''' ) # forward pass __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __magic_name__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __magic_name__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __magic_name__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __magic_name__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __magic_name__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __magic_name__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __magic_name__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __magic_name__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(snake_case_ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : List[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = int(number**0.5 ) return number == sq * sq def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int ): __magic_name__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __magic_name__ = x_den * y_den * z_den __magic_name__ = gcd(snake_case_ , snake_case_ ) top //= hcf bottom //= hcf return top, bottom def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 35 ): __magic_name__ = set() __magic_name__ = 42 __magic_name__ = Fraction(0 ) __magic_name__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __magic_name__ = x_num * y_den + x_den * y_num __magic_name__ = x_den * y_den __magic_name__ = gcd(snake_case_ , snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ = add_three( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) unique_s.add(snake_case_ ) # n=2 __magic_name__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __magic_name__ = x_den * x_den * y_den * y_den if is_sq(snake_case_ ) and is_sq(snake_case_ ): __magic_name__ = int(sqrt(snake_case_ ) ) __magic_name__ = int(sqrt(snake_case_ ) ) __magic_name__ = gcd(snake_case_ , snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ = add_three( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) unique_s.add(snake_case_ ) # n=-1 __magic_name__ = x_num * y_num __magic_name__ = x_den * y_num + x_num * y_den __magic_name__ = gcd(snake_case_ , snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ = add_three( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) unique_s.add(snake_case_ ) # n=2 __magic_name__ = x_num * x_num * y_num * y_num __magic_name__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(snake_case_ ) and is_sq(snake_case_ ): __magic_name__ = int(sqrt(snake_case_ ) ) __magic_name__ = int(sqrt(snake_case_ ) ) __magic_name__ = gcd(snake_case_ , snake_case_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __magic_name__ = add_three( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) unique_s.add(snake_case_ ) for num, den in unique_s: total += Fraction(snake_case_ , snake_case_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
678
import re def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(snake_case_ , snake_case_ ) ) if __name__ == "__main__": a_ : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
678
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=None , ) -> Tuple: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def __A ( self ) -> List[Any]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __A ( self , A , A , A ) -> int: '''simple docstring''' __magic_name__ = ViTMSNModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A ) -> List[Any]: '''simple docstring''' __magic_name__ = self.type_sequence_label_size __magic_name__ = ViTMSNForImageClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , labels=A ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = ViTMSNForImageClassification(A ) model.to(A ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = ViTMSNModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> Dict: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = ViTMSNModel.from_pretrained(A ) self.assertIsNotNone(A ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def __A ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(2 ) __magic_name__ = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(A ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): __magic_name__ = model(**A ) # verify the logits __magic_name__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) __magic_name__ = torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
678
import os import sys import unittest a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(A , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A ) self.assertIn('''torch_and_transformers''' , A ) self.assertIn('''flax_and_transformers''' , A ) self.assertIn('''torch_and_transformers_and_onnx''' , A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A , '''\nCONSTANT = None\n''' ) __magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __magic_name__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A )
678
1
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() __magic_name__ = nn.Linear(3 , 4 ) __magic_name__ = nn.BatchNormad(4 ) __magic_name__ = nn.Linear(4 , 5 ) def __A ( self , A ) -> Tuple: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(A ) ) ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(A , model.state_dict() ) __magic_name__ = os.path.join(A , '''index.json''' ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __magic_name__ = os.path.join(A , F'{key}.dat' ) self.assertTrue(os.path.isfile(A ) ) # TODO: add tests on the fact weights are properly loaded def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __magic_name__ = torch.randn(2 , 3 , dtype=A ) with TemporaryDirectory() as tmp_dir: __magic_name__ = offload_weight(A , '''weight''' , A , {} ) __magic_name__ = os.path.join(A , '''weight.dat''' ) self.assertTrue(os.path.isfile(A ) ) self.assertDictEqual(A , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(A ).split('''.''' )[1]}} ) __magic_name__ = load_offloaded_weight(A , index['''weight'''] ) self.assertTrue(torch.equal(A , A ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = ModelForTest() __magic_name__ = model.state_dict() __magic_name__ = {k: v for k, v in state_dict.items() if '''linear2''' not in k} __magic_name__ = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A , A ) __magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A , weight_map[key] ) ) __magic_name__ = {k: v for k, v in state_dict.items() if '''weight''' in k} __magic_name__ = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A , A ) __magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(A , A ) # Duplicates are removed __magic_name__ = OffloadedWeightsLoader(state_dict=A , save_folder=A ) # Every key is there with the right value self.assertEqual(sorted(A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A , weight_map[key] ) ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} __magic_name__ = extract_submodules_state_dict(A , ['''a.1''', '''a.2'''] ) self.assertDictEqual(A , {'''a.1''': 0, '''a.2''': 2} ) __magic_name__ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} __magic_name__ = extract_submodules_state_dict(A , ['''a.1''', '''a.2'''] ) self.assertDictEqual(A , {'''a.1.a''': 0, '''a.2.a''': 2} )
678
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = tempfile.mkdtemp() __magic_name__ = BlipImageProcessor() __magic_name__ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) __magic_name__ = BlipProcessor(A , A ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **A ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def __A ( self , **A ) -> Tuple: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def __A ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=A , padding_value=1.0 ) __magic_name__ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(A , return_tensors='''np''' ) __magic_name__ = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = processor(text=A ) __magic_name__ = tokenizer(A , return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(A ) __magic_name__ = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = BlipProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A = None ) -> None: '''simple docstring''' if components is None: __magic_name__ = [] __magic_name__ = list(A ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(A , self.__components ) ) + ")" def __add__( self , A ) -> Vector: '''simple docstring''' __magic_name__ = len(self ) if size == len(A ): __magic_name__ = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception('''must have the same size''' ) def __sub__( self , A ) -> Vector: '''simple docstring''' __magic_name__ = len(self ) if size == len(A ): __magic_name__ = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , A ) -> float: '''simple docstring''' ... def __mul__( self , A ) -> float | Vector: '''simple docstring''' if isinstance(A , (float, int) ): __magic_name__ = [c * other for c in self.__components] return Vector(A ) elif isinstance(A , A ) and len(self ) == len(A ): __magic_name__ = len(self ) __magic_name__ = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception('''invalid operand!''' ) def __A ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def __A ( self , A ) -> float: '''simple docstring''' if isinstance(A , A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __A ( self , A , A ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ = value def __A ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) __magic_name__ = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def __A ( self , A , A = False ) -> float: '''simple docstring''' __magic_name__ = self * other __magic_name__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): assert isinstance(snake_case_ , snake_case_ ) return Vector([0] * dimension ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): assert isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , snake_case_ )) __magic_name__ = [0] * dimension __magic_name__ = 1 return Vector(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : Vector , snake_case_ : Vector ): assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , (int, float) )) ) return x * scalar + y def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): random.seed(snake_case_ ) __magic_name__ = [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] return Vector(snake_case_ ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A , A ) -> None: '''simple docstring''' __magic_name__ = matrix __magic_name__ = w __magic_name__ = h def __str__( self ) -> str: '''simple docstring''' __magic_name__ = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __magic_name__ = [] for i in range(self.__height ): __magic_name__ = [ self.__matrix[i][j] + other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , A ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __magic_name__ = [] for i in range(self.__height ): __magic_name__ = [ self.__matrix[i][j] - other.component(A , A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , A ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , A ) -> Vector: '''simple docstring''' ... def __mul__( self , A ) -> Vector | Matrix: '''simple docstring''' if isinstance(A , A ): # matrix-vector if len(A ) == self.__width: __magic_name__ = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A , sum(A ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(A , (int, float) ): # matrix-scalar __magic_name__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A , self.__width , self.__height ) return None def __A ( self ) -> int: '''simple docstring''' return self.__height def __A ( self ) -> int: '''simple docstring''' return self.__width def __A ( self , A , A ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __A ( self , A , A , A ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ = value else: raise Exception('''change_component: indices out of bounds''' ) def __A ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) __magic_name__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): __magic_name__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(A , self.__width - 1 , self.__height - 1 ).determinant() def __A ( self , A , A ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A , A ) else: raise Exception('''Indices out of bounds''' ) def __A ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ = [ self.__matrix[0][y] * self.cofactor(0 , A ) for y in range(self.__width ) ] return sum(A ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = [[0] * n for _ in range(snake_case_ )] return Matrix(snake_case_ , snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int ): random.seed(snake_case_ ) __magic_name__ = [ [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] for _ in range(snake_case_ ) ] return Matrix(snake_case_ , snake_case_ , snake_case_ )
678
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE_ : """simple docstring""" @staticmethod def __A ( *A , **A ) -> List[Any]: '''simple docstring''' pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_classifier(A , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A ) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) __magic_name__ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], ] , ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_classifier(A , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(A ) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) __magic_name__ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], [ {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, {'''score''': 0.3_33, '''label''': ANY(A )}, ], ] , ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_classifier(A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) __magic_name__ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = image_classifier(A , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(A ) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) __magic_name__ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
678
def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] __magic_name__ = 1 while len(snake_case_ ) < 1E6: constant.append(str(snake_case_ ) ) i += 1 __magic_name__ = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
678
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[Any] = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """owlvit_text_model""" def __init__( self , A=4_94_08 , A=5_12 , A=20_48 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , A=0 , A=4_94_06 , A=4_94_07 , **A , ) -> str: '''simple docstring''' super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = intermediate_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = max_position_embeddings __magic_name__ = hidden_act __magic_name__ = layer_norm_eps __magic_name__ = attention_dropout __magic_name__ = initializer_range __magic_name__ = initializer_factor @classmethod def __A ( cls , A , **A ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A ) __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __magic_name__ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """owlvit_vision_model""" def __init__( self , A=7_68 , A=30_72 , A=12 , A=12 , A=3 , A=7_68 , A=32 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> int: '''simple docstring''' super().__init__(**A ) __magic_name__ = hidden_size __magic_name__ = intermediate_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = hidden_act __magic_name__ = layer_norm_eps __magic_name__ = attention_dropout __magic_name__ = initializer_range __magic_name__ = initializer_factor @classmethod def __A ( cls , A , **A ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A ) __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __magic_name__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """owlvit""" _a = True def __init__( self , A=None , A=None , A=5_12 , A=2.65_92 , A=True , **A , ) -> str: '''simple docstring''' super().__init__(**A ) if text_config is None: __magic_name__ = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __magic_name__ = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __magic_name__ = OwlViTTextConfig(**A ) __magic_name__ = OwlViTVisionConfig(**A ) __magic_name__ = projection_dim __magic_name__ = logit_scale_init_value __magic_name__ = return_dict __magic_name__ = 1.0 @classmethod def __A ( cls , A , **A ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A ) __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def __A ( cls , A , A , **A ) -> List[str]: '''simple docstring''' __magic_name__ = {} __magic_name__ = text_config __magic_name__ = vision_config return cls.from_dict(A , **A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = copy.deepcopy(self.__dict__ ) __magic_name__ = self.text_config.to_dict() __magic_name__ = self.vision_config.to_dict() __magic_name__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-4 def __A ( self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: '''simple docstring''' __magic_name__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) __magic_name__ = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def __A ( self ) -> int: '''simple docstring''' return 14
678
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : str = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Optional[Any] = _get_torch_home() except ImportError: a_ : List[Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ : Any = os.path.join(torch_cache_home, 'transformers') a_ : Any = 'https://cdn.huggingface.co' a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) a_ : Any = os.path.join(PATH, 'config.yaml') a_ : Any = os.path.join(PATH, 'attributes.txt') a_ : Any = os.path.join(PATH, 'objects.txt') a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ : int = 'pytorch_model.bin' a_ : Union[str, Any] = 'config.yaml' def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ): __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __magic_name__ = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __magic_name__ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __magic_name__ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __magic_name__ = v return r class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = {} def __init__( self , A , A = "root" , A=0 ) -> List[str]: '''simple docstring''' __magic_name__ = name __magic_name__ = level __magic_name__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() __magic_name__ = copy.deepcopy(A ) __magic_name__ = copy.deepcopy(A ) if isinstance(A , A ): __magic_name__ = Config(A , name=A , level=level + 1 ) __magic_name__ = v setattr(self , A , A ) __magic_name__ = d def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = val __magic_name__ = val __magic_name__ = key.split('''.''' ) __magic_name__ = len(A ) - 1 __magic_name__ = self._pointer if len(A ) > 1: for i, l in enumerate(A ): if hasattr(self , A ) and isinstance(getattr(self , A ) , A ): setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A ) if l == last_level: __magic_name__ = val else: __magic_name__ = pointer[l] def __A ( self ) -> List[Any]: '''simple docstring''' return self._pointer def __A ( self , A , A ) -> Any: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(A , A ) def __A ( self , A , A ) -> List[Any]: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(A , A ) @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' with open(A ) as stream: __magic_name__ = load(A , Loader=A ) return data def __str__( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ''' ''' if self._name != "root": __magic_name__ = F'{t * (self._level-1)}{self._name}:\n' else: __magic_name__ = '''''' __magic_name__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A , A ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n' __magic_name__ = level return r[:-1] @classmethod def __A ( cls , A , **A ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) return cls(A ) @classmethod def __A ( cls , A , **A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = kwargs.pop('''cache_dir''' , A ) __magic_name__ = kwargs.pop('''force_download''' , A ) __magic_name__ = kwargs.pop('''resume_download''' , A ) __magic_name__ = kwargs.pop('''proxies''' , A ) __magic_name__ = kwargs.pop('''local_files_only''' , A ) if os.path.isdir(A ): __magic_name__ = os.path.join(A , A ) elif os.path.isfile(A ) or is_remote_url(A ): __magic_name__ = pretrained_model_name_or_path else: __magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A ) try: # Load from URL or cache if already cached __magic_name__ = cached_path( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __magic_name__ = Config.load_yaml(A ) except EnvironmentError: __magic_name__ = '''Can\'t load config for''' raise EnvironmentError(A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(A ), kwargs def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device ) __magic_name__ = in_tensor.numpy() __magic_name__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ): __magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __magic_name__ = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ): __magic_name__ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __magic_name__ = {'''user-agent''': ua} if resume_size > 0: __magic_name__ = '''bytes=%d-''' % (resume_size,) __magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __magic_name__ = response.headers.get('''Content-Length''' ) __magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None __magic_name__ = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __magic_name__ = None if not local_files_only: try: __magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __magic_name__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __magic_name__ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __magic_name__ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __magic_name__ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __magic_name__ = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __magic_name__ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __magic_name__ = _resumable_file_manager if os.path.exists(snake_case_ ): __magic_name__ = os.stat(snake_case_ ).st_size else: __magic_name__ = 0 else: __magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __magic_name__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __magic_name__ = {'''url''': url, '''etag''': etag} __magic_name__ = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ): __magic_name__ = url.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) __magic_name__ = url_hash.hexdigest() if etag: __magic_name__ = etag.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __magic_name__ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __magic_name__ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __magic_name__ , __magic_name__ = os.path.split(snake_case_ ) __magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __magic_name__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __magic_name__ = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __magic_name__ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __magic_name__ = eval(f.read() ) else: __magic_name__ = requests.get(snake_case_ ) try: __magic_name__ = requests.json() except Exception: __magic_name__ = req.content.decode() assert data is not None, "could not connect" try: __magic_name__ = eval(snake_case_ ) except Exception: __magic_name__ = data.split('''\n''' ) req.close() return data def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = requests.get(snake_case_ ) __magic_name__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __magic_name__ = pkl.load(snake_case_ ) __magic_name__ = weights.pop('''model''' ) __magic_name__ = {} for k, v in model.items(): __magic_name__ = torch.from_numpy(snake_case_ ) if "running_var" in k: __magic_name__ = torch.tensor([0] ) __magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' ) __magic_name__ = zero return new def _SCREAMING_SNAKE_CASE ( ): print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __magic_name__ = cva.imread(snake_case_ ) else: __magic_name__ = get_image_from_url(snake_case_ ) assert img is not None, f'could not connect to: {im}' __magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __magic_name__ = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
678
1
from manim import * class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' __magic_name__ = Rectangle(height=0.5 , width=0.5 ) __magic_name__ = Rectangle(height=0.25 , width=0.25 ) __magic_name__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __magic_name__ = [mem.copy() for i in range(6 )] __magic_name__ = [mem.copy() for i in range(6 )] __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = VGroup(A , A ).arrange(A , buff=0 ) __magic_name__ = Text('''CPU''' , font_size=24 ) __magic_name__ = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) __magic_name__ = [mem.copy() for i in range(4 )] __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = Text('''GPU''' , font_size=24 ) __magic_name__ = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) gpu.move_to([-1, -1, 0] ) self.add(A ) __magic_name__ = [mem.copy() for i in range(6 )] __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = Text('''Model''' , font_size=24 ) __magic_name__ = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.add(A ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] for i, rect in enumerate(A ): rect.set_stroke(A ) __magic_name__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=A , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=A , buff=0.0 ) self.add(A ) model_cpu_arr.append(A ) self.add(*A , *A , *A ) __magic_name__ = [mem.copy() for i in range(6 )] __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = Text('''Loaded Checkpoint''' , font_size=24 ) __magic_name__ = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) checkpoint.move_to([3, 0.5, 0] ) self.add(A ) __magic_name__ = [] __magic_name__ = [] for i, rect in enumerate(A ): __magic_name__ = fill.copy().set_fill(A , opacity=0.7 ) target.move_to(A ) ckpt_arr.append(A ) __magic_name__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(A ) self.add(*A , *A ) __magic_name__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __magic_name__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A , A ) __magic_name__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A ) __magic_name__ = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) __magic_name__ = [meta_mem.copy() for i in range(6 )] __magic_name__ = [meta_mem.copy() for i in range(6 )] __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = VGroup(*A ).arrange(A , buff=0 ) __magic_name__ = VGroup(A , A ).arrange(A , buff=0 ) __magic_name__ = Text('''Disk''' , font_size=24 ) __magic_name__ = Group(A , A ).arrange(A , buff=0.5 , aligned_edge=A ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(A , run_time=3 ) , Write(A , run_time=1 ) , Create(A , run_time=1 ) ) __magic_name__ = [] for i, rect in enumerate(A ): __magic_name__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(A , run_time=1.5 ) ) self.play(*A ) self.play(FadeOut(A ) ) __magic_name__ = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A , run_time=3 ) ) self.play( FadeOut(A , A , *A , *A ) , ) self.wait()
678
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Optional[int] = 16 a_ : int = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ): model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = num_epochs if args.partial_train_epoch is not None: __magic_name__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1] __magic_name__ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __magic_name__ = int(snake_case_ ) + 1 __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __magic_name__ = f'epoch_{epoch}' __magic_name__ = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __magic_name__ = accuracy __magic_name__ = lr_scheduler.get_lr()[0] __magic_name__ = optimizer.param_groups[0]['''lr'''] __magic_name__ = epoch __magic_name__ = overall_step accelerator.print(f'epoch {epoch}:' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ): __magic_name__ , __magic_name__ = 1, 1 __magic_name__ = 2 while True: __magic_name__ = 0 __magic_name__ = fa + fa __magic_name__ , __magic_name__ = fa, f index += 1 for _ in str(snake_case_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
678
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]: '''simple docstring''' __magic_name__ = compute_mauve( p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , ) return out
678
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a_ : List[str] = logging.get_logger(__name__) a_ : Optional[int] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) a_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __magic_name__ = model_type_to_module_name(snake_case_ ) __magic_name__ = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __magic_name__ = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : List[Any] , ): __magic_name__ = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def __A ( cls , A , **A ) -> Optional[int]: '''simple docstring''' __magic_name__ = kwargs.pop('''config''' , A ) __magic_name__ = kwargs.pop('''trust_remote_code''' , A ) __magic_name__ = True __magic_name__ , __magic_name__ = ImageProcessingMixin.get_image_processor_dict(A , **A ) __magic_name__ = config_dict.get('''image_processor_type''' , A ) __magic_name__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): __magic_name__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __magic_name__ = config_dict.pop('''feature_extractor_type''' , A ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __magic_name__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __magic_name__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __magic_name__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A , A ): __magic_name__ = AutoConfig.from_pretrained(A , **A ) # It could be in `config.image_processor_type`` __magic_name__ = getattr(A , '''image_processor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __magic_name__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __magic_name__ = image_processor_class_from_name(A ) __magic_name__ = image_processor_auto_map is not None __magic_name__ = image_processor_class is not None or type(A ) in IMAGE_PROCESSOR_MAPPING __magic_name__ = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: __magic_name__ = get_class_from_dynamic_module( A , A , **A ) __magic_name__ = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A , **A ) elif image_processor_class is not None: return image_processor_class.from_dict(A , **A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A ) in IMAGE_PROCESSOR_MAPPING: __magic_name__ = IMAGE_PROCESSOR_MAPPING[type(A )] return image_processor_class.from_dict(A , **A ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def __A ( A , A ) -> Optional[Any]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(A , A )
678
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
1
a_ : List[str] = 8.314_462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
678
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' a_ : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __magic_name__ = {} import re __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_conv_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_proj_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __magic_name__ = original_key __magic_name__ = replace_key(snake_case_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __magic_name__ = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __magic_name__ = original_key __magic_name__ = original_key __magic_name__ = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) __magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ = JukeboxConfig.from_pretrained(snake_case_ ) __magic_name__ = JukeboxModel(snake_case_ ) __magic_name__ = [] __magic_name__ = {} for i, dict_name in enumerate(snake_case_ ): __magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] __magic_name__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ = old_dic[k] else: __magic_name__ = old_dic[k] __magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}' __magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __magic_name__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) a_ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
678
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(A , '''depth_multiplier''' ) ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=3 , A=32 , A=0.25 , A=8 , A=8 , A=6 , A=32 , A=True , A=True , A=True , A="relu6" , A=12_80 , A=0.1 , A=0.02 , A=True , A=True , A=10 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = depth_multiplier __magic_name__ = depth_divisible_by __magic_name__ = min_depth __magic_name__ = expand_ratio __magic_name__ = tf_padding __magic_name__ = output_stride __magic_name__ = first_layer_is_expansion __magic_name__ = finegrained_output __magic_name__ = hidden_act __magic_name__ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __magic_name__ = classifier_dropout_prob __magic_name__ = use_labels __magic_name__ = is_training __magic_name__ = num_labels __magic_name__ = initializer_range __magic_name__ = scope def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self ) -> int: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __A ( self , A , A , A , A ) -> List[Any]: '''simple docstring''' __magic_name__ = MobileNetVaModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __A ( self , A , A , A , A ) -> Dict: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A ) -> List[Any]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MobileNetVaForSemanticSegmentation(A ) model.to(A ) model.eval() __magic_name__ = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __magic_name__ = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _a = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = MobileNetVaModelTester(self ) __magic_name__ = MobileNetVaConfigTester(self , config_class=A , has_text_modality=A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __A ( self ) -> int: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(A , A , A ): __magic_name__ = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(A , A ) ) __magic_name__ = outputs.hidden_states __magic_name__ = 16 self.assertEqual(len(A ) , A ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True check_hidden_states_output(A , A , A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(A ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): __magic_name__ = model(**A ) # verify the logits __magic_name__ = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , A ) __magic_name__ = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __magic_name__ = model.to(A ) __magic_name__ = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): __magic_name__ = model(**A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , A ) __magic_name__ = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) )
678
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = 0 _a = False _a = 3.0 class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=A ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __magic_name__ = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __magic_name__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , A ) @require_multi_gpu def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A , env=os.environ.copy() ) if __name__ == "__main__": a_ : Dict = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a_ : Union[str, Any] = Accelerator(kwargs_handlers=[ddp_scaler]) a_ : Optional[Any] = torch.nn.Linear(100, 200) a_ : Tuple = accelerator.prepare(model) # Check the values changed in kwargs a_ : Any = '' a_ : Tuple = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
678
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): # Initialise PyTorch model __magic_name__ = LxmertConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ = LxmertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
678
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : List[Any] ): # Initialise PyTorch model __magic_name__ = BigBirdConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: __magic_name__ = BigBirdForQuestionAnswering(snake_case_ ) else: __magic_name__ = BigBirdForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case_ , snake_case_ , is_trivia_qa=snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) a_ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = 10 __magic_name__ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) __magic_name__ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(snake_case_ ) ), } , features=snake_case_ , ) return dataset @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[Any] ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=snake_case_ ) return filename # FILE_CONTENT + files a_ : Optional[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' __magic_name__ = FILE_CONTENT with open(snake_case_ , '''w''' ) as f: f.write(snake_case_ ) return filename @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): import bza __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' __magic_name__ = bytes(snake_case_ , '''utf-8''' ) with bza.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): import gzip __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) __magic_name__ = bytes(snake_case_ , '''utf-8''' ) with gzip.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): if datasets.config.LZ4_AVAILABLE: import lza.frame __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' __magic_name__ = bytes(snake_case_ , '''utf-8''' ) with lza.frame.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(snake_case_ , '''w''' ) as archive: archive.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str ): import tarfile __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(snake_case_ , '''w''' ) as f: f.add(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): import lzma __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' __magic_name__ = bytes(snake_case_ , '''utf-8''' ) with lzma.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Union[str, Any] ): import zipfile __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' __magic_name__ = bytes(snake_case_ , '''utf-8''' ) with zstd.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' __magic_name__ = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(snake_case_ , '''w''' ) as f: f.write(snake_case_ ) return filename a_ : Optional[int] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] a_ : Tuple = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] a_ : List[str] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } a_ : Optional[int] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] a_ : str = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): __magic_name__ = datasets.Dataset.from_dict(snake_case_ ) __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(snake_case_ ) ) as con: __magic_name__ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(snake_case_ , '''w''' , newline='''''' ) as f: __magic_name__ = csv.DictWriter(snake_case_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(snake_case_ , '''w''' , newline='''''' ) as f: __magic_name__ = csv.DictWriter(snake_case_ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str ): import bza __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(snake_case_ , '''rb''' ) as f: __magic_name__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : List[str] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(snake_case_ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : List[str] , snake_case_ : int ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) __magic_name__ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(snake_case_ , '''wb''' ) as f: __magic_name__ = pq.ParquetWriter(snake_case_ , schema=snake_case_ ) __magic_name__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(snake_case_ ) )] for k in DATA[0]} , schema=snake_case_ ) writer.write_table(snake_case_ ) writer.close() return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __magic_name__ = {'''data''': DATA} with open(snake_case_ , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __magic_name__ = {'''data''': DATA_DICT_OF_LISTS} with open(snake_case_ , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(snake_case_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(snake_case_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(snake_case_ , '''w''' ) as f: for item in DATA: f.write(json.dumps(snake_case_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(snake_case_ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(snake_case_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(snake_case_ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(snake_case_ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any] ): import gzip __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(snake_case_ , '''rb''' ) as orig_file: with gzip.open(snake_case_ , '''wb''' ) as zipped_file: zipped_file.writelines(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Dict ): import gzip __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(snake_case_ , '''rb''' ) as orig_file: with gzip.open(snake_case_ , '''wb''' ) as zipped_file: zipped_file.writelines(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Dict ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.join('''nested''' , os.path.basename(snake_case_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Any ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(snake_case_ , '''w''' ) as f: f.add(snake_case_ , arcname=os.path.basename(snake_case_ ) ) f.add(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(snake_case_ , '''w''' ) as f: f.add(snake_case_ , arcname=os.path.join('''nested''' , os.path.basename(snake_case_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): __magic_name__ = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(snake_case_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(snake_case_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = ['''0''', '''1''', '''2''', '''3'''] __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(snake_case_ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int , snake_case_ : Any ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) f.write(snake_case_ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case_ ) ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[int] ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(snake_case_ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) __magic_name__ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Dict ): __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(snake_case_ , '''w''' ) as f: f.write(snake_case_ , arcname=os.path.basename(snake_case_ ) ) f.write(snake_case_ , arcname=os.path.basename(snake_case_ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): __magic_name__ = len(snake_case_ ) print('''The following activities are selected:''' ) # The first activity is always selected __magic_name__ = 0 print(snake_case_ , end=''',''' ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end=''',''' ) __magic_name__ = j if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = [1, 3, 0, 5, 8, 5] a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
678
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = DPTConfig() if "large" in checkpoint_url: __magic_name__ = 1024 __magic_name__ = 4096 __magic_name__ = 24 __magic_name__ = 16 __magic_name__ = [5, 11, 17, 23] __magic_name__ = [256, 512, 1024, 1024] __magic_name__ = (1, 384, 384) if "ade" in checkpoint_url: __magic_name__ = True __magic_name__ = 150 __magic_name__ = '''huggingface/label-files''' __magic_name__ = '''ade20k-id2label.json''' __magic_name__ = json.load(open(cached_download(hf_hub_url(snake_case_ , snake_case_ , repo_type='''dataset''' ) ) , '''r''' ) ) __magic_name__ = {int(snake_case_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} __magic_name__ = [1, 150, 480, 480] return config, expected_shape def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __magic_name__ = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __magic_name__ = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __magic_name__ = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: __magic_name__ = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __magic_name__ = name.replace('''proj''' , '''projection''' ) if "blocks" in name: __magic_name__ = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __magic_name__ = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __magic_name__ = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __magic_name__ = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __magic_name__ = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __magic_name__ = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __magic_name__ = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __magic_name__ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __magic_name__ = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __magic_name__ = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __magic_name__ = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __magic_name__ = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __magic_name__ = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __magic_name__ = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __magic_name__ = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __magic_name__ = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __magic_name__ = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __magic_name__ = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __magic_name__ = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __magic_name__ = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __magic_name__ = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __magic_name__ = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __magic_name__ = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __magic_name__ = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __magic_name__ = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __magic_name__ = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __magic_name__ = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __magic_name__ = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __magic_name__ = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __magic_name__ = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Optional[int] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __magic_name__ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: config.hidden_size, :] __magic_name__ = in_proj_bias[: config.hidden_size] __magic_name__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Dict ): __magic_name__ , __magic_name__ = get_dpt_config(snake_case_ ) # load original state_dict from URL __magic_name__ = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(snake_case_ ) # rename keys for key in state_dict.copy().keys(): __magic_name__ = state_dict.pop(snake_case_ ) __magic_name__ = val # read in qkv matrices read_in_q_k_v(snake_case_ , snake_case_ ) # load HuggingFace model __magic_name__ = DPTForSemanticSegmentation(snake_case_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Check outputs on an image __magic_name__ = 480 if '''ade''' in checkpoint_url else 384 __magic_name__ = DPTImageProcessor(size=snake_case_ ) __magic_name__ = prepare_img() __magic_name__ = image_processor(snake_case_ , return_tensors='''pt''' ) # forward pass __magic_name__ = model(**snake_case_ ).logits if '''ade''' in checkpoint_url else model(**snake_case_ ).predicted_depth # Assert logits __magic_name__ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __magic_name__ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(snake_case_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , snake_case_ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , snake_case_ ) ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=snake_case_ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=snake_case_ , ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) a_ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
678
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[10, 20, 30, 40] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , ) -> Any: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = num_channels __magic_name__ = embeddings_size __magic_name__ = hidden_sizes __magic_name__ = depths __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_act __magic_name__ = num_labels __magic_name__ = scope __magic_name__ = len(A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ = self.get_config() return config, pixel_values, labels def __A ( self ) -> List[Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __A ( self , A , A , A ) -> Optional[Any]: '''simple docstring''' __magic_name__ = TFRegNetModel(config=A ) __magic_name__ = model(A , training=A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = TFRegNetForImageClassification(A ) __magic_name__ = model(A , labels=A , training=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _a = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) _a = False _a = False _a = False _a = False _a = False def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = TFRegNetModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , has_text_modality=A ) def __A ( self ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __A ( self ) -> int: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __A ( self ) -> Tuple: '''simple docstring''' pass def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(A , A , A ): __magic_name__ = model_class(A ) __magic_name__ = model(**self._prepare_for_class(A , A ) , training=A ) __magic_name__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ = layer_type __magic_name__ = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True check_hidden_states_output(A , A , A ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A , A , A , A={} ): __magic_name__ = model(A , return_dict=A , **A ) __magic_name__ = model(A , return_dict=A , **A ).to_tuple() def recursive_check(A , A ): if isinstance(A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A , A ): recursive_check(A , A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(A , A ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(A , A ) for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = self._prepare_for_class(A , A ) check_equivalence(A , A , A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A ) __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = self._prepare_for_class(A , A ) check_equivalence(A , A , A , {'''output_hidden_states''': True} ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A , {'''output_hidden_states''': True} ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = TFRegNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Union[str, Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''tf''' ) # forward pass __magic_name__ = model(**A , training=A ) # verify the logits __magic_name__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) __magic_name__ = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , A , atol=1E-4 )
678
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
1
import collections import os import re from pathlib import Path a_ : Optional[int] = 'src/transformers' # Matches is_xxx_available() a_ : List[Any] = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a_ : Optional[Any] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ : List[Any] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a_ : Union[str, Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a_ : Union[str, Any] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ : Union[str, Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a_ : str = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a_ : List[Any] = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a_ : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a_ : List[str] = re.compile(r'^\s*try:') # Catches a line with else: a_ : str = re.compile(r'^\s*else:') def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): if _re_test_backend.search(snake_case_ ) is None: return None __magic_name__ = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): with open(snake_case_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __magic_name__ = f.readlines() __magic_name__ = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __magic_name__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): __magic_name__ = _re_one_line_import_struct.search(snake_case_ ).groups()[0] __magic_name__ = re.findall(r'''\[([^\]]+)\]''' , snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __magic_name__ = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: __magic_name__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __magic_name__ = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: __magic_name__ = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(''', ''' ) __magic_name__ = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: __magic_name__ = _re_between_brackets.search(snake_case_ ).groups()[0].split(''', ''' ) __magic_name__ = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 __magic_name__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 __magic_name__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : str ): def find_duplicates(snake_case_ : Union[str, Any] ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ = [] for key in import_dict_objects.keys(): __magic_name__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) __magic_name__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: __magic_name__ = os.path.join(snake_case_ , '''__init__.py''' ) __magic_name__ = parse_init(snake_case_ ) if objects is not None: __magic_name__ = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: __magic_name__ = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError('''\n\n'''.join(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob('''*.py''' ) ) ) == 0: continue __magic_name__ = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) __magic_name__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue __magic_name__ = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) __magic_name__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(snake_case_ ) return submodules a_ : List[str] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def _SCREAMING_SNAKE_CASE ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import __magic_name__ = direct_transformers_import(snake_case_ ) __magic_name__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case_ , '''__init__.py''' ) , '''r''' ) as f: __magic_name__ = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , snake_case_ ) ) ) __magic_name__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case_ ) > 0: __magic_name__ = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
678
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
1
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
678
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 10 , snake_case_ : int = 22 ): __magic_name__ = range(1 , snake_case_ ) __magic_name__ = range(1 , snake_case_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = (DPMSolverSDEScheduler,) _a = 10 def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' __magic_name__ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**A ) return config def __A ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def __A ( self ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1E-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1E-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1E-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1E-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1E-3 def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1E-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A , use_karras_sigmas=A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2
678
import re def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(snake_case_ , snake_case_ ) ) if __name__ == "__main__": a_ : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
678
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case_ , default=0 , help='''cuda_id.''' , ) __magic_name__ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int ): if not len(snake_case_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) __magic_name__ , __magic_name__ = imgs[0].size __magic_name__ = Image.new('''RGB''' , size=(cols * w, rows * h) ) __magic_name__ , __magic_name__ = grid.size for i, img in enumerate(snake_case_ ): grid.paste(snake_case_ , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str="robotic cat with wings" , snake_case_ : Optional[Any]=7.5 , snake_case_ : Dict=50 , snake_case_ : Optional[Any]=1 , snake_case_ : Optional[Any]=42 , ): __magic_name__ = torch.Generator(pipeline.device ).manual_seed(snake_case_ ) __magic_name__ = pipeline( snake_case_ , guidance_scale=snake_case_ , num_inference_steps=snake_case_ , generator=snake_case_ , num_images_per_prompt=snake_case_ , ).images __magic_name__ = int(math.sqrt(snake_case_ ) ) __magic_name__ = image_grid(snake_case_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images a_ : Dict = parse_args() # Load models and create wrapper for stable diffusion a_ : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') a_ : Optional[int] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') a_ : str = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') a_ : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') a_ : List[str] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a_ : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): a_ : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: a_ : Optional[int] = unet.to(torch.device('cuda', args.cuda_id)) a_ : Optional[int] = pipeline.to(unet.device) a_ , a_ : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) a_ : str = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
678
import os import sys import unittest a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(A , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A ) self.assertIn('''torch_and_transformers''' , A ) self.assertIn('''flax_and_transformers''' , A ) self.assertIn('''torch_and_transformers_and_onnx''' , A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A , '''\nCONSTANT = None\n''' ) __magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __magic_name__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A )
678
1
import os import sys import unittest a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(A , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A ) self.assertIn('''torch_and_transformers''' , A ) self.assertIn('''flax_and_transformers''' , A ) self.assertIn('''torch_and_transformers_and_onnx''' , A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A , '''\nCONSTANT = None\n''' ) __magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __magic_name__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A )
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ : Optional[Any] = 2 class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments A="<s>" , A="<pad>" , A="</s>" , A="<unk>" , A=None , ) -> List[str]: '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = bos, unk, pad, eos __magic_name__ = [] __magic_name__ = [] __magic_name__ = {} __magic_name__ = self.add_symbol(A ) __magic_name__ = self.add_symbol(A ) __magic_name__ = self.add_symbol(A ) __magic_name__ = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) __magic_name__ = len(self.symbols ) def __eq__( self , A ) -> List[Any]: '''simple docstring''' return self.indices == other.indices def __getitem__( self , A ) -> Union[str, Any]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: '''simple docstring''' return len(self.symbols ) def __contains__( self , A ) -> Any: '''simple docstring''' return sym in self.indices @classmethod def __A ( cls , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = cls() d.add_from_file(A ) return d def __A ( self , A , A=1 , A=False ) -> Optional[int]: '''simple docstring''' if word in self.indices and not overwrite: __magic_name__ = self.indices[word] __magic_name__ = self.count[idx] + n return idx else: __magic_name__ = len(self.symbols ) __magic_name__ = idx self.symbols.append(A ) self.count.append(A ) return idx def __A ( self , A ) -> Any: '''simple docstring''' return 0 def __A ( self , A ) -> Optional[int]: '''simple docstring''' if isinstance(A , A ): try: with open(A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(A ) ) return __magic_name__ = f.readlines() __magic_name__ = self._load_meta(A ) for line in lines[indices_start_line:]: try: __magic_name__ , __magic_name__ = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": __magic_name__ = True __magic_name__ , __magic_name__ = line.rsplit(''' ''' , 1 ) else: __magic_name__ = False __magic_name__ = int(A ) __magic_name__ = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __magic_name__ = dict((re.sub(r'''@@$''' , '''''' , snake_case_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , snake_case_ ), v) for k, v in d.items() ) __magic_name__ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] __magic_name__ = d[k] # restore return da def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): # prep if not os.path.exists(snake_case_ ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __magic_name__ = os.path.join(snake_case_ , '''checkpoint.pt''' ) if not os.path.isfile(snake_case_ ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' ) __magic_name__ = chkpt['''cfg''']['''model'''] # dicts __magic_name__ = os.path.join(snake_case_ , '''dict.txt''' ) if not os.path.isfile(snake_case_ ): raise ValueError(f'path to the file {dict_file} does not exist!' ) __magic_name__ = Dictionary.load(snake_case_ ) __magic_name__ = rewrite_dict_keys(src_dict.indices ) __magic_name__ = len(snake_case_ ) __magic_name__ = os.path.join(snake_case_ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # merges_file (bpecodes) __magic_name__ = os.path.join(snake_case_ , '''bpecodes''' ) if not os.path.isfile(snake_case_ ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) __magic_name__ = os.path.join(snake_case_ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(snake_case_ , snake_case_ ) # model config __magic_name__ = os.path.join(snake_case_ , '''config.json''' ) __magic_name__ = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # tokenizer config __magic_name__ = os.path.join(snake_case_ , snake_case_ ) __magic_name__ = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # model __magic_name__ = chkpt['''model'''] # remove unneeded keys __magic_name__ = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(snake_case_ , snake_case_ ) __magic_name__ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): __magic_name__ = model_state_dict.pop(snake_case_ ) else: __magic_name__ = model_state_dict.pop(snake_case_ ) __magic_name__ = BioGptConfig.from_pretrained(snake_case_ ) __magic_name__ = BioGptForCausalLM(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_ ) # save __magic_name__ = os.path.join(snake_case_ , snake_case_ ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case_ , snake_case_ ) print('''Conversion is done!''' ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : List[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
678
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
1
a_ : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : str ): # Return True if there is node that has not iterated. __magic_name__ = [False] * len(snake_case_ ) __magic_name__ = [s] __magic_name__ = True while queue: __magic_name__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case_ ) __magic_name__ = True __magic_name__ = u return visited[t] def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : str ): __magic_name__ = [-1] * (len(snake_case_ )) __magic_name__ = 0 __magic_name__ = [] __magic_name__ = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): __magic_name__ = float('''Inf''' ) __magic_name__ = sink while s != source: # Find the minimum value in select path __magic_name__ = min(snake_case_ , graph[parent[s]][s] ) __magic_name__ = parent[s] max_flow += path_flow __magic_name__ = sink while v != source: __magic_name__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __magic_name__ = parent[v] for i in range(len(snake_case_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = tempfile.mkdtemp() __magic_name__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __magic_name__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __magic_name__ = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A , A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Any: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=A , padding_value=1.0 ) __magic_name__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(A , return_tensors='''np''' ) __magic_name__ = processor(images=A , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = processor(text=A ) __magic_name__ = tokenizer(A , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(A ) __magic_name__ = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=A , image_processor=A ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
678
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=10 , A=18 , A=30 , A=4_00 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=None , ) -> Any: '''simple docstring''' __magic_name__ = size if size is not None else {'''shortest_edge''': 18} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = num_frames __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = crop_size def __A ( self ) -> str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = VivitImageProcessor if is_vision_available() else None def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = VivitImageProcessingTester(self ) @property def __A ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''do_center_crop''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
678
def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] __magic_name__ = 1 while len(snake_case_ ) < 1E6: constant.append(str(snake_case_ ) ) i += 1 __magic_name__ = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : list ): _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(snake_case_ , snake_case_ ) ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : list[float] ): if point: if isinstance(snake_case_ , snake_case_ ): for item in point: if not isinstance(snake_case_ , (int, float) ): __magic_name__ = ( '''Expected a list of numbers as input, found ''' f'{type(snake_case_ ).__name__}' ) raise TypeError(snake_case_ ) else: __magic_name__ = f'Expected a list of numbers as input, found {type(snake_case_ ).__name__}' raise TypeError(snake_case_ ) else: raise ValueError('''Missing an input''' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : list ): _validate_point(snake_case_ ) _validate_point(snake_case_ ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(snake_case_ , snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
678
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : str = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Optional[Any] = _get_torch_home() except ImportError: a_ : List[Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ : Any = os.path.join(torch_cache_home, 'transformers') a_ : Any = 'https://cdn.huggingface.co' a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) a_ : Any = os.path.join(PATH, 'config.yaml') a_ : Any = os.path.join(PATH, 'attributes.txt') a_ : Any = os.path.join(PATH, 'objects.txt') a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ : int = 'pytorch_model.bin' a_ : Union[str, Any] = 'config.yaml' def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ): __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __magic_name__ = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __magic_name__ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __magic_name__ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __magic_name__ = v return r class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = {} def __init__( self , A , A = "root" , A=0 ) -> List[str]: '''simple docstring''' __magic_name__ = name __magic_name__ = level __magic_name__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() __magic_name__ = copy.deepcopy(A ) __magic_name__ = copy.deepcopy(A ) if isinstance(A , A ): __magic_name__ = Config(A , name=A , level=level + 1 ) __magic_name__ = v setattr(self , A , A ) __magic_name__ = d def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = val __magic_name__ = val __magic_name__ = key.split('''.''' ) __magic_name__ = len(A ) - 1 __magic_name__ = self._pointer if len(A ) > 1: for i, l in enumerate(A ): if hasattr(self , A ) and isinstance(getattr(self , A ) , A ): setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A ) if l == last_level: __magic_name__ = val else: __magic_name__ = pointer[l] def __A ( self ) -> List[Any]: '''simple docstring''' return self._pointer def __A ( self , A , A ) -> Any: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(A , A ) def __A ( self , A , A ) -> List[Any]: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(A , A ) @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' with open(A ) as stream: __magic_name__ = load(A , Loader=A ) return data def __str__( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ''' ''' if self._name != "root": __magic_name__ = F'{t * (self._level-1)}{self._name}:\n' else: __magic_name__ = '''''' __magic_name__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A , A ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n' __magic_name__ = level return r[:-1] @classmethod def __A ( cls , A , **A ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) return cls(A ) @classmethod def __A ( cls , A , **A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = kwargs.pop('''cache_dir''' , A ) __magic_name__ = kwargs.pop('''force_download''' , A ) __magic_name__ = kwargs.pop('''resume_download''' , A ) __magic_name__ = kwargs.pop('''proxies''' , A ) __magic_name__ = kwargs.pop('''local_files_only''' , A ) if os.path.isdir(A ): __magic_name__ = os.path.join(A , A ) elif os.path.isfile(A ) or is_remote_url(A ): __magic_name__ = pretrained_model_name_or_path else: __magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A ) try: # Load from URL or cache if already cached __magic_name__ = cached_path( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __magic_name__ = Config.load_yaml(A ) except EnvironmentError: __magic_name__ = '''Can\'t load config for''' raise EnvironmentError(A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(A ), kwargs def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device ) __magic_name__ = in_tensor.numpy() __magic_name__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ): __magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __magic_name__ = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ): __magic_name__ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __magic_name__ = {'''user-agent''': ua} if resume_size > 0: __magic_name__ = '''bytes=%d-''' % (resume_size,) __magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __magic_name__ = response.headers.get('''Content-Length''' ) __magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None __magic_name__ = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __magic_name__ = None if not local_files_only: try: __magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __magic_name__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __magic_name__ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __magic_name__ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __magic_name__ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __magic_name__ = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __magic_name__ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __magic_name__ = _resumable_file_manager if os.path.exists(snake_case_ ): __magic_name__ = os.stat(snake_case_ ).st_size else: __magic_name__ = 0 else: __magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __magic_name__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __magic_name__ = {'''url''': url, '''etag''': etag} __magic_name__ = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ): __magic_name__ = url.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) __magic_name__ = url_hash.hexdigest() if etag: __magic_name__ = etag.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __magic_name__ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __magic_name__ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __magic_name__ , __magic_name__ = os.path.split(snake_case_ ) __magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __magic_name__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __magic_name__ = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __magic_name__ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __magic_name__ = eval(f.read() ) else: __magic_name__ = requests.get(snake_case_ ) try: __magic_name__ = requests.json() except Exception: __magic_name__ = req.content.decode() assert data is not None, "could not connect" try: __magic_name__ = eval(snake_case_ ) except Exception: __magic_name__ = data.split('''\n''' ) req.close() return data def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = requests.get(snake_case_ ) __magic_name__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __magic_name__ = pkl.load(snake_case_ ) __magic_name__ = weights.pop('''model''' ) __magic_name__ = {} for k, v in model.items(): __magic_name__ = torch.from_numpy(snake_case_ ) if "running_var" in k: __magic_name__ = torch.tensor([0] ) __magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' ) __magic_name__ = zero return new def _SCREAMING_SNAKE_CASE ( ): print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __magic_name__ = cva.imread(snake_case_ ) else: __magic_name__ = get_image_from_url(snake_case_ ) assert img is not None, f'could not connect to: {im}' __magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __magic_name__ = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
678
1
a_ : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ : List[str] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
678
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Optional[int] = 16 a_ : int = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ): model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = num_epochs if args.partial_train_epoch is not None: __magic_name__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1] __magic_name__ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __magic_name__ = int(snake_case_ ) + 1 __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __magic_name__ = f'epoch_{epoch}' __magic_name__ = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __magic_name__ = accuracy __magic_name__ = lr_scheduler.get_lr()[0] __magic_name__ = optimizer.param_groups[0]['''lr'''] __magic_name__ = epoch __magic_name__ = overall_step accelerator.print(f'epoch {epoch}:' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 2_55 , A = True , A = None , A = None , A = True , **A , ) -> None: '''simple docstring''' super().__init__(**A ) __magic_name__ = size if size is not None else {'''shortest_edge''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A ) __magic_name__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ = do_convert_rgb def __A ( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> Any: '''simple docstring''' return rescale(A , scale=A , data_format=A , **A ) def __A ( self , A , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' return normalize(A , mean=A , std=A , data_format=A , **A ) def __A ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: '''simple docstring''' __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(A , param_name='''size''' , default_to_square=A ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(A ) for image in images] if do_resize: __magic_name__ = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=A , mean=A , std=A ) for image in images] __magic_name__ = [to_channel_dimension_format(A , A ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=4_00 , A=True , A=None , A=True , A=False , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size if size is not None else {'''height''': 18, '''width''': 20} __magic_name__ = do_thumbnail __magic_name__ = do_align_axis __magic_name__ = do_pad __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std def __A ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = DonutImageProcessor if is_vision_available() else None def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = DonutImageProcessingTester(self ) @property def __A ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_thumbnail''' ) ) self.assertTrue(hasattr(A , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def __A ( self ) -> Tuple: '''simple docstring''' pass @is_flaky() def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
678
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]: '''simple docstring''' __magic_name__ = compute_mauve( p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , ) return out
678
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[str] ): __magic_name__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) __magic_name__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __magic_name__ = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): if "visual_encoder" in key: __magic_name__ = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , snake_case_ ) if "blocks" in key: __magic_name__ = re.sub(r'''blocks''' , '''layers''' , snake_case_ ) if "attn" in key: __magic_name__ = re.sub(r'''attn''' , '''self_attn''' , snake_case_ ) if "norm1" in key: __magic_name__ = re.sub(r'''norm1''' , '''layer_norm1''' , snake_case_ ) if "norm2" in key: __magic_name__ = re.sub(r'''norm2''' , '''layer_norm2''' , snake_case_ ) if "encoder.norm" in key: __magic_name__ = re.sub(r'''encoder.norm''' , '''post_layernorm''' , snake_case_ ) if "encoder.patch_embed.proj" in key: __magic_name__ = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , snake_case_ ) if "encoder.pos_embed" in key: __magic_name__ = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , snake_case_ ) if "encoder.cls_token" in key: __magic_name__ = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , snake_case_ ) if "self_attn" in key: __magic_name__ = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , snake_case_ ) return key @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[str]=None ): if config_path is not None: __magic_name__ = BlipConfig.from_pretrained(snake_case_ ) else: __magic_name__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __magic_name__ = BlipForConditionalGeneration(snake_case_ ).eval() __magic_name__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __magic_name__ = blip_decoder(pretrained=snake_case_ , image_size=384 , vit='''base''' ) __magic_name__ = pt_model.eval() __magic_name__ = pt_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(snake_case_ ) __magic_name__ = rename_key(snake_case_ ) __magic_name__ = value hf_model.load_state_dict(snake_case_ ) __magic_name__ = 384 __magic_name__ = load_demo_image(image_size=snake_case_ , device='''cpu''' ) __magic_name__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __magic_name__ = tokenizer(['''a picture of'''] ).input_ids __magic_name__ = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __magic_name__ = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __magic_name__ = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __magic_name__ = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) vqa_model.eval() __magic_name__ = vqa_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(snake_case_ ) __magic_name__ = rename_key(snake_case_ ) __magic_name__ = value __magic_name__ = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) __magic_name__ = ['''How many dogs are in this image?'''] __magic_name__ = tokenizer(snake_case_ , return_tensors='''pt''' ).input_ids __magic_name__ = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __magic_name__ = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __magic_name__ = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) itm_model.eval() __magic_name__ = itm_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(snake_case_ ) __magic_name__ = rename_key(snake_case_ ) __magic_name__ = value __magic_name__ = BlipForImageTextRetrieval(snake_case_ ) __magic_name__ = ['''A picture of a woman with a dog sitting in a beach'''] __magic_name__ = tokenizer( snake_case_ , return_tensors='''pt''' , padding='''max_length''' , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() __magic_name__ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) __magic_name__ = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ : str = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
678
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a_ : Dict = None a_ : Tuple = logging.get_logger(__name__) a_ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a_ : Dict = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } a_ : List[str] = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } a_ : int = '▁' class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] _a = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Any: '''simple docstring''' __magic_name__ = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) __magic_name__ = vocab_file __magic_name__ = False if not self.vocab_file else True def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ = [self.cls_token_id] __magic_name__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
678
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' a_ : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __magic_name__ = {} import re __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_conv_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_proj_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __magic_name__ = original_key __magic_name__ = replace_key(snake_case_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __magic_name__ = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __magic_name__ = original_key __magic_name__ = original_key __magic_name__ = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) __magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ = JukeboxConfig.from_pretrained(snake_case_ ) __magic_name__ = JukeboxModel(snake_case_ ) __magic_name__ = [] __magic_name__ = {} for i, dict_name in enumerate(snake_case_ ): __magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] __magic_name__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ = old_dic[k] else: __magic_name__ = old_dic[k] __magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}' __magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __magic_name__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) a_ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
678
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = SMALL_MODEL_IDENTIFIER __magic_name__ = '''pt''' __magic_name__ = '''tf''' def __A ( self , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(A ) def __A ( self , A ) -> Any: '''simple docstring''' __magic_name__ = TFAutoModel.from_pretrained(self.test_model , from_pt=A ) model_tf.save_pretrained(A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''mock_framework''' # Framework provided - return whatever the user provides __magic_name__ = FeaturesManager.determine_framework(self.test_model , A ) self.assertEqual(A , A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) __magic_name__ = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) __magic_name__ = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) def __A ( self ) -> Tuple: '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) __magic_name__ = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) __magic_name__ = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(A ): __magic_name__ = FeaturesManager.determine_framework(A ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''' , A ): __magic_name__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __magic_name__ = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_torch_available''' , A ): __magic_name__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_tf ) # Both in environment -> use PyTorch __magic_name__ = MagicMock(return_value=A ) __magic_name__ = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''' , A ), patch( '''transformers.onnx.features.is_torch_available''' , A ): __magic_name__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # Both not in environment -> raise error __magic_name__ = MagicMock(return_value=A ) __magic_name__ = MagicMock(return_value=A ) with patch('''transformers.onnx.features.is_tf_available''' , A ), patch( '''transformers.onnx.features.is_torch_available''' , A ): with self.assertRaises(A ): __magic_name__ = FeaturesManager.determine_framework(self.test_model )
678
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a_ : Tuple = random.Random() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple=1.0 , snake_case_ : List[str]=None , snake_case_ : Tuple=None ): if rng is None: __magic_name__ = global_rng __magic_name__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_00 , A=20_00 , A=10 , A=1_60 , A=8 , A=0.0 , A=40_00 , A=False , A=True , ) -> Dict: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = min_seq_length __magic_name__ = max_seq_length __magic_name__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ = padding_value __magic_name__ = sampling_rate __magic_name__ = return_attention_mask __magic_name__ = do_normalize __magic_name__ = feature_size __magic_name__ = chunk_length __magic_name__ = hop_length def __A ( self ) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A=False , A=False ) -> int: '''simple docstring''' def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: __magic_name__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __magic_name__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = WhisperFeatureExtractor if is_speech_available() else None def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = WhisperFeatureExtractionTester(self ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __magic_name__ = self.feature_extraction_class.from_pretrained(A ) __magic_name__ = feat_extract_first.to_dict() __magic_name__ = feat_extract_second.to_dict() __magic_name__ = feat_extract_first.mel_filters __magic_name__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(A , '''feat_extract.json''' ) feat_extract_first.to_json_file(A ) __magic_name__ = self.feature_extraction_class.from_json_file(A ) __magic_name__ = feat_extract_first.to_dict() __magic_name__ = feat_extract_second.to_dict() __magic_name__ = feat_extract_first.mel_filters __magic_name__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __magic_name__ = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size __magic_name__ = feature_extractor(A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __magic_name__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __magic_name__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test batched __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __magic_name__ = np.asarray(A ) __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test truncation required __magic_name__ = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] __magic_name__ = [np.asarray(A ) for speech_input in speech_inputs] __magic_name__ = [x[: feature_extractor.n_samples] for x in speech_inputs] __magic_name__ = [np.asarray(A ) for speech_input in speech_inputs_truncated] __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features __magic_name__ = feature_extractor(A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' import torch __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = np.random.rand(1_00 , 32 ).astype(np.floataa ) __magic_name__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __magic_name__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , A ) -> Any: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __magic_name__ = ds.sort('''id''' ).select(range(A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on __magic_name__ = self._load_datasamples(1 ) __magic_name__ = WhisperFeatureExtractor() __magic_name__ = feature_extractor(A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A , atol=1E-4 ) ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = self._load_datasamples(1 )[0] __magic_name__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue __magic_name__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A )[0] self.assertTrue(np.all(np.mean(A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A ) - 1 ) < 1E-3 ) )
678
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): # Initialise PyTorch model __magic_name__ = LxmertConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ = LxmertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
678
1
import sys a_ : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = 1 for digit in s: product *= int(snake_case_ ) return product def _SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): __magic_name__ = -sys.maxsize - 1 __magic_name__ = n[:13] __magic_name__ = 13 while cur_index < len(snake_case_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __magic_name__ = substr[1:] + n[cur_index] cur_index += 1 else: __magic_name__ = max(snake_case_ , str_eval(snake_case_ ) ) __magic_name__ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : str = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """vit_msn""" def __init__( self , A=7_68 , A=12 , A=12 , A=30_72 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-06 , A=2_24 , A=16 , A=3 , A=True , **A , ) -> List[str]: '''simple docstring''' super().__init__(**A ) __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = qkv_bias
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): __magic_name__ = len(snake_case_ ) print('''The following activities are selected:''' ) # The first activity is always selected __magic_name__ = 0 print(snake_case_ , end=''',''' ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end=''',''' ) __magic_name__ = j if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = [1, 3, 0, 5, 8, 5] a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
678
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a_ : Any = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) _a = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) _a = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) _a = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) _a = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) _a = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Source language id for translation."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Target language id for translation."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[Any] ): logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(snake_case_ , os.path.join(snake_case_ , f'{split}_results.json' ) ) def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __magic_name__ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __magic_name__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __magic_name__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __magic_name__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __magic_name__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __magic_name__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __magic_name__ = SeqaSeqDataset # Get datasets __magic_name__ = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __magic_name__ = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __magic_name__ = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __magic_name__ = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __magic_name__ = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __magic_name__ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __magic_name__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __magic_name__ = train_result.metrics __magic_name__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __magic_name__ = trainer.evaluate(metric_key_prefix='''val''' ) __magic_name__ = data_args.n_val __magic_name__ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __magic_name__ = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __magic_name__ = test_output.metrics __magic_name__ = data_args.n_test if trainer.is_world_process_zero(): __magic_name__ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __magic_name__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __magic_name__ = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
678
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""torch""", """torchsde"""] def __init__( self , *A , **A ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def __A ( cls , *A , **A ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def __A ( cls , *A , **A ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] )
678
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): __magic_name__ = {} __magic_name__ = tokenizer(example['''content'''] , truncation=snake_case_ )['''input_ids'''] __magic_name__ = len(example['''content'''] ) / len(output['''input_ids'''] ) return output a_ : str = HfArgumentParser(PretokenizationArguments) a_ : Any = parser.parse_args() if args.num_workers is None: a_ : Any = multiprocessing.cpu_count() a_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ : Dict = time.time() a_ : List[Any] = load_dataset(args.dataset_name, split='train') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") a_ : List[Any] = time.time() a_ : Optional[int] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") a_ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
678
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : Tuple = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """bart""" _a = ["""past_key_values"""] _a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=5_02_65 , A=10_24 , A=12 , A=40_96 , A=16 , A=12 , A=40_96 , A=16 , A=0.0 , A=0.0 , A="gelu" , A=10_24 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0.0 , A=False , A=True , A=3 , A=1 , A=0 , A=2 , A=True , A=2 , A=2 , **A , ) -> int: '''simple docstring''' __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = classifier_dropout __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , A ): __magic_name__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __magic_name__ = {0: '''batch'''} __magic_name__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __magic_name__ = {0: '''batch''', 1: '''decoder_sequence'''} __magic_name__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __magic_name__ , __magic_name__ = self.num_layers for i in range(A ): __magic_name__ = {0: '''batch''', 2: '''past_sequence + sequence'''} __magic_name__ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __magic_name__ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ = super().outputs else: __magic_name__ = super(A , self ).outputs if self.use_past: __magic_name__ , __magic_name__ = self.num_layers for i in range(A ): __magic_name__ = {0: '''batch''', 2: '''past_sequence + sequence'''} __magic_name__ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' __magic_name__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) # Generate decoder inputs __magic_name__ = seq_length if not self.use_past else 1 __magic_name__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) __magic_name__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ = dict(**A , **A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __magic_name__ , __magic_name__ = common_inputs['''input_ids'''].shape __magic_name__ = common_inputs['''decoder_input_ids'''].shape[1] __magic_name__ , __magic_name__ = self.num_attention_heads __magic_name__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ = decoder_seq_length + 3 __magic_name__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(A , A )] , dim=1 ) __magic_name__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ , __magic_name__ = self.num_layers __magic_name__ = min(A , A ) __magic_name__ = max(A , A ) - min_num_layers __magic_name__ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(A ): common_inputs["past_key_values"].append( ( torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), ) ) # TODO: test this. __magic_name__ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(A , A ): common_inputs["past_key_values"].append((torch.zeros(A ), torch.zeros(A )) ) return common_inputs def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' __magic_name__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __magic_name__ , __magic_name__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __magic_name__ = seqlen + 2 __magic_name__ , __magic_name__ = self.num_layers __magic_name__ , __magic_name__ = self.num_attention_heads __magic_name__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ = common_inputs['''attention_mask'''].dtype __magic_name__ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) __magic_name__ = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(A ) ] return common_inputs def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' __magic_name__ = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ = tokenizer.num_special_tokens_to_add(A ) __magic_name__ = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence __magic_name__ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ = dict(tokenizer(A , return_tensors=A ) ) return common_inputs def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) elif self.task == "causal-lm": __magic_name__ = self._generate_dummy_inputs_for_causal_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) else: __magic_name__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) return common_inputs def __A ( self , A , A , A , A ) -> Tuple: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __magic_name__ = super()._flatten_past_key_values_(A , A , A , A ) else: __magic_name__ = super(A , self )._flatten_past_key_values_( A , A , A , A )
678
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants a_ : Optional[int] = Mapping[str, np.ndarray] a_ : Optional[int] = Mapping[str, Any] # Is a nested dict. a_ : Dict = 0.01 @dataclasses.dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _a = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _a = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _a = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _a = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _a = None # Optional remark about the protein. Included as a comment in output PDB # files _a = None # Templates used to generate this protein (prediction-only) _a = None # Chain corresponding to each parent _a = None def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = r'''(\[[A-Z]+\]\n)''' __magic_name__ = [tag.strip() for tag in re.split(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0] __magic_name__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) __magic_name__ = ["N", "CA", "C"] __magic_name__ = None __magic_name__ = None __magic_name__ = None for g in groups: if "[PRIMARY]" == g[0]: __magic_name__ = g[1][0].strip() for i in range(len(snake_case_ ) ): if seq[i] not in residue_constants.restypes: __magic_name__ = '''X''' # FIXME: strings are immutable __magic_name__ = np.array( [residue_constants.restype_order.get(snake_case_ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __magic_name__ = [] for axis in range(3 ): tertiary.append(list(map(snake_case_ , g[1][axis].split() ) ) ) __magic_name__ = np.array(snake_case_ ) __magic_name__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(snake_case_ ): __magic_name__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __magic_name__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) __magic_name__ = np.zeros( ( len(snake_case_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(snake_case_ ): __magic_name__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=snake_case_ , atom_mask=snake_case_ , aatype=snake_case_ , residue_index=np.arange(len(snake_case_ ) ) , b_factors=snake_case_ , ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Protein , snake_case_ : int = 0 ): __magic_name__ = [] __magic_name__ = prot.remark if remark is not None: pdb_headers.append(f'REMARK {remark}' ) __magic_name__ = prot.parents __magic_name__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __magic_name__ = [p for i, p in zip(snake_case_ , snake_case_ ) if i == chain_id] if parents is None or len(snake_case_ ) == 0: __magic_name__ = ['''N/A'''] pdb_headers.append(f'PARENT {" ".join(snake_case_ )}' ) return pdb_headers def _SCREAMING_SNAKE_CASE ( snake_case_ : Protein , snake_case_ : str ): __magic_name__ = [] __magic_name__ = pdb_str.split('''\n''' ) __magic_name__ = prot.remark if remark is not None: out_pdb_lines.append(f'REMARK {remark}' ) __magic_name__ = 42 if prot.parents is not None and len(prot.parents ) > 0: __magic_name__ = [] if prot.parents_chain_index is not None: __magic_name__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(snake_case_ ) , [] ) parent_dict[str(snake_case_ )].append(snake_case_ ) __magic_name__ = max([int(snake_case_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __magic_name__ = parent_dict.get(str(snake_case_ ) , ['''N/A'''] ) parents_per_chain.append(snake_case_ ) else: parents_per_chain.append(list(prot.parents ) ) else: __magic_name__ = [['''N/A''']] def make_parent_line(snake_case_ : Sequence[str] ) -> str: return f'PARENT {" ".join(snake_case_ )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __magic_name__ = 0 for i, l in enumerate(snake_case_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(snake_case_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(snake_case_ ): __magic_name__ = parents_per_chain[chain_counter] else: __magic_name__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(snake_case_ ) ) return "\n".join(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Protein ): __magic_name__ = residue_constants.restypes + ['''X'''] def res_atoa(snake_case_ : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) __magic_name__ = residue_constants.atom_types __magic_name__ = [] __magic_name__ = prot.atom_mask __magic_name__ = prot.aatype __magic_name__ = prot.atom_positions __magic_name__ = prot.residue_index.astype(np.intaa ) __magic_name__ = prot.b_factors __magic_name__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) __magic_name__ = get_pdb_headers(snake_case_ ) if len(snake_case_ ) > 0: pdb_lines.extend(snake_case_ ) __magic_name__ = aatype.shape[0] __magic_name__ = 1 __magic_name__ = 0 __magic_name__ = string.ascii_uppercase __magic_name__ = None # Add all atom sites. for i in range(snake_case_ ): __magic_name__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(snake_case_ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __magic_name__ = '''ATOM''' __magic_name__ = atom_name if len(snake_case_ ) == 4 else f' {atom_name}' __magic_name__ = '''''' __magic_name__ = '''''' __magic_name__ = 1.00 __magic_name__ = atom_name[0] # Protein supports only C, N, O, S, this works. __magic_name__ = '''''' __magic_name__ = '''A''' if chain_index is not None: __magic_name__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __magic_name__ = ( f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' f'{res_name_a:>3} {chain_tag:>1}' f'{residue_index[i]:>4}{insertion_code:>1} ' f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' f'{occupancy:>6.2f}{b_factor:>6.2f} ' f'{element:>2}{charge:>2}' ) pdb_lines.append(snake_case_ ) atom_index += 1 __magic_name__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __magic_name__ = True __magic_name__ = chain_index[i + 1] if should_terminate: # Close the chain. __magic_name__ = '''TER''' __magic_name__ = ( f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(snake_case_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(snake_case_ , snake_case_ ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _SCREAMING_SNAKE_CASE ( snake_case_ : FeatureDict , snake_case_ : ModelOutput , snake_case_ : Optional[np.ndarray] = None , snake_case_ : Optional[np.ndarray] = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[Sequence[str]] = None , snake_case_ : Optional[Sequence[int]] = None , ): return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=snake_case_ , remark=snake_case_ , parents=snake_case_ , parents_chain_index=snake_case_ , )
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : Any = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
import re def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(snake_case_ , snake_case_ ) ) if __name__ == "__main__": a_ : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
678
1
from importlib import import_module from .logging import get_logger a_ : Optional[Any] = get_logger(__name__) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=None ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , A , getattr(A , A ) ) __magic_name__ = module._original_module if isinstance(A , _PatchedModuleObj ) else module class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = [] def __init__( self , A , A , A , A=None ) -> Tuple: '''simple docstring''' __magic_name__ = obj __magic_name__ = target __magic_name__ = new __magic_name__ = target.split('''.''' )[0] __magic_name__ = {} __magic_name__ = attrs or [] def __enter__( self ) -> Union[str, Any]: '''simple docstring''' *__magic_name__ , __magic_name__ = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(A ) ): try: __magic_name__ = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __magic_name__ = getattr(self.obj , A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(A , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __magic_name__ = obj_attr # patch at top level setattr(self.obj , A , _PatchedModuleObj(A , attrs=self.attrs ) ) __magic_name__ = getattr(self.obj , A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(A , A , _PatchedModuleObj(getattr(A , A , A ) , attrs=self.attrs ) ) __magic_name__ = getattr(A , A ) # finally set the target attribute setattr(A , A , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __magic_name__ = getattr(import_module('''.'''.join(A ) ) , A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , A ) is attr_value: __magic_name__ = getattr(self.obj , A ) setattr(self.obj , A , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __magic_name__ = globals()['''__builtins__'''][target_attr] setattr(self.obj , A , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *A ) -> str: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , A , self.original.pop(A ) ) def __A ( self ) -> Any: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def __A ( self ) -> Optional[int]: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
678
import os import sys import unittest a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(A , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A ) self.assertIn('''torch_and_transformers''' , A ) self.assertIn('''flax_and_transformers''' , A ) self.assertIn('''torch_and_transformers_and_onnx''' , A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A , '''\nCONSTANT = None\n''' ) __magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __magic_name__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A )
678
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=1_00 , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.02 , A=3 , ) -> Dict: '''simple docstring''' __magic_name__ = parent __magic_name__ = vocab_size __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __A ( self , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = FlaxBeitModel(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = FlaxBeitForMaskedImageModeling(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.type_sequence_label_size __magic_name__ = FlaxBeitForImageClassification(config=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = FlaxBeitForImageClassification(A ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(A ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __A ( self ) -> None: '''simple docstring''' __magic_name__ = FlaxBeitModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def __A ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): __magic_name__ = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __magic_name__ = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __magic_name__ = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(A ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> List[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __magic_name__ = np.ones((1, 1_96) , dtype=A ) # forward pass __magic_name__ = model(pixel_values=A , bool_masked_pos=A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 1_96, 81_92) self.assertEqual(logits.shape , A ) __magic_name__ = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1E-2 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ) # forward pass __magic_name__ = model(**A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 10_00) self.assertEqual(logits.shape , A ) __magic_name__ = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) __magic_name__ = 2_81 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''np''' ) # forward pass __magic_name__ = model(**A ) __magic_name__ = outputs.logits # verify the logits __magic_name__ = (1, 2_18_41) self.assertEqual(logits.shape , A ) __magic_name__ = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) __magic_name__ = 23_96 self.assertEqual(logits.argmax(-1 ).item() , A )
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *A , A=None , A=None , **A ) -> int: '''simple docstring''' super().__init__(*A , **A ) __magic_name__ = eval_examples __magic_name__ = post_process_function def __A ( self , A=None , A=None , A=None , A = "eval" ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ = self.get_eval_dataloader(A ) __magic_name__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ = self.compute_metrics __magic_name__ = None __magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ = time.time() try: __magic_name__ = eval_loop( A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __magic_name__ = compute_metrics __magic_name__ = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __magic_name__ = self.post_process_function(A , A , output.predictions ) __magic_name__ = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __magic_name__ = metrics.pop(A ) metrics.update(output.metrics ) else: __magic_name__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def __A ( self , A , A , A=None , A = "test" ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ = self.compute_metrics __magic_name__ = None __magic_name__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ = time.time() try: __magic_name__ = eval_loop( A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __magic_name__ = compute_metrics __magic_name__ = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ = self.post_process_function(A , A , output.predictions , '''predict''' ) __magic_name__ = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): __magic_name__ = metrics.pop(A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
678
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a_ : Union[str, Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a_ : Optional[Any] = TaTokenizerFast a_ : int = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a_ : str = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): def wrapper(*snake_case_ : int , **snake_case_ : Optional[Any] ): __magic_name__ = timeit.default_timer() __magic_name__ = func(*snake_case_ , **snake_case_ ) __magic_name__ = timeit.default_timer() - starttime return delta __magic_name__ = func.__name__ return wrapper def _SCREAMING_SNAKE_CASE ( snake_case_ : dict , snake_case_ : Any=100 , snake_case_ : int=None ): __magic_name__ = [] __magic_name__ = seq_shapes or {} for i in range(snake_case_ ): __magic_name__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(snake_case_ , _ArrayXD ): __magic_name__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(snake_case_ , datasets.Value ): if v.dtype == "string": __magic_name__ = '''The small grey turtle was surprisingly fast when challenged.''' else: __magic_name__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(snake_case_ , datasets.Sequence ): while isinstance(snake_case_ , datasets.Sequence ): __magic_name__ = v.feature __magic_name__ = seq_shapes[k] __magic_name__ = np.random.rand(*snake_case_ ).astype(v.dtype ) __magic_name__ = data dummy_data.append((i, example) ) return dummy_data def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=100 , snake_case_ : Dict=None ): __magic_name__ = generate_examples(snake_case_ , num_examples=snake_case_ , seq_shapes=snake_case_ ) with ArrowWriter(features=snake_case_ , path=snake_case_ ) as writer: for key, record in dummy_data: __magic_name__ = features.encode_example(snake_case_ ) writer.write(snake_case_ ) __magic_name__ , __magic_name__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __magic_name__ = datasets.Dataset.from_file(filename=snake_case_ , info=datasets.DatasetInfo(features=snake_case_ ) ) return dataset
678
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=3 , A=True , A=True , A=0.1 , A=0.1 , A=2_24 , A=10_00 , A=[3, 3, 6, 4] , A=[48, 56, 1_12, 2_20] , ) -> Optional[int]: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = num_labels __magic_name__ = image_size __magic_name__ = layer_depths __magic_name__ = embed_dims def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A , layer_scale_init_value=1E-5 , ) def __A ( self , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = SwiftFormerModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __A ( self , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = SwiftFormerForImageClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __magic_name__ = SwiftFormerForImageClassification(A ) model.to(A ) model.eval() __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' ((__magic_name__) , (__magic_name__) , (__magic_name__)) = self.prepare_config_and_inputs() __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _a = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = SwiftFormerModelTester(self ) __magic_name__ = ConfigTester( self , config_class=A , has_text_modality=A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = SwiftFormerModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(A , A , A ): __magic_name__ = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(A , A ) ) __magic_name__ = outputs.hidden_states __magic_name__ = 8 self.assertEqual(len(A ) , A ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True check_hidden_states_output(A , A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' def _config_zero_init(A ): __magic_name__ = copy.deepcopy(A ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A , A , 1E-10 ) if isinstance(getattr(A , A , A ) , A ): __magic_name__ = _config_zero_init(getattr(A , A ) ) setattr(A , A , A ) return configs_no_init __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = _config_zero_init(A ) for model_class in self.all_model_classes: __magic_name__ = model_class(config=A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Any: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __A ( self ) -> str: '''simple docstring''' __magic_name__ = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(A ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): __magic_name__ = model(**A ) # verify the logits __magic_name__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) __magic_name__ = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) )
678
def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] __magic_name__ = 1 while len(snake_case_ ) < 1E6: constant.append(str(snake_case_ ) ) i += 1 __magic_name__ = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
678
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" _a = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _a = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A ( self , A , A , A ) -> str: '''simple docstring''' __magic_name__ = AudioClassificationPipeline(model=A , feature_extractor=A ) # test with a raw waveform __magic_name__ = np.zeros((3_40_00,) ) __magic_name__ = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __A ( self , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ , __magic_name__ = examples __magic_name__ = audio_classifier(A ) # by default a model is initialized with num_labels=2 self.assertEqual( A , [ {'''score''': ANY(A ), '''label''': ANY(A )}, {'''score''': ANY(A ), '''label''': ANY(A )}, ] , ) __magic_name__ = audio_classifier(A , top_k=1 ) self.assertEqual( A , [ {'''score''': ANY(A ), '''label''': ANY(A )}, ] , ) self.run_torchaudio(A ) @require_torchaudio def __A ( self , A ) -> Any: '''simple docstring''' import datasets # test with a local file __magic_name__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) __magic_name__ = dataset[0]['''audio''']['''array'''] __magic_name__ = audio_classifier(A ) self.assertEqual( A , [ {'''score''': ANY(A ), '''label''': ANY(A )}, {'''score''': ANY(A ), '''label''': ANY(A )}, ] , ) @require_torch def __A ( self ) -> str: '''simple docstring''' __magic_name__ = '''anton-l/wav2vec2-random-tiny-classifier''' __magic_name__ = pipeline('''audio-classification''' , model=A ) __magic_name__ = np.ones((80_00,) ) __magic_name__ = audio_classifier(A , top_k=4 ) __magic_name__ = [ {'''score''': 0.08_42, '''label''': '''no'''}, {'''score''': 0.08_38, '''label''': '''up'''}, {'''score''': 0.08_37, '''label''': '''go'''}, {'''score''': 0.08_34, '''label''': '''right'''}, ] __magic_name__ = [ {'''score''': 0.08_45, '''label''': '''stop'''}, {'''score''': 0.08_44, '''label''': '''on'''}, {'''score''': 0.08_41, '''label''': '''right'''}, {'''score''': 0.08_34, '''label''': '''left'''}, ] self.assertIn(nested_simplify(A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) __magic_name__ = {'''array''': np.ones((80_00,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} __magic_name__ = audio_classifier(A , top_k=4 ) self.assertIn(nested_simplify(A , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A ( self ) -> int: '''simple docstring''' import datasets __magic_name__ = '''superb/wav2vec2-base-superb-ks''' __magic_name__ = pipeline('''audio-classification''' , model=A ) __magic_name__ = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) __magic_name__ = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) __magic_name__ = audio_classifier(A , top_k=4 ) self.assertEqual( nested_simplify(A , decimals=3 ) , [ {'''score''': 0.9_81, '''label''': '''go'''}, {'''score''': 0.0_07, '''label''': '''up'''}, {'''score''': 0.0_06, '''label''': '''_unknown_'''}, {'''score''': 0.0_01, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __A ( self ) -> Any: '''simple docstring''' pass
678
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : str = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Optional[Any] = _get_torch_home() except ImportError: a_ : List[Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ : Any = os.path.join(torch_cache_home, 'transformers') a_ : Any = 'https://cdn.huggingface.co' a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) a_ : Any = os.path.join(PATH, 'config.yaml') a_ : Any = os.path.join(PATH, 'attributes.txt') a_ : Any = os.path.join(PATH, 'objects.txt') a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ : int = 'pytorch_model.bin' a_ : Union[str, Any] = 'config.yaml' def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ): __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __magic_name__ = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __magic_name__ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __magic_name__ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __magic_name__ = v return r class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = {} def __init__( self , A , A = "root" , A=0 ) -> List[str]: '''simple docstring''' __magic_name__ = name __magic_name__ = level __magic_name__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() __magic_name__ = copy.deepcopy(A ) __magic_name__ = copy.deepcopy(A ) if isinstance(A , A ): __magic_name__ = Config(A , name=A , level=level + 1 ) __magic_name__ = v setattr(self , A , A ) __magic_name__ = d def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = val __magic_name__ = val __magic_name__ = key.split('''.''' ) __magic_name__ = len(A ) - 1 __magic_name__ = self._pointer if len(A ) > 1: for i, l in enumerate(A ): if hasattr(self , A ) and isinstance(getattr(self , A ) , A ): setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A ) if l == last_level: __magic_name__ = val else: __magic_name__ = pointer[l] def __A ( self ) -> List[Any]: '''simple docstring''' return self._pointer def __A ( self , A , A ) -> Any: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(A , A ) def __A ( self , A , A ) -> List[Any]: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(A , A ) @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' with open(A ) as stream: __magic_name__ = load(A , Loader=A ) return data def __str__( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ''' ''' if self._name != "root": __magic_name__ = F'{t * (self._level-1)}{self._name}:\n' else: __magic_name__ = '''''' __magic_name__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A , A ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n' __magic_name__ = level return r[:-1] @classmethod def __A ( cls , A , **A ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) return cls(A ) @classmethod def __A ( cls , A , **A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = kwargs.pop('''cache_dir''' , A ) __magic_name__ = kwargs.pop('''force_download''' , A ) __magic_name__ = kwargs.pop('''resume_download''' , A ) __magic_name__ = kwargs.pop('''proxies''' , A ) __magic_name__ = kwargs.pop('''local_files_only''' , A ) if os.path.isdir(A ): __magic_name__ = os.path.join(A , A ) elif os.path.isfile(A ) or is_remote_url(A ): __magic_name__ = pretrained_model_name_or_path else: __magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A ) try: # Load from URL or cache if already cached __magic_name__ = cached_path( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __magic_name__ = Config.load_yaml(A ) except EnvironmentError: __magic_name__ = '''Can\'t load config for''' raise EnvironmentError(A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(A ), kwargs def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device ) __magic_name__ = in_tensor.numpy() __magic_name__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ): __magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __magic_name__ = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ): __magic_name__ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __magic_name__ = {'''user-agent''': ua} if resume_size > 0: __magic_name__ = '''bytes=%d-''' % (resume_size,) __magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __magic_name__ = response.headers.get('''Content-Length''' ) __magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None __magic_name__ = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __magic_name__ = None if not local_files_only: try: __magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __magic_name__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __magic_name__ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __magic_name__ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __magic_name__ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __magic_name__ = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __magic_name__ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __magic_name__ = _resumable_file_manager if os.path.exists(snake_case_ ): __magic_name__ = os.stat(snake_case_ ).st_size else: __magic_name__ = 0 else: __magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __magic_name__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __magic_name__ = {'''url''': url, '''etag''': etag} __magic_name__ = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ): __magic_name__ = url.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) __magic_name__ = url_hash.hexdigest() if etag: __magic_name__ = etag.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __magic_name__ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __magic_name__ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __magic_name__ , __magic_name__ = os.path.split(snake_case_ ) __magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __magic_name__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __magic_name__ = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __magic_name__ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __magic_name__ = eval(f.read() ) else: __magic_name__ = requests.get(snake_case_ ) try: __magic_name__ = requests.json() except Exception: __magic_name__ = req.content.decode() assert data is not None, "could not connect" try: __magic_name__ = eval(snake_case_ ) except Exception: __magic_name__ = data.split('''\n''' ) req.close() return data def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = requests.get(snake_case_ ) __magic_name__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __magic_name__ = pkl.load(snake_case_ ) __magic_name__ = weights.pop('''model''' ) __magic_name__ = {} for k, v in model.items(): __magic_name__ = torch.from_numpy(snake_case_ ) if "running_var" in k: __magic_name__ = torch.tensor([0] ) __magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' ) __magic_name__ = zero return new def _SCREAMING_SNAKE_CASE ( ): print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __magic_name__ = cva.imread(snake_case_ ) else: __magic_name__ = get_image_from_url(snake_case_ ) assert img is not None, f'could not connect to: {im}' __magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __magic_name__ = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
678
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def __A ( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> int: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __A ( self , **A ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , A ) -> Tuple: '''simple docstring''' return ("This is a test", "This is a test") def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = '''</s>''' __magic_name__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 11_03 ) def __A ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __magic_name__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) __magic_name__ = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) __magic_name__ = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] __magic_name__ = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __magic_name__ = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' __magic_name__ = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __magic_name__ = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __magic_name__ = '''To ensure a smooth flow of bank resolutions.''' __magic_name__ = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __magic_name__ = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = ['''This is going to be way too long.''' * 1_50, '''short example'''] __magic_name__ = ['''not super long but more than 5 tokens''', '''tiny'''] __magic_name__ = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) __magic_name__ = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def __A ( self ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __A ( self , **A ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , A ) -> Tuple: '''simple docstring''' return ("This is a test", "This is a test") def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __magic_name__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) __magic_name__ = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) __magic_name__ = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] __magic_name__ = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ['''This is going to be way too long.''' * 10_00, '''short example'''] __magic_name__ = ['''not super long but more than 5 tokens''', '''tiny'''] __magic_name__ = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) __magic_name__ = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) __magic_name__ = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
678
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Optional[int] = 16 a_ : int = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ): model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = num_epochs if args.partial_train_epoch is not None: __magic_name__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1] __magic_name__ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __magic_name__ = int(snake_case_ ) + 1 __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __magic_name__ = f'epoch_{epoch}' __magic_name__ = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __magic_name__ = accuracy __magic_name__ = lr_scheduler.get_lr()[0] __magic_name__ = optimizer.param_groups[0]['''lr'''] __magic_name__ = epoch __magic_name__ = overall_step accelerator.print(f'epoch {epoch}:' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : List[str] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = 3 __magic_name__ = 2_50 __magic_name__ = ids_tensor((batch_size, length) , A ) __magic_name__ = torch.ones((batch_size, length) , device=A , dtype=torch.float ) / length return input_ids, scores def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = self._get_tensors(5 ) __magic_name__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = MaxLengthCriteria(max_length=10 ) __magic_name__ , __magic_name__ = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __magic_name__ , __magic_name__ = self._get_tensors(5 ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(A , A ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(A , A ) ) __magic_name__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = self._get_tensors(5 ) __magic_name__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A , A ) ) __magic_name__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A , A ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __magic_name__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A ) , 1 )
678
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]: '''simple docstring''' __magic_name__ = compute_mauve( p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , ) return out
678
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = embedding_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = MegatronBertModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' __magic_name__ = MegatronBertForMaskedLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForCausalLM(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = MegatronBertForNextSentencePrediction(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForPreTraining(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , next_sentence_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertForQuestionAnswering(config=A ) model.to(A ) model.eval() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A , A , A , A , A , A , A ) -> Any: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = MegatronBertForTokenClassification(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = self.num_choices __magic_name__ = MegatronBertForMultipleChoice(config=A ) model.to(A ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _a = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _a = True # test_resize_embeddings = False _a = False def __A ( self , A , A , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = MegatronBertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , hidden_size=37 ) def __A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): return torch.tensor( snake_case_ , dtype=torch.long , device=snake_case_ , ) a_ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __magic_name__ = os.path.join(os.environ['''MYDIR'''] , A ) __magic_name__ = MegatronBertModel.from_pretrained(A ) model.to(A ) model.half() __magic_name__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __magic_name__ = model(A )[0] __magic_name__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , A ) __magic_name__ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __magic_name__ = output[0, ii, jj] __magic_name__ = expected[3 * ii + jj] __magic_name__ = '''ii={} jj={} a={} b={}'''.format(A , A , A , A ) self.assertTrue(math.isclose(A , A , rel_tol=A , abs_tol=A ) , msg=A )
678
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=32 , A=2 , A=3 , A=16 , A=[1, 2, 1] , A=[2, 2, 4] , A=2 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=True , A=0.02 , A=1E-5 , A=True , A=None , A=True , A=10 , A=8 , A=["stage1", "stage2", "stage3"] , A=[1, 2, 3] , ) -> List[Any]: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = patch_norm __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = is_training __magic_name__ = scope __magic_name__ = use_labels __magic_name__ = type_sequence_label_size __magic_name__ = encoder_stride __magic_name__ = out_features __magic_name__ = out_indices def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def __A ( self ) -> str: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = MaskFormerSwinModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A ) __magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , A , A , A ) -> List[str]: '''simple docstring''' __magic_name__ = MaskFormerSwinBackbone(config=A ) model.to(A ) model.eval() __magic_name__ = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(A ): __magic_name__ = ['''stem'''] __magic_name__ = MaskFormerSwinBackbone(config=A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = MaskFormerSwinModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __A ( self ) -> Tuple: '''simple docstring''' pass def __A ( self ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> Dict: '''simple docstring''' return def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __A ( self ) -> str: '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __A ( self ) -> Any: '''simple docstring''' pass def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(A ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __A ( self ) -> Tuple: '''simple docstring''' pass def __A ( self , A , A , A , A ) -> Dict: '''simple docstring''' __magic_name__ = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(A , A ) ) __magic_name__ = outputs.hidden_states __magic_name__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A ) , A ) # Swin has a different seq_length __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(A , A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(A , A , A , A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __A ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(A ): __magic_name__ = 0 return t def check_equivalence(A , A , A , A={} ): with torch.no_grad(): __magic_name__ = model(**A , return_dict=A , **A ) __magic_name__ = model(**A , return_dict=A , **A ).to_tuple() def recursive_check(A , A ): if isinstance(A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A , A ): recursive_check(A , A ) elif isinstance(A , A ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(A , A ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(A ) , set_nan_tensor_to_zero(A ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(A ).any()} and `inf`: {torch.isinf(A )}. Dict has' F' `nan`: {torch.isnan(A ).any()} and `inf`: {torch.isinf(A )}.' ) , ) recursive_check(A , A ) for model_class in self.all_model_classes: __magic_name__ = model_class(A ) model.to(A ) model.eval() __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = self._prepare_for_class(A , A ) check_equivalence(A , A , A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A ) __magic_name__ = self._prepare_for_class(A , A ) __magic_name__ = self._prepare_for_class(A , A ) check_equivalence(A , A , A , {'''output_hidden_states''': True} ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) __magic_name__ = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A , {'''output_hidden_states''': True} ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = (MaskFormerSwinBackbone,) if is_torch_available() else () _a = MaskFormerSwinConfig def __A ( self ) -> str: '''simple docstring''' __magic_name__ = MaskFormerSwinModelTester(self ) def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __magic_name__ = backbone_class(A ) backbone.to(A ) backbone.eval() __magic_name__ = backbone(**A ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , A ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __magic_name__ = backbone(**A , output_hidden_states=A ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __magic_name__ , __magic_name__ , __magic_name__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __magic_name__ = backbone(**A , output_attentions=A ) self.assertIsNotNone(outputs.attentions )
678
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' a_ : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __magic_name__ = {} import re __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_conv_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_proj_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __magic_name__ = original_key __magic_name__ = replace_key(snake_case_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __magic_name__ = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __magic_name__ = original_key __magic_name__ = original_key __magic_name__ = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) __magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ = JukeboxConfig.from_pretrained(snake_case_ ) __magic_name__ = JukeboxModel(snake_case_ ) __magic_name__ = [] __magic_name__ = {} for i, dict_name in enumerate(snake_case_ ): __magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] __magic_name__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ = old_dic[k] else: __magic_name__ = old_dic[k] __magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}' __magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __magic_name__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) a_ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
678
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a_ : List[str] = 4 a_ : Union[str, Any] = 3 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): for shard in shards: for i in range(snake_case_ ): yield {"i": i, "shard": shard} def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = int(os.environ['''RANK'''] ) __magic_name__ = int(os.environ['''WORLD_SIZE'''] ) __magic_name__ = ArgumentParser() parser.add_argument('''--streaming''' , type=snake_case_ ) parser.add_argument('''--local_rank''' , type=snake_case_ ) parser.add_argument('''--num_workers''' , type=snake_case_ , default=0 ) __magic_name__ = parser.parse_args() __magic_name__ = args.streaming __magic_name__ = args.num_workers __magic_name__ = {'''shards''': [f'shard_{shard_idx}' for shard_idx in range(snake_case_ )]} __magic_name__ = IterableDataset.from_generator(snake_case_ , gen_kwargs=snake_case_ ) if not streaming: __magic_name__ = Dataset.from_list(list(snake_case_ ) ) __magic_name__ = split_dataset_by_node(snake_case_ , rank=snake_case_ , world_size=snake_case_ ) __magic_name__ = torch.utils.data.DataLoader(snake_case_ , num_workers=snake_case_ ) __magic_name__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD __magic_name__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __magic_name__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
678
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = [] __magic_name__ = [] __magic_name__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator __magic_name__ = len(snake_case_ ) if (len(snake_case_ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(snake_case_ ) , '''Postfix'''.center(snake_case_ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case_ ) == 0: stack.append(snake_case_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case_ ) # push x to stack print( x.center(8 ) , (''''''.join(snake_case_ )).ljust(snake_case_ ) , (''''''.join(snake_case_ )).ljust(snake_case_ ) , sep=''' | ''' , ) # Output in tabular format while len(snake_case_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(snake_case_ )).ljust(snake_case_ ) , (''''''.join(snake_case_ )).ljust(snake_case_ ) , sep=''' | ''' , ) # Output in tabular format return "".join(snake_case_ ) # return Postfix as str def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): __magic_name__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case_ ) ): if infix[i] == "(": __magic_name__ = ''')''' # change "(" to ")" elif infix[i] == ")": __magic_name__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(snake_case_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a_ : List[Any] = input('\nEnter an Infix Equation = ') # Input an Infix equation a_ : Any = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
678
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): # Initialise PyTorch model __magic_name__ = LxmertConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ = LxmertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
678
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """The column name of the images in the files."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """A folder containing the training data."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """A folder containing the validation data."""} ) _a = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = {} if self.train_dir is not None: __magic_name__ = self.train_dir if self.validation_dir is not None: __magic_name__ = self.validation_dir __magic_name__ = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Name or path of preprocessor config."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _a = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __magic_name__ = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __magic_name__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __magic_name__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __magic_name__ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: __magic_name__ = ds['''train'''].train_test_split(data_args.train_val_split ) __magic_name__ = split['''train'''] __magic_name__ = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: __magic_name__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __magic_name__ = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __magic_name__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: __magic_name__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __magic_name__ = ViTImageProcessor() # create model if model_args.model_name_or_path: __magic_name__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __magic_name__ = ViTMAEForPreTraining(snake_case_ ) if training_args.do_train: __magic_name__ = ds['''train'''].column_names else: __magic_name__ = ds['''validation'''].column_names if data_args.image_column_name is not None: __magic_name__ = data_args.image_column_name elif "image" in column_names: __magic_name__ = '''image''' elif "img" in column_names: __magic_name__ = '''img''' else: __magic_name__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __magic_name__ = image_processor.size['''shortest_edge'''] else: __magic_name__ = (image_processor.size['''height'''], image_processor.size['''width''']) __magic_name__ = Compose( [ Lambda(lambda snake_case_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case_ : int ): __magic_name__ = [transforms(snake_case_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __magic_name__ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __magic_name__ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Compute absolute learning rate __magic_name__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __magic_name__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __magic_name__ = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: __magic_name__ = None if training_args.resume_from_checkpoint is not None: __magic_name__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: __magic_name__ = last_checkpoint __magic_name__ = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __magic_name__ = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) # Write model card and (optionally) push to hub __magic_name__ = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): __magic_name__ = len(snake_case_ ) print('''The following activities are selected:''' ) # The first activity is always selected __magic_name__ = 0 print(snake_case_ , end=''',''' ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end=''',''' ) __magic_name__ = j if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = [1, 3, 0, 5, 8, 5] a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
678
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( snake_case_ : Namespace ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) a_ : Union[str, Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @staticmethod def __A ( A ) -> List[Any]: '''simple docstring''' __magic_name__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=A , required=A , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=A , required=A , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=A , required=A , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=A , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=A , default=A , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'Loading model {model_type}' ) __magic_name__ = model_type __magic_name__ = tf_checkpoint __magic_name__ = pytorch_dump_output __magic_name__ = config __magic_name__ = finetuning_task_name def __A ( self ) -> List[Any]: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): __magic_name__ = self._tf_checkpoint __magic_name__ = '''''' else: __magic_name__ = self._tf_checkpoint __magic_name__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
678
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a_ : Tuple = ['gpt2'] a_ : int = 'gpt2' if is_tf_available(): class SCREAMING_SNAKE_CASE_ ( tf.Module ): """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' super().__init__() __magic_name__ = tokenizer __magic_name__ = AutoConfig.from_pretrained(A ) __magic_name__ = TFGPTaLMHeadModel.from_config(A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __A ( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = self.tokenizer(A ) __magic_name__ = tokenized['''input_ids'''].to_tensor() __magic_name__ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __magic_name__ = self.model(input_ids=A , attention_mask=A )['''logits'''] return outputs @require_tf @require_keras_nlp class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' super().setUp() __magic_name__ = [GPTaTokenizer.from_pretrained(A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __magic_name__ = [TFGPTaTokenizer.from_pretrained(A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __magic_name__ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __magic_name__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __magic_name__ = tokenizer([test_inputs] , return_tensors='''tf''' ) __magic_name__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __magic_name__ = python_outputs[key].numpy() __magic_name__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(A , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.function(A ) for test_inputs in self.test_sentences: __magic_name__ = tf.constant(A ) __magic_name__ = compiled_tokenizer(A ) __magic_name__ = tf_tokenizer(A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __magic_name__ = ModelToSave(tokenizer=A ) __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = model.serving(A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __magic_name__ = Path(A ) / '''saved.model''' tf.saved_model.save(A , A , signatures={'''serving_default''': model.serving} ) __magic_name__ = tf.saved_model.load(A ) __magic_name__ = loaded_model.signatures['''serving_default'''](A )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(A ) # Build model with some sample inputs __magic_name__ = tf_tokenizer.get_config() __magic_name__ = TFGPTaTokenizer.from_config(A ) __magic_name__ = model_from_config(A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self ) -> Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run __magic_name__ = 12_31_23 for max_length in [3, 5, 10_24]: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(A , max_length=A ) __magic_name__ = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
678
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
1
a_ : int = tuple[float, float, float] a_ : Any = tuple[float, float, float] def _SCREAMING_SNAKE_CASE ( snake_case_ : Pointad , snake_case_ : Pointad ): __magic_name__ = end_pointa[0] - end_pointa[0] __magic_name__ = end_pointa[1] - end_pointa[1] __magic_name__ = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vectorad , snake_case_ : Vectorad ): __magic_name__ = ab[1] * ac[2] - ab[2] * ac[1] # *i __magic_name__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __magic_name__ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vectorad , snake_case_ : int ): return tuple(round(snake_case_ , snake_case_ ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE ( snake_case_ : Pointad , snake_case_ : Pointad , snake_case_ : Pointad , snake_case_ : int = 10 ): __magic_name__ = create_vector(snake_case_ , snake_case_ ) __magic_name__ = create_vector(snake_case_ , snake_case_ ) return is_zero_vector(get_ad_vectors_cross(snake_case_ , snake_case_ ) , snake_case_ )
678
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """donut-swin""" _a = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=2_24 , A=4 , A=3 , A=96 , A=[2, 2, 6, 2] , A=[3, 6, 12, 24] , A=7 , A=4.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1E-5 , **A , ) -> Tuple: '''simple docstring''' super().__init__(**A ) __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = len(A ) __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = layer_norm_eps __magic_name__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ = int(embed_dim * 2 ** (len(A ) - 1) )
678
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
1
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) return image def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ): __magic_name__ = dct.pop(snake_case_ ) __magic_name__ = val def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __magic_name__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) __magic_name__ = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __magic_name__ = torch.cat((q_bias, torch.zeros_like(snake_case_ , requires_grad=snake_case_ ), v_bias) ) __magic_name__ = qkv_bias def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = 364 if '''coco''' in model_name else 224 __magic_name__ = InstructBlipVisionConfig(image_size=snake_case_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __magic_name__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __magic_name__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __magic_name__ = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: __magic_name__ = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __magic_name__ = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() __magic_name__ = InstructBlipConfig(vision_config=snake_case_ , text_config=snake_case_ , qformer_config=snake_case_ ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Any=None , snake_case_ : str=False ): __magic_name__ = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: __magic_name__ = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __magic_name__ = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) __magic_name__ , __magic_name__ = get_blipa_config(snake_case_ ) __magic_name__ = InstructBlipForConditionalGeneration(snake_case_ ).eval() __magic_name__ = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } __magic_name__ , __magic_name__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __magic_name__ = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' __magic_name__ = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' __magic_name__ , __magic_name__ , __magic_name__ = load_model_and_preprocess( name=snake_case_ , model_type=snake_case_ , is_eval=snake_case_ , device=snake_case_ ) original_model.eval() print('''Done!''' ) # update state dict keys __magic_name__ = original_model.state_dict() __magic_name__ = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __magic_name__ = state_dict.pop(snake_case_ ) if key.startswith('''Qformer.bert''' ): __magic_name__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __magic_name__ = key.replace('''self''' , '''attention''' ) if "llm_proj" in key: __magic_name__ = key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: __magic_name__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): __magic_name__ = key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): __magic_name__ = key.replace('''t5''' , '''language''' ) __magic_name__ = val # read in qv biases read_in_q_v_bias(snake_case_ , snake_case_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(snake_case_ , strict=snake_case_ ) __magic_name__ = load_demo_image() __magic_name__ = '''What is unusual about this image?''' # create processor __magic_name__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=snake_case_ , image_std=snake_case_ ) __magic_name__ = InstructBlipProcessor( image_processor=snake_case_ , tokenizer=snake_case_ , qformer_tokenizer=snake_case_ , ) __magic_name__ = processor(images=snake_case_ , text=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # make sure processor creates exact same pixel values __magic_name__ = vis_processors['''eval'''](snake_case_ ).unsqueeze(0 ).to(snake_case_ ) __magic_name__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , snake_case_ ) original_model.to(snake_case_ ) hf_model.to(snake_case_ ) with torch.no_grad(): if "vicuna" in model_name: __magic_name__ = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits __magic_name__ = hf_model(**snake_case_ ).logits else: __magic_name__ = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits __magic_name__ = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(snake_case_ ) __magic_name__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) __magic_name__ = hf_model(**snake_case_ , labels=snake_case_ ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __magic_name__ = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , snake_case_ , atol=snake_case_ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) __magic_name__ = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) __magic_name__ = hf_model.generate( **snake_case_ , do_sample=snake_case_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __magic_name__ = 2 print('''Original generation:''' , snake_case_ ) __magic_name__ = processor.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) __magic_name__ = [text.strip() for text in output_text] print('''HF generation:''' , snake_case_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() a_ : Any = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
678
import re def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): __magic_name__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(snake_case_ , snake_case_ ) ) if __name__ == "__main__": a_ : Optional[int] = '0094702343221' print(is_sri_lankan_phone_number(phone))
678
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 2_55 , A = True , A = None , A = None , A = True , **A , ) -> None: '''simple docstring''' super().__init__(**A ) __magic_name__ = size if size is not None else {'''shortest_edge''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A ) __magic_name__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ = do_convert_rgb def __A ( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> Optional[int]: '''simple docstring''' return rescale(A , scale=A , data_format=A , **A ) def __A ( self , A , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' return normalize(A , mean=A , std=A , data_format=A , **A ) def __A ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: '''simple docstring''' __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(A , param_name='''size''' , default_to_square=A ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(A ) for image in images] if do_resize: __magic_name__ = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=A , mean=A , std=A ) for image in images] __magic_name__ = [to_channel_dimension_format(A , A ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
678
import os import sys import unittest a_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(A , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(A , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(A , '''torch_and_transformers_and_onnx''' ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A ) self.assertIn('''torch_and_transformers''' , A ) self.assertIn('''flax_and_transformers''' , A ) self.assertIn('''torch_and_transformers_and_onnx''' , A ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A , '''\nCONSTANT = None\n''' ) __magic_name__ = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __magic_name__ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __magic_name__ = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A , A ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __magic_name__ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A )
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ): def count_of_possible_combinations(snake_case_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ): def count_of_possible_combinations_with_dp_array( snake_case_ : int , snake_case_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __magic_name__ = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case_ ) for item in array ) __magic_name__ = answer return answer __magic_name__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ): __magic_name__ = [0] * (target + 1) __magic_name__ = 1 for i in range(1 , target + 1 ): for j in range(snake_case_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = 3 a_ : int = 5 a_ : Any = [1, 2, 5] print(combination_sum_iv(n, array, target))
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType a_ : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """vision-encoder-decoder""" _a = True def __init__( self , **A ) -> Optional[Any]: '''simple docstring''' super().__init__(**A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) __magic_name__ = kwargs.pop('''encoder''' ) __magic_name__ = encoder_config.pop('''model_type''' ) __magic_name__ = kwargs.pop('''decoder''' ) __magic_name__ = decoder_config.pop('''model_type''' ) __magic_name__ = AutoConfig.for_model(A , **A ) __magic_name__ = AutoConfig.for_model(A , **A ) __magic_name__ = True @classmethod def __A ( cls , A , A , **A ) -> PretrainedConfig: '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __magic_name__ = True __magic_name__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = copy.deepcopy(self.__dict__ ) __magic_name__ = self.encoder.to_dict() __magic_name__ = self.decoder.to_dict() __magic_name__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-4 @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __magic_name__ = OrderedDict() __magic_name__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __magic_name__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} __magic_name__ = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch __magic_name__ = OrderedDict() __magic_name__ = super().generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) __magic_name__ , __magic_name__ = dummy_input['''input_ids'''].shape __magic_name__ = (batch, encoder_sequence, self._config.encoder_hidden_size) __magic_name__ = dummy_input.pop('''input_ids''' ) __magic_name__ = dummy_input.pop('''attention_mask''' ) __magic_name__ = torch.zeros(A ) return common_inputs class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self ) -> None: '''simple docstring''' pass def __A ( self , A ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(A ) def __A ( self , A , A , A = "default" ) -> OnnxConfig: '''simple docstring''' __magic_name__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(A , A )
678
a_ : Dict = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a_ : str = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def _SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : str , snake_case_ : str ): __magic_name__ = from_type.lower().strip('''s''' ) __magic_name__ = to_type.lower().strip('''s''' ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) __magic_name__ = UNIT_SYMBOL.get(snake_case_ , snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __magic_name__ = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(snake_case_ )}' ) raise ValueError(snake_case_ ) __magic_name__ = METRIC_CONVERSION[from_sanitized] __magic_name__ = METRIC_CONVERSION[to_sanitized] __magic_name__ = 1 if from_exponent > to_exponent: __magic_name__ = from_exponent - to_exponent else: __magic_name__ = -(to_exponent - from_exponent) return value * pow(10 , snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
678
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = (KDPMaDiscreteScheduler,) _a = 10 def __A ( self , **A ) -> List[Any]: '''simple docstring''' __magic_name__ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A ) return config def __A ( self ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def __A ( self ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def __A ( self ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def __A ( self ) -> Any: '''simple docstring''' if torch_device == "mps": return __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(A , A ) __magic_name__ = model(A , A ) __magic_name__ = scheduler.step(A , A , A ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(A ) ) __magic_name__ = torch.mean(torch.abs(A ) ) if str(A ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Union[str, Any] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ['PoolFormerFeatureExtractor'] a_ : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
678
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
678
def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] __magic_name__ = 1 while len(snake_case_ ) < 1E6: constant.append(str(snake_case_ ) ) i += 1 __magic_name__ = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
678
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = prime_factors(snake_case_ ) if is_square_free(snake_case_ ): return -1 if len(snake_case_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
678
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ : str = True except ImportError: a_ : Optional[int] = False try: from torch.hub import _get_torch_home a_ : Optional[Any] = _get_torch_home() except ImportError: a_ : List[Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ : Any = os.path.join(torch_cache_home, 'transformers') a_ : Any = 'https://cdn.huggingface.co' a_ : Any = 'https://s3.amazonaws.com/models.huggingface.co/bert' a_ : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) a_ : Any = os.path.join(PATH, 'config.yaml') a_ : Any = os.path.join(PATH, 'attributes.txt') a_ : Any = os.path.join(PATH, 'objects.txt') a_ : List[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ : Optional[int] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ : int = 'pytorch_model.bin' a_ : Union[str, Any] = 'config.yaml' def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any]=OBJECTS , snake_case_ : str=ATTRIBUTES ): __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __magic_name__ = [] with open(snake_case_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = OrderedDict() with open(snake_case_ , '''rb''' ) as f: __magic_name__ = pkl.load(snake_case_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __magic_name__ = ckp.pop(snake_case_ ) if isinstance(snake_case_ , np.ndarray ): __magic_name__ = torch.tensor(snake_case_ ) else: assert isinstance(snake_case_ , torch.tensor ), type(snake_case_ ) __magic_name__ = v return r class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = {} def __init__( self , A , A = "root" , A=0 ) -> List[str]: '''simple docstring''' __magic_name__ = name __magic_name__ = level __magic_name__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() __magic_name__ = copy.deepcopy(A ) __magic_name__ = copy.deepcopy(A ) if isinstance(A , A ): __magic_name__ = Config(A , name=A , level=level + 1 ) __magic_name__ = v setattr(self , A , A ) __magic_name__ = d def __repr__( self ) -> Union[str, Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , A , A ) -> Tuple: '''simple docstring''' __magic_name__ = val __magic_name__ = val __magic_name__ = key.split('''.''' ) __magic_name__ = len(A ) - 1 __magic_name__ = self._pointer if len(A ) > 1: for i, l in enumerate(A ): if hasattr(self , A ) and isinstance(getattr(self , A ) , A ): setattr(getattr(self , A ) , '''.'''.join(levels[i:] ) , A ) if l == last_level: __magic_name__ = val else: __magic_name__ = pointer[l] def __A ( self ) -> List[Any]: '''simple docstring''' return self._pointer def __A ( self , A , A ) -> Any: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: dump(A , A ) def __A ( self , A , A ) -> List[Any]: '''simple docstring''' with open(F'{file_name}' , '''w''' ) as stream: json.dump(A , A ) @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' with open(A ) as stream: __magic_name__ = load(A , Loader=A ) return data def __str__( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ''' ''' if self._name != "root": __magic_name__ = F'{t * (self._level-1)}{self._name}:\n' else: __magic_name__ = '''''' __magic_name__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(A , A ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(A ).__name__})\n' __magic_name__ = level return r[:-1] @classmethod def __A ( cls , A , **A ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ = cls.get_config_dict(A , **A ) return cls(A ) @classmethod def __A ( cls , A , **A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = kwargs.pop('''cache_dir''' , A ) __magic_name__ = kwargs.pop('''force_download''' , A ) __magic_name__ = kwargs.pop('''resume_download''' , A ) __magic_name__ = kwargs.pop('''proxies''' , A ) __magic_name__ = kwargs.pop('''local_files_only''' , A ) if os.path.isdir(A ): __magic_name__ = os.path.join(A , A ) elif os.path.isfile(A ) or is_remote_url(A ): __magic_name__ = pretrained_model_name_or_path else: __magic_name__ = hf_bucket_url(A , filename=A , use_cdn=A ) try: # Load from URL or cache if already cached __magic_name__ = cached_path( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __magic_name__ = Config.load_yaml(A ) except EnvironmentError: __magic_name__ = '''Can\'t load config for''' raise EnvironmentError(A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(A ), kwargs def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): __magic_name__ = torch.load('''dump.pt''' , map_location=in_tensor.device ) __magic_name__ = in_tensor.numpy() __magic_name__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(snake_case_ , snake_case_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = urlparse(snake_case_ ) return parsed.scheme in ("http", "https") def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[Any]=True ): __magic_name__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __magic_name__ = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[str]=None , snake_case_ : Dict=0 , snake_case_ : Tuple=None , ): __magic_name__ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case_ , snake_case_ ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case_ , snake_case_ ) for k, v in user_agent.items() ) elif isinstance(snake_case_ , snake_case_ ): ua += "; " + user_agent __magic_name__ = {'''user-agent''': ua} if resume_size > 0: __magic_name__ = '''bytes=%d-''' % (resume_size,) __magic_name__ = requests.get(snake_case_ , stream=snake_case_ , proxies=snake_case_ , headers=snake_case_ ) if response.status_code == 416: # Range not satisfiable return __magic_name__ = response.headers.get('''Content-Length''' ) __magic_name__ = resume_size + int(snake_case_ ) if content_length is not None else None __magic_name__ = tqdm( unit='''B''' , unit_scale=snake_case_ , total=snake_case_ , initial=snake_case_ , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case_ ) ) temp_file.write(snake_case_ ) progress.close() def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : int=False , snake_case_ : List[Any]=None , snake_case_ : Tuple=10 , snake_case_ : int=False , snake_case_ : Any=None , snake_case_ : Tuple=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) __magic_name__ = None if not local_files_only: try: __magic_name__ = requests.head(snake_case_ , allow_redirects=snake_case_ , proxies=snake_case_ , timeout=snake_case_ ) if response.status_code == 200: __magic_name__ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __magic_name__ = url_to_filename(snake_case_ , snake_case_ ) # get cache path to put the file __magic_name__ = os.path.join(snake_case_ , snake_case_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case_ ): return cache_path else: __magic_name__ = [ file for file in fnmatch.filter(os.listdir(snake_case_ ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case_ ) > 0: return os.path.join(snake_case_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __magic_name__ = cache_path + '''.lock''' with FileLock(snake_case_ ): # If the download just completed while the lock was activated. if os.path.exists(snake_case_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __magic_name__ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case_ , '''a+b''' ) as f: yield f __magic_name__ = _resumable_file_manager if os.path.exists(snake_case_ ): __magic_name__ = os.stat(snake_case_ ).st_size else: __magic_name__ = 0 else: __magic_name__ = partial(tempfile.NamedTemporaryFile , dir=snake_case_ , delete=snake_case_ ) __magic_name__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case_ , temp_file.name , ) http_get( snake_case_ , snake_case_ , proxies=snake_case_ , resume_size=snake_case_ , user_agent=snake_case_ , ) os.replace(temp_file.name , snake_case_ ) __magic_name__ = {'''url''': url, '''etag''': etag} __magic_name__ = cache_path + '''.json''' with open(snake_case_ , '''w''' ) as meta_file: json.dump(snake_case_ , snake_case_ ) return cache_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[Any]=None ): __magic_name__ = url.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) __magic_name__ = url_hash.hexdigest() if etag: __magic_name__ = etag.encode('''utf-8''' ) __magic_name__ = shaaaa(snake_case_ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=None , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=False , snake_case_ : Optional[int]=False , snake_case_ : Optional[int]=False , ): if cache_dir is None: __magic_name__ = TRANSFORMERS_CACHE if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): __magic_name__ = str(snake_case_ ) if is_remote_url(snake_case_ ): # URL, so get it from the cache (downloading if necessary) __magic_name__ = get_from_cache( snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , proxies=snake_case_ , resume_download=snake_case_ , user_agent=snake_case_ , local_files_only=snake_case_ , ) elif os.path.exists(snake_case_ ): # File, and it exists. __magic_name__ = url_or_filename elif urlparse(snake_case_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case_ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case_ ) ) if extract_compressed_file: if not is_zipfile(snake_case_ ) and not tarfile.is_tarfile(snake_case_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __magic_name__ , __magic_name__ = os.path.split(snake_case_ ) __magic_name__ = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __magic_name__ = os.path.join(snake_case_ , snake_case_ ) if os.path.isdir(snake_case_ ) and os.listdir(snake_case_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions __magic_name__ = output_path + '''.lock''' with FileLock(snake_case_ ): shutil.rmtree(snake_case_ , ignore_errors=snake_case_ ) os.makedirs(snake_case_ ) if is_zipfile(snake_case_ ): with ZipFile(snake_case_ , '''r''' ) as zip_file: zip_file.extractall(snake_case_ ) zip_file.close() elif tarfile.is_tarfile(snake_case_ ): __magic_name__ = tarfile.open(snake_case_ ) tar_file.extractall(snake_case_ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case_ ) ) return output_path_extracted return output_path def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int="," ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): with open(snake_case_ ) as f: __magic_name__ = eval(f.read() ) else: __magic_name__ = requests.get(snake_case_ ) try: __magic_name__ = requests.json() except Exception: __magic_name__ = req.content.decode() assert data is not None, "could not connect" try: __magic_name__ = eval(snake_case_ ) except Exception: __magic_name__ = data.split('''\n''' ) req.close() return data def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): __magic_name__ = requests.get(snake_case_ ) __magic_name__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): __magic_name__ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case_ ) with open(snake_case_ , '''rb''' ) as stream: __magic_name__ = pkl.load(snake_case_ ) __magic_name__ = weights.pop('''model''' ) __magic_name__ = {} for k, v in model.items(): __magic_name__ = torch.from_numpy(snake_case_ ) if "running_var" in k: __magic_name__ = torch.tensor([0] ) __magic_name__ = k.replace('''running_var''' , '''num_batches_tracked''' ) __magic_name__ = zero return new def _SCREAMING_SNAKE_CASE ( ): print(f'{os.path.abspath(os.path.join(snake_case_ , os.pardir ) )}/demo.ipynb' ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Tuple="RGB" ): assert isinstance(snake_case_ , snake_case_ ) if os.path.isfile(snake_case_ ): __magic_name__ = cva.imread(snake_case_ ) else: __magic_name__ = get_image_from_url(snake_case_ ) assert img is not None, f'could not connect to: {im}' __magic_name__ = cva.cvtColor(snake_case_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": __magic_name__ = img[:, :, ::-1] return img def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=1 ): return (images[i : i + batch] for i in range(0 , len(snake_case_ ) , snake_case_ ))
678
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Tuple = 16 a_ : List[Any] = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 # Now we train the model __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = 0 __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , snake_case_ ) __magic_name__ = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __magic_name__ = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=snake_case_ , default=snake_case_ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=3 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a_ : Optional[int] = 16 a_ : int = 32 def _SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): __magic_name__ = AutoTokenizer.from_pretrained(snake_case_ ) __magic_name__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __magic_name__ = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __magic_name__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str ): model.eval() __magic_name__ = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __magic_name__ , __magic_name__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: __magic_name__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] __magic_name__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __magic_name__ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple ): # Initialize accelerator __magic_name__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config['''lr'''] __magic_name__ = int(config['''num_epochs'''] ) __magic_name__ = int(config['''seed'''] ) __magic_name__ = int(config['''batch_size'''] ) __magic_name__ = args.model_name_or_path set_seed(snake_case_ ) __magic_name__ , __magic_name__ = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __magic_name__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __magic_name__ = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __magic_name__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __magic_name__ = 1 __magic_name__ = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __magic_name__ = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __magic_name__ = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __magic_name__ = 0 # We also need to keep track of the stating epoch so files are named properly __magic_name__ = 0 __magic_name__ = evaluate.load('''glue''' , '''mrpc''' ) __magic_name__ = num_epochs if args.partial_train_epoch is not None: __magic_name__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __magic_name__ = args.resume_from_checkpoint.split('''epoch_''' )[1] __magic_name__ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __magic_name__ = int(snake_case_ ) + 1 __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) accelerator.print('''resumed checkpoint performance:''' , snake_case_ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __magic_name__ = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __magic_name__ = f'epoch_{epoch}' __magic_name__ = os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) __magic_name__ = evaluation_loop(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __magic_name__ = accuracy __magic_name__ = lr_scheduler.get_lr()[0] __magic_name__ = optimizer.param_groups[0]['''lr'''] __magic_name__ = epoch __magic_name__ = overall_step accelerator.print(f'epoch {epoch}:' , snake_case_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case_ , ) parser.add_argument( '''--output_dir''' , type=snake_case_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case_ , default=snake_case_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=snake_case_ , default=snake_case_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case_ , default=2 , help='''Number of train epochs.''' , ) __magic_name__ = parser.parse_args() __magic_name__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
678
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[int] = logging.get_logger(__name__) a_ : str = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """sew-d""" def __init__( self , A=32 , A=7_68 , A=12 , A=12 , A=30_72 , A=2 , A=5_12 , A=2_56 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.02 , A=1E-7 , A=1E-5 , A="group" , A="gelu" , A=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=1_28 , A=16 , A=True , A=0.05 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=2_56 , A=0 , A=1 , A=2 , **A , ) -> Optional[int]: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) __magic_name__ = hidden_size __magic_name__ = feat_extract_norm __magic_name__ = feat_extract_activation __magic_name__ = list(A ) __magic_name__ = list(A ) __magic_name__ = list(A ) __magic_name__ = conv_bias __magic_name__ = num_conv_pos_embeddings __magic_name__ = num_conv_pos_embedding_groups __magic_name__ = len(self.conv_dim ) __magic_name__ = num_hidden_layers __magic_name__ = intermediate_size __magic_name__ = squeeze_factor __magic_name__ = max_position_embeddings __magic_name__ = position_buckets __magic_name__ = share_att_key __magic_name__ = relative_attention __magic_name__ = norm_rel_ebd __magic_name__ = list(A ) __magic_name__ = hidden_act __magic_name__ = num_attention_heads __magic_name__ = hidden_dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = feat_proj_dropout __magic_name__ = final_dropout __magic_name__ = layer_norm_eps __magic_name__ = feature_layer_norm_eps __magic_name__ = initializer_range __magic_name__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ = apply_spec_augment __magic_name__ = mask_time_prob __magic_name__ = mask_time_length __magic_name__ = mask_time_min_masks __magic_name__ = mask_feature_prob __magic_name__ = mask_feature_length __magic_name__ = mask_feature_min_masks # ctc loss __magic_name__ = ctc_loss_reduction __magic_name__ = ctc_zero_infinity # sequence classification __magic_name__ = use_weighted_layer_sum __magic_name__ = classifier_proj_size @property def __A ( self ) -> Optional[int]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a_ : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a_ : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a_ : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __A ( self , A , A , A=None , A=None , A=None , A=None , A="auto" , A=-1 , A=0.9 , A=5 , A=5_00 , A="gpt2-large" , A=-1 , A=10_24 , A=25 , A=5 , A=True , A=25 , ) -> Optional[int]: '''simple docstring''' __magic_name__ = compute_mauve( p_text=A , q_text=A , p_features=A , q_features=A , p_tokens=A , q_tokens=A , num_buckets=A , pca_max_data=A , kmeans_explained_var=A , kmeans_num_redo=A , kmeans_max_iter=A , featurize_model_name=A , device_id=A , max_text_length=A , divergence_curve_discretization_size=A , mauve_scaling_factor=A , verbose=A , seed=A , ) return out
678
1
from scipy.stats import pearsonr import datasets a_ : Any = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ : str = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ : str = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __A ( self , A , A , A=False ) -> Union[str, Any]: '''simple docstring''' if return_pvalue: __magic_name__ = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
678
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a_ : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a_ : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : bytes ): return "".join([hex(snake_case_ )[2:].zfill(2 ).upper() for byte in list(snake_case_ )] ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
678
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' a_ : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __magic_name__ = {} import re __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_conv_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_proj_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __magic_name__ = original_key __magic_name__ = replace_key(snake_case_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __magic_name__ = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __magic_name__ = original_key __magic_name__ = original_key __magic_name__ = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) __magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ = JukeboxConfig.from_pretrained(snake_case_ ) __magic_name__ = JukeboxModel(snake_case_ ) __magic_name__ = [] __magic_name__ = {} for i, dict_name in enumerate(snake_case_ ): __magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] __magic_name__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ = old_dic[k] else: __magic_name__ = old_dic[k] __magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}' __magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __magic_name__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) a_ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
678
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=4 , ) -> int: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_attention_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_choices def __A ( self ) -> int: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_attention_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = True __magic_name__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = True _a = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=A ) __magic_name__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=A ) __magic_name__ = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __magic_name__ = model(A )[0] __magic_name__ = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , A ) # compare the actual values for a slice. __magic_name__ = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , A , atol=1E-4 ) ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=A ) __magic_name__ = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __magic_name__ = model(A )[0] # compare the actual values for a slice. __magic_name__ = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , A , atol=1E-4 ) )
678
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : int = logging.get_logger(__name__) a_ : Optional[int] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """table-transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_00 , A=6 , A=20_48 , A=8 , A=6 , A=20_48 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_56 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A , A ): __magic_name__ = backbone_config.get('''model_type''' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ = None, None, None __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = encoder_layers __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def __A ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __A ( self ) -> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-5 @property def __A ( self ) -> int: '''simple docstring''' return 12
678
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = 1 __magic_name__ = 3 __magic_name__ = (32, 32) __magic_name__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def __A ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def __A ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __A ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(A ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.dummy_cond_unet_upscale __magic_name__ = DDPMScheduler() __magic_name__ = DDIMScheduler(prediction_type='''v_prediction''' ) __magic_name__ = self.dummy_vae __magic_name__ = self.dummy_text_encoder __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __magic_name__ = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_50 , ) __magic_name__ = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = torch.Generator(device=A ).manual_seed(0 ) __magic_name__ = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __magic_name__ = output.images __magic_name__ = torch.Generator(device=A ).manual_seed(0 ) __magic_name__ = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=A , )[0] __magic_name__ = image[0, -3:, -3:, -1] __magic_name__ = image_from_tuple[0, -3:, -3:, -1] __magic_name__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __magic_name__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.dummy_cond_unet_upscale __magic_name__ = DDPMScheduler() __magic_name__ = DDIMScheduler(prediction_type='''v_prediction''' ) __magic_name__ = self.dummy_vae __magic_name__ = self.dummy_text_encoder __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __magic_name__ = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_50 , ) __magic_name__ = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __magic_name__ = output.images assert image.shape[0] == 2 __magic_name__ = torch.Generator(device=A ).manual_seed(0 ) __magic_name__ = sd_pipe( [prompt] , image=A , generator=A , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __magic_name__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.dummy_cond_unet_upscale __magic_name__ = DDPMScheduler() __magic_name__ = DDIMScheduler(prediction_type='''v_prediction''' ) __magic_name__ = self.dummy_vae __magic_name__ = self.dummy_text_encoder __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __magic_name__ = unet.half() __magic_name__ = text_encoder.half() # make sure here that pndm scheduler skips prk __magic_name__ = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_50 , ) __magic_name__ = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = sd_pipe( [prompt] , image=A , generator=A , num_inference_steps=2 , output_type='''np''' , ).images __magic_name__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-x4-upscaler''' __magic_name__ = StableDiffusionUpscalePipeline.from_pretrained(A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() __magic_name__ = '''a cat sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=A , image=A , generator=A , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __A ( self ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-x4-upscaler''' __magic_name__ = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() __magic_name__ = '''a cat sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=A , image=A , generator=A , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __A ( self ) -> List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __magic_name__ = '''stabilityai/stable-diffusion-x4-upscaler''' __magic_name__ = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__ = '''a cat sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=A , image=A , generator=A , num_inference_steps=5 , output_type='''np''' , ) __magic_name__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
678
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): # Initialise PyTorch model __magic_name__ = LxmertConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ = LxmertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
678
1
import sys import turtle def _SCREAMING_SNAKE_CASE ( snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _SCREAMING_SNAKE_CASE ( snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] , snake_case_ : tuple[float, float] , snake_case_ : int , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 ) triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 ) triangle(snake_case_ , get_mid(snake_case_ , snake_case_ ) , get_mid(snake_case_ , snake_case_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) a_ : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') a_ : int = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : str = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): __magic_name__ = len(snake_case_ ) print('''The following activities are selected:''' ) # The first activity is always selected __magic_name__ = 0 print(snake_case_ , end=''',''' ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end=''',''' ) __magic_name__ = j if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = [1, 3, 0, 5, 8, 5] a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
678
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """""" _a = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , A = None , A = None , **A , ) -> List[Any]: '''simple docstring''' super().__init__(self , **A ) __magic_name__ = repo_info __magic_name__ = token __magic_name__ = None def __A ( self ) -> int: '''simple docstring''' if self.dir_cache is None: __magic_name__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __magic_name__ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(A ): {'''name''': str(A ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __A ( self , A , A = "rb" , **A , ) -> int: '''simple docstring''' if not isinstance(self.repo_info , A ): raise NotImplementedError(F'Open is only implemented for dataset repositories, but got {self.repo_info}' ) __magic_name__ = hf_hub_url(self.repo_info.id , A , revision=self.repo_info.sha ) return fsspec.open( A , mode=A , headers=get_authentication_headers_for_url(A , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __A ( self , A , **A ) -> List[Any]: '''simple docstring''' self._get_dirs() __magic_name__ = self._strip_protocol(A ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A ) def __A ( self , A , A=False , **A ) -> List[str]: '''simple docstring''' self._get_dirs() __magic_name__ = PurePosixPath(path.strip('''/''' ) ) __magic_name__ = {} for p, f in self.dir_cache.items(): __magic_name__ = PurePosixPath(p.strip('''/''' ) ) __magic_name__ = p.parent if root == path: __magic_name__ = f __magic_name__ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
678
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : List[str] = 256 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""melgan"""] def __init__( self , A , A , A , A , A , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __magic_name__ = math.log(1E-5 ) # Matches MelGAN training. __magic_name__ = 4.0 # Largest value for most examples __magic_name__ = 1_28 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = output_range if clip: __magic_name__ = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. __magic_name__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self , A , A=(-1.0, 1.0) , A=False ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ = input_range __magic_name__ = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. __magic_name__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = input_tokens > 0 __magic_name__ , __magic_name__ = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) __magic_name__ , __magic_name__ = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' __magic_name__ = noise_time if not torch.is_tensor(A ): __magic_name__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __magic_name__ = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 1_00 , A = True , A = "numpy" , A = None , A = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(A )}.' ) __magic_name__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __magic_name__ = np.zeros([1, 0, self.n_dims] , np.floataa ) __magic_name__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: __magic_name__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __magic_name__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __magic_name__ = ones __magic_name__ = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) __magic_name__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __magic_name__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __magic_name__ = self.scheduler.step(A , A , A , generator=A ).prev_sample __magic_name__ = self.scale_to_features(A , input_range=[-1.0, 1.0] ) __magic_name__ = mel[:1] __magic_name__ = mel.cpu().float().numpy() __magic_name__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('''Generated segment''' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": __magic_name__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __magic_name__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
678
1
from math import isqrt, loga def _SCREAMING_SNAKE_CASE ( snake_case_ : int ): __magic_name__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case_ , snake_case_ ): __magic_name__ = False return [i for i in range(2 , snake_case_ ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( snake_case_ : int = 80_0800 , snake_case_ : int = 80_0800 ): __magic_name__ = degree * loga(snake_case_ ) __magic_name__ = int(snake_case_ ) __magic_name__ = calculate_prime_numbers(snake_case_ ) __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = len(snake_case_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
678
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : Optional[int] = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = """vit""" def __init__( self , A=7_68 , A=12 , A=12 , A=30_72 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=2_24 , A=16 , A=3 , A=True , A=16 , **A , ) -> int: '''simple docstring''' super().__init__(**A ) __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = qkv_bias __magic_name__ = encoder_stride class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1E-4
678
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Any = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 2_55 , A = True , A = None , A = None , A = True , **A , ) -> None: '''simple docstring''' super().__init__(**A ) __magic_name__ = size if size is not None else {'''shortest_edge''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A ) __magic_name__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ = do_convert_rgb def __A ( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> List[Any]: '''simple docstring''' return rescale(A , scale=A , data_format=A , **A ) def __A ( self , A , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' return normalize(A , mean=A , std=A , data_format=A , **A ) def __A ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: '''simple docstring''' __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(A , param_name='''size''' , default_to_square=A ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(A ) for image in images] if do_resize: __magic_name__ = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=A , mean=A , std=A ) for image in images] __magic_name__ = [to_channel_dimension_format(A , A ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
678
from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return "".join(sorted(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return word_by_signature[signature(snake_case_ )] a_ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') a_ : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) a_ : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a_ : Optional[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
678
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Optional[int] ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Optional[int]=0 ): return sorted(snake_case_ , key=lambda snake_case_ : x[column] ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any]=float('''inf''' ) ): for i in range(points_counts - 1 ): for j in range(i + 1 , snake_case_ ): __magic_name__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __magic_name__ = current_dis return min_dis def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=float('''inf''' ) ): for i in range(min(6 , points_counts - 1 ) , snake_case_ ): for j in range(max(0 , i - 6 ) , snake_case_ ): __magic_name__ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __magic_name__ = current_dis return min_dis def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Dict ): # base case if points_counts <= 3: return dis_between_closest_pair(snake_case_ , snake_case_ ) # recursion __magic_name__ = points_counts // 2 __magic_name__ = closest_pair_of_points_sqr( snake_case_ , points_sorted_on_y[:mid] , snake_case_ ) __magic_name__ = closest_pair_of_points_sqr( snake_case_ , points_sorted_on_y[mid:] , points_counts - mid ) __magic_name__ = min(snake_case_ , snake_case_ ) __magic_name__ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(snake_case_ ) __magic_name__ = dis_between_closest_in_strip( snake_case_ , len(snake_case_ ) , snake_case_ ) return min(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] ): __magic_name__ = column_based_sort(snake_case_ , column=0 ) __magic_name__ = column_based_sort(snake_case_ , column=1 ) return ( closest_pair_of_points_sqr( snake_case_ , snake_case_ , snake_case_ ) ) ** 0.5 if __name__ == "__main__": a_ : str = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1